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The temperate South American lizard genus Liolaemus is the one of the most widely distributed and species-rich
genera of lizards on earth. The genus is divided into two subgenera, Liolaemus sensu stricto (the ‘Chilean group’)
and Eulaemus (the ‘Argentino group’), a division that is supported by recent molecular and morphological data.
Owing to a lack of reliable fossil data, previous studies have been forced to use either global molecular clocks, a
standardized mutation rate adopted from previous studies, or the use of geological events as calibration points.
However, simulations indicate that these types of assumptions may result in less accurate estimates of divergence
times when clock-like models or mutation rates are violated. We used a multilocus data set combined with a newly
described fossil to provide the first calibrated phylogeny for the crown groups of the clade Eulaemus, and derive
new fossil-calibrated substitution rates (with error) of both nuclear and mtDNA gene regions for Eulaemus
specifically. Divergence date estimates for each of the crown groups and appropriate rate estimates will provide the
foundation for understanding rates of speciation, historical biogeography, and phylogeographical history for various
clades in one of the most diverse lizard genera in the poorly studied Patagonian region.
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INTRODUCTION

Over the past decade, there has been considerable
progress in the development of phylogenetic methods
for estimating divergence times between lineages,
particularly by allowing for the incorporation of rate
heterogeneity between branches when a clock-like
model is violated. Bayesian methods are favoured

over maximum likelihood because the priors on diver-
gence times can incorporate the uncertainty associ-
ated with fossil calibrations (Yang, 2006), particularly
with respect to divergence times in shallow phylog-
enies (Brown & Yang, 2009).

Shallow phylogenies generally correspond to lower
taxonomic levels, such as the origin of new intrage-
neric or intraspecific lineages (Avise, 2000), and esti-
mated divergences between lineages rarely extend
beyond the mid-late Miocene. Understanding these
timing events can provide valuable insights about not
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only the date of origin for taxonomic groups but also
the impacts of climatic and geological events on diver-
sification (Weir, 2006), on rates of speciation and
extinction (Weir & Schluter, 2007), the timing of dis-
persal events (Mercer & Roth, 2003), and dating the
origin of gene families (Vandepoele et al., 2004). In
intergeneric or interspecific phylogenies, sequences
tend to be less informative than higher level studies
and may lack reliable fossils to establish calibration
points. The shallow branches and lack of reliable
fossils often result in the use of global molecular
clocks, the implementation of standardized mutation
rate adopted from previous studies, or the use of
geological events as calibration points (Burbrink &
Lawson, 2007; Morando et al., 2007; Anducho-Reyes
et al., 2008; Benavides et al., 2009; Byrne, Rowe &
Uthicke, 2010; Kuriyama et al., 2011). For example,
in phylogeographical studies of lizards, which have
increased dramatically in the past two decades
(Camargo, Sinervo & Sites, 2010), the paucity of
reliable fossils usually requires using the ‘standard’
mutation rate of 1.6% per million years (for mtDNA)
based on Macey et al., 1998 (Feldman & Spicer, 2006;
Morando et al., 2007; Rastegar Pouyani et al., 2010).
This standard ‘global lizard rate’ requires a single
estimate of the mutation rate, which may further be
bounded by similar estimates taken from the litera-
ture. Although this may seem reasonable given the
lower rate variation because of shorter time scales
and similarity of taxa, simulations indicate that these
types of assumptions may result in less accurate
estimates of divergence times when clock-like models
or mutation rates are violated (Ho, 2005; Drummond
et al., 2006). Methods that allow for molecular rate
heterogeneity amongst lineages combined with fossil
calibrations can increase the accuracy of date esti-
mates (Yang & Rannala, 2006) and can provide infor-
mative priors on substitution rates (e.g. Weir &
Schluter, 2008). These results can then be used as
calibration dates to estimate mutation rates for phy-
logeographical studies that lack reliable fossil calibra-
tions (Eckert, Tearse & Hall, 2008).

Although the use of single locus data sets, particu-
larly mitochondrial DNA, has proven extraor-
dinarily successful at elucidating phylogenetic/
phylogeographical patterns at many levels, their use
has been questioned (Brito & Edwards, 2008;
Edwards & Bensch, 2009). Single locus phylogenies
can be problematic because of issues of discordance
between gene and species trees caused by introgres-
sion or lineage sorting (Funk & Omland, 2003),
natural selection (Ballard & Kreitman, 1995), and
arbitrary divergence masquerading as real population
structure (Irwin, 2002). This phenomenon is evident
in the many empirical studies in which organelle or
nuclear gene sequences are nonmonophyletic across

reproductively isolated species (Dolman & Moritz,
2006). As the use of multilocus data for phylogenetic
reconstruction becomes increasingly routine, cali-
brated substitution rates (with error) for both nuclear
and mtDNA are also needed to address historical
biological events. This is especially evident for species
complexes that have undergone rapid radiations and
whose interlineage relationships can be obscured by
ancestral polymorphisms retained in the component
gene trees (Avise & Wollenberg, 1997; Maddison,
1997).

