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ABSTRACT: In this work, a population balance equation (PBE) model is used to predict the evolution of the fiber breakage in
thermoplastic polymer/short-fiber composites during capillary extrusion. The least squares spectral method was used to solve the
resulting integrodifferential equation. The differences found between the experimental and simulated data were attributed to the
selected breakage and redistribution functions. An experimental setup is proposed to find accurate breakage functions for this
problem. The results indicate that the application of the PBE for such a breakage process could be a powerful tool for the design of
injection molding molds. C© 2015 Wiley Periodicals, Inc. Adv Polym Technol 2015, 0, 21635; View this article online at
wileyonlinelibrary.com. DOI 10.1002/adv.21635
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Introduction

Thermoplastic polymers are often reinforced by blending them
with fibers of higher Young’s modulus. Although Young’s mod-
ulus for mostly used engineering thermoplastics are in the range
of 1000–5000 MPa, for fibers this parameter may be up to three
orders of magnitude higher.1 Fibers that are not compatible
need to be mechanically bonded to the thermoplastic with ef-
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ficient surface compatibilizers that reduce the polymer–fiber in-
terfacial energy increasing adhesion.2 In this manner, the rein-
forcing effect is effective depending on the modulus, length,
aspect ratio and volume ratio of the fibers and compatibilizer
efficiency.

Many high performance products are made with thermoplas-
tic/fiber composites by injection molding processes.3 Automo-
bile interior and exterior parts are injected with fiber-reinforced
thermoplastics to reduce costs, seeking for long service life un-
der the automobile hood, exposed to heat, steam and oil. Several
aircraft parts are also injected with fiber-reinforced polyamides,
polypropylenes and polyesters.4

For a given polymer/fiber system with fixed reinforcement
volume fraction, the performance of the composite material de-
pends mainly on the final fibers aspect ratio and orientation.5
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The shear forces induced in injection molding produce fibers
breakage that detriments the final mechanical properties of the
material. In the case of the automobile industry, recycled ma-
terials are often used and further fiber breakage takes place.6

Therefore, the prediction of the evolution of the topology of the
fibers during the molding process is a critical aspect for obtaining
an optimal final product.

It may be considered that one of the main contributions for
fiber rupture during injection molding is the screw rotation dur-
ing the melting of the polymer composite prior to injection. How-
ever, the fiber breakage at this stage can be characterized and its
magnitude will be independent of the mold used. Many mold
designs can be used with the same injection molding machine.
In the case of molds, runners are the critical zones where fiber
breakage takes place, since the shear forces are stronger due to
the small cross-sectional area. Considering steady, incompress-
ible, fully developed, and isothermal polymer flow along a run-
ner with circular cross-sectional area, the shear force at wall at a
given flow rate depends on R–4, where R is the runner radius.7

Therefore, capillary extrusion rheometry is useful to simulate
flowing conditions inside injection molding runners. Figure 1
illustrates this explanation. Benhadou et al.8 proposed this idea,
suggesting that the fiber breakage process inside the mold run-
ners (Fig. 1a) can be easier studied from capillary extrusion
(Fig. 1b).

Experimental analysis and modeling of the fiber breakage
during the flow of polymers in capillary flow have been reported
in the literature.9–13 Models are focused on the effect of the flow
field on the buckling resistance of the fibers.11 However, the flow
field changes with the topology of the fibers, i.e., the evolution
of the distribution of the length of the fibers locally affect the
viscosity of the system and hence the flow field. Moreover, the
buckling resistance of the fibers depends also on their aspect
ratio and on the orientation of the fiber11 and these parameters
are modified throughout the process. Viscous heat generation
and the non-Newtonian nature of polymers must also be taken
into account.7 In summary, the models available in the litera-
ture are not able to predict the evolution and the final topology
of fibers flowing along a capillary. A model including all these
parameters would minimize experimental trial and error steps
in the preparation polymer/fiber composite materials with the
expected properties. In addition, it would enhance the efficiency
for mold designing in comparison with those models or exper-
imental information that only deals with the initial and final
topology of the fibers. A model solving all these issues would
be extremely valuable for the industry of injection-molded ther-
moplastic polymer fiber composite products.

In this work, we propose a first attempt to solve this problem.
The fibers in the runners can be characterized as a population
of entities that break as they move along the capillary. As such,
the population balance equation (PBE)14 can be used to study
the evolution of the fibers. This equation makes a statistical
description of the evolution of a group of entities, and it has
been applied to a large variety of problems in physics, biology,
chemistry and engineering, as reviewed by Ramkrishna14 and
Sporleder et al.15 The PBE has not yet been used before to study
fiber breakage processes of polymer/fiber composites. The PBE
uses a density function as its main variable, defined as a func-
tion of time, physical coordinates, and internal coordinates. The
latter are used to represent properties of the entities, such as size,

FIGURE 1. Schematic view for (a) cavity of a mold for injection
molded telephone parts and (b) die used for capillary extrusion.

mass, temperature, composition, etc. For a dispersed phase case,
the density function is affected by convection and by the death
and birth of entities. In the case of fiber capillary extrusion, the
latter are given by breakage events. The resulting equation is in-
tegrodifferential. Several methods have been proposed to solve
this equation, as reviewed by Ramkrishna.14 The great majority
involves rewriting the PBE as a system of differential equations.
Recently, Dorao et al.16 have shown the applicability of the least
squares method (LSM) to solve the PBE directly. Since then, the
method and its spectral element version have been successfully
applied to study droplets17 and bubbly flow18 using the PBE.

The aim of this work is to analyze the applicability of
the PBE for predicting the evolution of the fiber breakage in
polymer/short-fiber composite during capillary extrusion.
The least squares spectral method will be used to solve the
resulting integrodifferential equation. The numerical model will
be validated with the experimental data obtained by George

21635 (2 of 10)



RESEARCH ARTICLE

FIGURE 2. Fiber length distribution before and after extrusion.
Interpolation of the experimental data set at 1640 s–1 reported by
George et al.22

et al.19 for capillary flow of short pineapple fiber reinforced
low-density polyethylene composites. The main goal of this
work is to show the evolution of a density function predicted
with different breakage kernels and to compare the modeling
results with experimental data. Four intrinsically different
breakage kernels and two redistribution functions are tested.
The effect of several combinations of them on the accuracy of
the simulated results is analyzed.

Experimental data

This work is based on the experimental data reported by
George et al.19 They studied the melt rheological behavior of
short pineapple fiber reinforced low-density polyethylene com-
posites using an Instron capillary rheometer at different plunger
speeds from 0.06 to 20 mm/min. Low density polyethylene
(16MA 400) was obtained from Indian Petro Chemical Corpora-
tion Ltd, Vadodara. Pineapple leaf fibre (Ananus cosomus) was
supplied by South India Textile Research Association, Coimbat-
ore. The capillary used was made of tungsten carbide with an
aspect ratio of 33.42 and an angle of entry of 90°C. The shear
stress at wall (τW) was calculated using the Bagley correction.
They measured the fiber length number distribution before and
after extrusion at different shear rates (

.
γ
W

=16.4, 164, and 1640

s–1) by dissolving the polyethylene from the extrudate and mea-
suring the fiber length using a travelling microscope. No data
about the fiber content inside the composites and the extrusion
temperature were presented in the work by George et al.19 but
these parameters are not significant for the aim of our work. The
data set at 1640 s–1 was used to validate the simulations. This
present set was chosen arbitrarily and only one set was used for
the sake of simplicity.

Using interpolation, the whole space–size domain could be
reconstructed for the experimental data, and the resulting nor-
malized fiber length distribution is shown in Fig. 2.

The PBE: Theoretical Background

ONE-DIMENSIONAL, STEADY-STATE, CONSTANT
VELOCITY, BREAKAGE-DOMINANT FORMULATION

The PBE allow us to describe the entities in a statistical man-
ner by means of a density function f(r,ξ ,t) defined such that
f(r,ξ ,t)drdξ represents the expected number of particles per unit
volume in (r, r+dr) at time t, with the characteristic property of
the particles ξ in (ξ , ξ + dξ ). The evolution of this density func-
tion must take into account the different processes that control
the particle population such as breakage, coalescence, growth,
and convective transport of the particles. The resulting equa-
tion is a nonlinear partial integrodifferential equation, which
requires to be solved by a suitable numerical method. A detailed
discussion about population balances in general has been made
by Ramkrishna14 and Sporleder et al.15 One of the simplest cases
of the PBE is the one-dimensional, steady-state, constant veloc-
ity, breakage-dominant, and binary break formulation. In such a
case, the PBE can be described as follows20:

U × ∂ f (x, ξ )
∂x

= −b(ξ, x) × f (ξ, x) + 1/2 ∗
∫ ξmax

ξ

h(ξ, s, x)

×b(s, x) × f (s, x) × ds in � (1)

f (ξ ) = f0(ξ ) on�0 (2)

with � = [ξmin , ξmax] × [0 , X], where ξmin and ξmax are the
minimum and maximum values of the characteristic property
(for our case of study, ξ represents the normalized fiber length),
X is the total length of the channel in which the evolution of
the particles size is being analyzed, s is the length of the fiber
at position x along the channel, and U the velocity of the fibers.
Equation (2) contains the initial condition f0(ξ ) of the problem
that is applied on �0 = (ξ ϵ ∂�: x = 0 ˅ x= X). The left-hand side
of Eq. (1) represents the change in the fiber length distributions
along the channel. The right-hand side of Eq. (1) describes the
breakage process in terms of a breakage rate function, b(ξ, x),
and a redistribution function, h(ξ, s, x). The breakage rate gives
the frequency for the splitting of particles, and the redistribution
function describes the outcome of a split.

The first term on the right-hand side of the Eq. (1) gives us
the loss of fibers in the population for a breakage process; thus,
b(ξ, x) is the breakage rate of the particles of type ξ at x.

The second term on the right-hand side of Eq. (1) de-
notes the change in the population due to the arrivals of new
fibers with length ξ at x, according to the breakage redistribu-
tion functionh(ξ, s, x). The redistribution function is defined as
follows:

h(ξ, s, x) × dξ =
Number of fibers of size [ξ, ξ + dξ ] that appear in x

Total number of fibers of size s that break in x
(3)

By definition:
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∫ s

0
h(ξ, s, x) × dξ = 2 (4)

for binary breakage.
The main challenge in the population balance framework

is the determination of numerical or analytical correlations for
the functions that dictate the statistical behavior of the particles
(b(ξ, x) and h(ξ, s, x)).

MODEL

General Aspects

In this work, the fibers breakage evolution during the flow
of a polymer composite in capillary extrusion will be described
in terms of the one-dimensional, steady-state, constant veloc-
ity, breakage-dominant, and binary break formulation of the
PBE, represented by Eq. (1). Coalescence and growth terms are
neglected assuming well-dispersed polymer/fiber composites.
The breakage rate and the redistribution function are consid-
ered to be only dependent on the characteristic property ξ ,
which in this work represents the normalized length of the
fibers:

ξ = l/L = Length of fiber/Length of the longest fiber (5)

The domain for the characteristic property ξ defined by Eq.
(5) is [0.1].

It must be taken into account that this case of study was not
previously analyzed using PBE. Thus, the adaptation of the PBE
demands its retuning usually leading to the need of a completely
new model considering that the functions for the breakage rate,
b(ξ ), and the redistribution function, h(ξ, s), are unknown for
this particular case.

Dimensionless Variables

For the PBE to become independent of the velocity of the
particles, U (m/s), we introduce the following dimensionless
variables:

∼
x = x ∗ .

γ W

U
(6)

where x (m) is the position along the capillary axis and
.
γ
W

(s–1) is

the shear rate at the wall of the capillary. The numerical solution
proposed (described in the following section) define

∼
x in the

domain [0.1]. The equation to be solved can be expressed as
follows:

∂ f
(
ξ,

∼
x
)

∂
∼
x

= −B(ξ ) ∗ f (ξ,
∼
x) + 1/2 ∗

∫ ξmax

ξ

h(ξ, s) ∗ B(s) ∗ f (s,
∼
x) ∗ ds in � (7)

f (ξ,
∼
x) = f0(ξ ) on �0 (8)

where f (ξ ) represents the number of fibers of normalized length
ξ , B(ξ ) = b(ξ )

.
γ W

and B(s) = b(s)
.
γ W

are the dimensionless breakage
rates, and f0(ξ ) is the experimental distribution of ξ before ex-
trusion also named as the distribution of ξ at position x/X=0. It
must be taken into account that in this way Eq. (7) becomes case
dependent on

.
γ
W

.

Models for the Breakage Rate

The evolution of the fiber breakage in thermoplastic
polymer/short-fiber composites during capillary extrusion has
not been previously studied using a PBE approach. Models for
the breakage kernel according to this case of study are not re-
ported in the literature. So, we propose several empirical break-
age models to show the effects on the evolution of the density
function. The design of the breakage rate function is based on the
fact that longer fibers travelling within a polymer flow along a
pressurized capillary are easier to break.11,12 Thus, we proposed
b(ξ ) functions for which longer fibers will break faster. The re-
sulting equations for the breakage rate can be represented as
follows:

b0(ξ ) = k (9)

b1(ξ ) = k ∗ ξ (10)

b2(ξ ) = k ∗ ξ 2 (11)

b3(ξ ) = k ∗ ξ 3 (12)

where k is a constant. The value of k = 0.45 was found by trial
and error such that the evolution of fiber breakage was rela-
tively well predicted. Thus, the k value was chosen arbitrarily
for the particular case (processing parameters and material for-
mulation) analyzed in this work. It should be noted that the
aim of this work was to demonstrate that the PBE can be used
for the prediction of fiber breakage in capillary flow but not
to find breakage rate or redistribution functions for any other
processing conditions. In future works, more accurate breakage
rate functions will be found. Experimental data of the evolution
of fiber breakage inside a capillary will be studied by capillary
extrusion and injection molding. Injection molding molds will
be designed to precisely control the processing parameters and
the fiber breakage inside mold runners. The last section of this
work shows a detailed explanation of the experimental setup.
Knowing the fiber length distributions along the runner after the
breakage process, the breakage rate function can be optimized
solving the PBE inverse numerical problem. In such a case, the
dynamics of fiber breakage will be the input for the simulations
while the breakage kernel will be the unknown. Processing con-
ditions and material formulation will be taken into account in
the final PBE model.
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Models for the Redistribution Function

Since the breakage function only gives us the probability for
a fiber to break up, we still need the redistribution function
to describe the size distribution of the daughter fibers being
the outcomes of a breakage event. Redistribution functions for
our case of study were not previously reported in the litera-
ture. For this reason, we adopted models that have been used
for other physical problems that require the same constraints
of this work: binary breakage, mass balance, and number bal-
ance for the particles. Marcheti et al.21 studied several redistri-
bution functions that mathematically satisfy these constraints.
We selected the more appropriate model in terms of accuracy
between the experimental and simulated results, and accurate
prediction of the daughter fibers’ length. For this analysis, it
is important to note that the experimental results (see Fig. 2)
show daughter fibers having two-thirds the length of the par-
ent ones. Marchetti et al.21 have reviewed several kernels for the
size redistribution function in binary breakage. A normal dis-
tribution and a beta distribution function were adopted in this
work:

h1(ξ, s) = 2.4
s3

∗ exp

(
−4.5 ∗ (

2 ∗ ξ 3 − s3
)2

s6

)
(13)

h2(ξ, s) = 30
s

∗
(

ξ

s

)3

∗
(

1 − ξ

s

)
(14)

As was previously explained, these two equations fulfill the
three constraints of the system: binary breakage, mass balance,
and number balance for the particles.21

Numerical Method

The LSM was adopted to solve the actual problem. A detailed
explanation of the application of LSM to the direct PBE was
reported by Dorao and Jakobsen.22 The basic idea in the LSM is
to minimize the integral of the square of the residual over the
computational domain. For the cases in which the exact solution
is sufficiently smooth, the convergence rate is exponential by
increasing the polynomial degree of the approximation. To solve
Eq. (7) using the LSM, it is convenient to rewrite it using an
operator form as follows:

�b = g in � (15)

where � is the population balance operator and g is the term that
does not depend on B(ξ ). They can be defined as:

�b = −B(ξ ) ∗ f (ξ,
∼
x) + 1/2 ∗

∫ ξmax

ξ

h(ξ, s) ∗ B(s) ∗ f (s,
∼
x) ∗ ds

(16)

g =
∂ f

(
ξ,

∼
x
)

∂
∼
x

(17)

The least squares formulation is based on the minimization
of a norm-equivalent functional. This method consists of find-
ing the minimizer of the residual in a certain norm. The norm-
equivalent functional for the problem given by Eq. (15) is:

℘(b) ≡ 1
2

∗ ‖�b − g‖ 2
Y(�) (18)

where Y is the residual space. In some cases, optimal conver-
gence in the LSM can be achieved only if L2 norms are used
to define the least squares functional in Eq. (18).23 Actually,
in this work, the minimization is based on a L2 norm, i.e.,
‖ • ‖2

Y(�) ≡ ‖ • ‖2
L2(�). Hence, the norm is given as:

‖•‖2
L2(�) ≡ 〈•, •〉2

L2(�) =
∫
�

• · • d� (19)

Based on variational analysis, the minimization statement is
equivalent to:

Find b ∈ Z(�) such that

lim
ε→0

d
dε

℘ (b + εν) = 0∀ν ∈ Z (�) (20)

where Z(�) is the space of the admissible functions and ν is
any noise or perturbation function. Consequently, the necessary
condition can be written as:

Find b ∈ Z(�) such that

A (b, ν) = F (ν) ∀ν ∈ Z (�) (21)

with

A (b, ν) = 〈�b, �ν〉L2(�) (22)

F (ν) = 〈g, �ν〉L2(�) (23)

where A : Z × Z → � is a symmetric, continuous bilinear form,
and F : Z → � a continuous linear form provided that the �
operator is linear.

Finally, the discretization statement consists of seeking the
solution in a reduced subspace, i.e., bN ∈ ZN(�) ⊂ Z(�). Then,
assuming that ZN = span{�0,�1, ..., �N} with �l = �i ⊗ � j

constructed as the tensor product of one-dimensional basis
functions, we obtain

bN =
N∑

l=0

bl�l (24)

where bl are the coefficients for the expansion. In particular,
the Lagrange interpolant polynomials throughout the Gauss–
Lobatto and Gauss–Legendre–Lobatto quadrature points are
used.
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FIGURE 3. Experimental and simulated fiber length distributions
before and after the breakage process during extrusion at 1640 s–1.

Using approximation21 in expression18 and taking systemat-
ically ν = �i∀i = 0, 1, ..., N, we get

Ab = F (25)

where the matrix A ∈ �NxN and vectors b,F ∈ �N are defined as

[A]ij = A
(
�j, �i

) = 〈�� j , ��i
〉
L2(�) (26)

[F ]i = F (�i ) = 〈g,��i 〉L2(�) (27)

Results and Discussions

ANALYSIS OF SENSITIVITY OF THE MODEL OVER
CHANGES IN THE BREAKAGE RATE AND THE
REDISTRIBUTION FUNCTIONS

Figure 3 shows the experimental and simulated fiber length
distributions before (x/X = 0, where x is the position along the
capillary and X is its length) and after (x/X=1) the breakage
process during extrusion at 1640 s–1.

The breakage kernels used for this plot were h = h2, b =
b2, and k = 0.45. The experimental and simulated curves be-
fore extrusion are superimposed since the experimental data
before extrusion were the initial values for the simulations. It
can be observed from Fig. 3 that the simulated results after
extrusion satisfies binary breakage. The lengths of the parent
(l/L=0.86) and the daughter (l/L=0.60) fibers after extrusion pre-
dicted by the simulations are also in good agreement with the

experimental observations. This result is a consequence of the
correct selection of the redistribution function. Analyzing the
f(l/L) values after extrusion at fixed l/L, it can be observed that
the number of these fibers (f(l/L)) was not exactly predicted. We
can define an error ε between the modeled and the experimental
distributions by using the differences between experimental and
simulated f(l/L) values at fixed l/L. The mean value (ε1) of this
error can be calculated by the following equation:

ε1 (%) =

N∑
i=0

εi

N
=

N∑
i=0

∣∣∣∣ f
exp
(l/L)i

− f sim
(l/L)i

f
exp
(l/L)i

· 100
∣∣∣∣

N
(28)

where N is the number of points of the distribution and i is a
counter for the position at each fiber length. This calculation is
useful to estimate not only the accuracy of the simulations, but
also to analyze the sensitivity of the model itself over changes in
the breakage rate and redistribution functions.

The model used for the simulations in Fig. 3 was selected
after analyzing the different combinations of the breakage rate
and redistribution functions proposed. First, we calculated the ε1

values corresponding to each bi, hi combinations. Table I shows
the results.

The b0 breakage kernel predicts a breakage rate independent
of the fiber length. This case has not physical basis due to the fact
that longer fibers of the same diameter are easier to brake as a
consequence of their decreased resistance to shearing flow.21 For
this reason, the simulations corresponding to the combination
[b0; h1] did not converge, while large error was obtained using
b0 and h2. The optimal combination between the breakage rate
and the redistribution function was [b2; h2]. The second analysis
consisted of the calculation of an error based on the differences
between the simulated and experimental daughter and parent
fiber lengths. It can be seen in Fig. 3 that the daughter length
cannot be accurately quantified since a peak in that zone is not
clearly recognized. To solve this problem, the distributions af-
ter breakage (see Fig. 3) can be deconvoluted into two Gaussian
functions in such a way that the sum of those Gaussian distri-
butions fits the original fiber length distribution. We quantified
the daughter and parent lengths by the position of the peaks
of each Gaussian function. Figure 4 shows the deconvolution
of the simulated fiber length distributions after the breakage
process during extrusion at 1640 s–1. The x-axis position of the
peak corresponding to the Gaussian function located at shorter
l/L values (daughter distribution shown in Fig. 4) represents the
daughter length while the one at longer l/L values (parent dis-
tribution shown in Fig. 4) corresponds to the parent length. The
accuracy between the experimental and the predicted daughter
and parent lengths after extrusion at 1640 s–1 was calculated by
the following equations:

ε2 (%) = (l/L)daugther exp − (l/L)daugthersim
i

(l/L)daugther exp
· 100 (29)

ε3 (%) = (l/L)parent exp − (l/L)parent sim
i

(l/L)parent exp · 100 (30)
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FIGURE 4. Deconvolution of the simulated fiber length distribution
after the breakage process during extrusion at 1640 s–1.

Table II reports the values of ε2 and ε3 for each breakage rate–
redistribution function combination. The breakage rate func-
tions b0 and b1 were not useful for predicting the daughter and
parent fiber length after the breakage process. This result is in
accordance with the previous analysis based on ε1. On the other
hand, b2 and b3 accurately predicted these characteristics of the
distributions for both redistribution functions. Based on the anal-
ysis of the errors proposed, it can be concluded that [b2; h2] was
the best combination for the simulation of this case of study. The
corresponding curves are previously shown in Fig. 3.

Another feature that must be analyzed is the sensitivity of
the model over variations in the breakage rate. This analysis

demonstrates the suitability of the model for the physical prob-
lem proposed. For example, a variation of 10% in the breakage
rate should not have significant effect on ε1. We run simulations
using k = 0.405, k = 0.45, and k = 0.495 for each breakage rate
function. This analysis was done for both redistribution func-
tions proposed in this work. Table III shows the values of ε

1
for

each breakage rate–redistribution function combination.
It can be observed that except to the breakage rate model b0,

varying ±10% the value of k (see Eqs. (9)–(12)) did not signifi-
cantly change the ε1 values for any of the [bi; hi] combinations
analyzed.

These results demonstrates that the model is not sensitive
to small changes in the constants of the breakage rate mod-
els proposed. Moreover, it can be concluded that the PBE
model proposed is suitable for the physics of this case of
study.

As was previously demonstrated, [b2; h2] was the best com-
bination between those analyzed in this work but the obtained
ε1 = 13% should be reduced for better fitting of the experimen-
tal fiber length distribution after the breakage process. In future
works, experimental tests will be performed characterizing the
initial and final fiber size distribution after a breakage process
in a capillary extrusion rheometer. Injection molding molds will
be also designed to precisely control the processing parameters
and the fiber breakage inside a mold runner. In such tests, the
polymer/short-fiber composite will flow along a circular chan-
nel with known geometry by the action of a controlled pressure
gradient and temperature. The details of the experimental design
is shown in the last section of this work. With these parameters,
knowing the rheology of the system, the shear stress at wall of the
runner can be calculated. The initial and final fiber size distribu-
tion will be characterized for solving the inverse PBE problem
finding more accurate breakage rate functions to obtain more
precise fitting. The work will be focused in including the shear
stress magnitude at wall in the k parameter of the breakage rate

TABLE I
Error (ε1 (%)) Calculated from the Simulated and Experimental Results for Each Breakage Rate–Redistribution Function Combination

Redistribution Function

Breakage Rate Function h1(ξ, s) = 2.4
s3 ∗ exp

(
− 4.5 ∗ (2 ∗ ξ3−s3)

2

s6

)
h2(ξ, s) = 30

s ∗ ( ξ
s )3 ∗ (1 − ξ

s )

b0 = 0.450 Not converging 59
b1 = 0.450 ∗ ξ Not converging 15
b2 = 0.450 ∗ ξ2 18 13
b3 = 0.450 ∗ ξ3 22 16

TABLE II
Error ([ε2; ε3] (%)) Calculated from the Simulated and Experimental Daughter and Parent Fiber Lengths for Each Breakage Rate–Redistribution
Function Combination

Redistribution Function

Breakage Rate Function h1(ξ, s) = 2.4
s3 ∗ exp

(
− 4.5 ∗ (2 ∗ ξ3−s3)

2

s6

)
h2(ξ, s) = 30

s ∗ ( ξ
s )3 ∗ (1 − ξ

s )

b0 = 0.450 Not converging Not Converging
b1 = 0.450 ∗ ξ Not converging [17;0]
b2 = 0.450 ∗ ξ2 [0;0] [0;0]
b3 = 0.450 ∗ ξ3 [0;0] [0;0]
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TABLE III
Analysis of the Sensitivity of the Model over Changes in the Breakage Rate Function

Redistribution Function

Breakage Rate Function h1(ξ, s) = 2.4
s3 ∗ exp

(
− 4.5 ∗ (2 ∗ ξ3−s3)

2

s6

)
h2(ξ, s) = 30

s ∗ ( ξ
s )3 ∗ (1 − ξ

s )

b0 = 0.405 Not converging 47
b0 = 0.450 Not converging 59
b0 = 0.495 Not converging 71
b1 = 0.405 ∗ ξ Not converging 12
b1 = 0.450 ∗ ξ Not converging 15
b1 = 0.495 ∗ ξ Not converging 18
b2 = 0.405 ∗ ξ2 18 13
b2 = 0.450 ∗ ξ2 18 13
b2 = 0.495 ∗ ξ2 18 15
b3 = 0.405 ∗ ξ3 23 17
b3 = 0.450 ∗ ξ3 22 16
b3 = 0.495 ∗ ξ3 21 16

The values reported in each cell correspond to ε1 (%).

function, which would allow using the same model for different
processing parameters (pressure gradient and mold tempera-
ture) and different channel geometries.

PREDICTION OF THE EVOLUTION OF THE FIBER
BREAKAGE ALONG THE CAPILLARY AXIS

The prediction of the evolution of the fiber length distribution
during the flow of polymer/fiber composite materials along the
injection molding molds runners is valuable information that has
not been studied before. These results can be used as a powerful
tool for designing injection molding molds to obtain an injected
polymer/fiber composite product with the desired properties.
This tool may save time and money that is often spent on trial
and error attempts. Figure 5 shows the simulated results for
capillary extrusion, which is analogous to the flow inside the
runners.

Figures 5a and 5b clearly show the reduction of the num-
ber of parent fibers and the born of daughter fibers with length
two-thirds of the parent ones as a function of the position along
the capillary. Both conditions binary breakage and daughter
fibers with length two-thirds of their initial value were con-
served all along the capillary, as was expected from the previous
analysis. This result suggests that independently of the shear
stress magnitude, the residence time of the polymer/short-fiber
system flowing inside the capillary is an important parameter to
take into account.

FUTURE WORKS: EXPERIMENTAL SETUP FOR PBE
OPTIMIZATION

It was demonstrated that the PBE model is applicable for a
fiber breakage process in capillary flow. In the case of injection
molding, the fiber breakage in the injection screw section is crit-
ical and difficult to be avoided. On the other hand, the simula-
tion of the breakage process inside the injection runners using a
PBE model can prevent further undesirable breakage levels. We
are actually designing an experimental setup to study the fiber
breakage dynamics in injection molding runners at controlled

flowing conditions. The dynamics of fiber length distribution
will be measured avoiding the fiber breakage occurring at the
injection screw section. Figure 6 shows a schematic view of the
mold. The following steps will be performed to acquire the nec-
essary experimental data:

1. One weight percent polymer/fiber composites will be pre-
pared by melt blending in a brabender type mixer at low
screw rotation speed. Low fiber contents will be used
to minimize fiber/fiber interactions. Low screw rotation
speed will be used to avoid significant fiber breakage dur-
ing blending process.

2. Two-millimeter thick sheets will be prepared by compres-
sion molding.

3. Fiber length distribution inside the sheets will be char-
acterized by burning the polymer and measuring the
fiber length in scanning electron or optical microscopy.
This results will be used as the initial conditions for the
simulations.

4. Sheets will be placed in the first cavity as shown in Fig. 6.
A pressure sensor is placed in this cavity.

5. The first cavity will be heated until melting of the sheet
inside of it is achieved.

6. The sheet inside the first cavity is pushed by the injection
of pure polymer.

7. Molten polymer/composite in the first cavity is forced to
flow along the runner shown in Fig. 6. The pressure drop
along this runner is measured. The geometry of the runner
and the rheology of the composite at the processing condi-
tions are known. Therefore, the fiber length distribution in
a cross-sectional area at different axial positions along the
runner can be measured as a function of the shear stress
at wall.

Using this experimental information, the inverse PBE prob-
lem will be solved and the k parameter of the breakage rate
function will be optimized becoming the breakage rate indepen-
dent of the processing conditions.
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FIGURE 5. Simulations of the evolution of the fibers topology: (a) 3D graphic and (b) schematic view of the flowing composite along the capillary
showing the simulated distribution of fiber length at several positions.

FIGURE 6. Schematic view of the mold to be used for the
experimental work designed for finding a PBE model including material
formulation and processing conditions.

Conclusions

The PBE was successfully adapted to simulate the evolu-
tion of the fiber length distribution during the breakage pro-
cess of polymer/short-fiber composites flowing inside an extru-
sion capillary. The least squares spectral method was applied for
solving the partial integrodifferential model. The problem was
simplified to a one-dimensional, steady-state, constant velocity,
breakage-dominant, and binary break formulation. The model
derived describes the breakage regardless of the physics of the
problem, as it can be assumed to be the sum of the breakage
effects due to turbulence, shear, segregation, etc. The modeling
concept proposed in this work was not previously reported in the
literature. So, further work was required to establish a link be-
tween the model and the physical characteristics of the system.
Different empirical breakage rate models were proposed and
redistribution functions, which were previously used in other
physical problems, were adapted for our particular case of study.
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It was demonstrated that the evolution of the dispersed phase
was strongly dependent on the models used for the breakage
phenomena. The obtained results indicate that the application
of the PBE for such a breakage process can also be extrapolated
to other processing techniques such as injection molding. In fu-
ture works, an experimental setup will be designed to validate
the simulated breakage process along injection molding runners
and also to solve the inverse PBE problem to optimize the break-
age rate function. This work has technological importance since
it can be used as a powerful tool for the design of dies and
molds for melt processing of high-performance thermoplastic
polymer/short-fiber composite products, saving costs and time
that are often spent in trial and error steps.
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