The South American lizard genus Liolaemus is one
of the most widely distributed and species-rich genera
of lizards on earth (Lobo, Espinoza & Quinteros,
2010), with more than 231 currently recognized
species (Breitman et al., 2011a). It is distributed over
a wide geographical area spanning a large range of
altitudinal (0–4500 m) and climate regimes extending
from the arid Atacama Desert to temperate Nothofa-
gus rainforests (Lobo, 2001). Laurent (1983) divided
the genus into two main groups based on morphologi-
cal characters: Liolaemus sensu stricto (the ‘Chilean
group’) and Eulaemus (the ‘Argentino group’), a divi-
sion that is supported by recent molecular and mor-
phological data (Schulte et al., 2000; Espinoza, Wiens
& Tracy, 2004; Morando, 2004; Cruz et al., 2005;
Abdala, 2007).

Recently, newly discovered fossil remains have been
described as the earliest record of the subgenus
Eulaemus (based on the opening of the Meckel’s
canal), which is closed in members of the subgenus
Liolaemus (Albino, 2008). These findings add addi-
tional support for the basal split between these two
subgenera.

Owing to the size and complexity of the genus,
many taxonomic arrangements have been proposed
since its original description (Wiegmann, 1834). Fol-
lowing Laurent (1983), we recognize the two subgen-
era: Liolaemus sensu stricto, the ‘Chilean’ group, for
species mainly distributed west of the Andes, and
Eulaemus (Girard, 1858), the ‘Argentine’ group, for
the species distributed east of the range. Within
Eulaemus, both morphological and molecular data
support recognition of two main clades, the Eulaemus
lineomaculatus and Eulaemus montanus sections
(Schulte et al., 2000), but given the size of the genus,
it is not surprising that our understanding of the
evolutionary relationships within each of these sec-
tions of Eulaemus is extremely limited. Recent
studies have provided classification schemes for
Liolaemus, particularly for Eulaemus, based on mor-
phological, molecular, ecological, and combined data
sets (Schulte et al., 2000; Avila, Morando & Sites,
2006; Abdala, 2007; for a review see Lobo et al., 2010).
Collectively these studies provide strong support
for four clades within Eulaemus, the E. montanus
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(Etheridge, 1993), Eulaemus anomalus (Abdala,
2007), Eulaemus darwinii (Etheridge, 1993), and
Eulaemus wiegmannii groups (Etheridge, 1995), but
beyond this they have not converged on consensus
taxonomy. For example, Abdala (2007) recognized a
‘Eulaemus telsen group’ and a ‘Eulaemus goestchi
group’ which were both nested within a ‘Eulaemus
melanops group’. Avila et al. (2006) recognized the
Eulaemus boulengeri and Eulaemus rothi complexes
in an mtDNA gene tree, which Abdala (2007) com-
bined into the ‘E. telsen group’. Similarly, from mor-
phological data Etheridge (1993, 1995) recognized a
‘E. darwinii group’ and ‘E. wiegmannii group’ that
Avila et al. (2006) recognized as a ‘E. darwinii
complex’ and a ‘E. wiegmannii complex’. Despite dif-
ferences in these informal taxonomic designations,
each of these studies recovered a similar overall hier-
archy. In this paper we use this hierarchical structure
in combination with a multilocus data set to provide
the first fossil calibrated phylogeny for the crown
groups of the clade Eulaemus, and derive new fossil-
calibrated substitution rates (with error terms) of
both nuclear and mtDNA gene regions for Eulaemus
specifically. Divergence date estimates for each of the
crown groups and appropriate rate estimates will
provide the foundation for understanding rates of
speciation, historical biogeography, and phylo-
geographical histories for various clades within
Eulaemus.

MATERIAL AND METHODS

When possible we chose two individuals collected
from the type localities for each species representing
the major recognized groups (e.g. ‘crown groups’)
within Eulaemus based on both molecular and mor-
phological studies (Abdala, 2007; Morando et al.,
2007; Breitman et al., 2011b), and two outgroup taxa
from the subgenus Liolaemus (Appendix). Our sam-
pling design is customary for this type of analysis
because it excludes closely related terminal taxa,
which can complicate rate estimation for closely
related sequences when using a Yule prior (Ho, 2005).
As mitochondrial introgression may mislead phyloge-
netic reconstruction within some clades of Eulaemus
(Morando et al., 2004), we included two nuclear loci
along with two mitochondrial genes. Total genomic
DNA was extracted from liver/muscle tissue following
the protocol of Fetzner (1999) and using a Qiagen
DNeasy tissue extraction kit. The cytochrome b (cyt b)
gene region (804 bp) was amplified via PCR following
Morando, Avila & Sites (2003), using the light strand
primers GluDGL and the heavy strand primer Cyt b
3 (Palumbi, 1996). For internal sequencing we used
the Cyt b 2 (Palumbi, 1996) and F1 (Whiting, Bauer
& Sites, 2003) primers. We used the primers and PCR

conditions for 12S and the nuclear gene CMOS from
Wiens, Reeder & Nieto Montes de Oca (1999) and
Saint et al. (1998), respectively. A second protein
coding nuclear gene fragment (MXRA5) was amplified
with primers 5′-KGC TGA GCC TKC CTG GGT-GA
and YCT MCG GCC YTC TGC AAC ATTK, and the
following PCR protocol: 95 °C for 2 min, 63 °C for 35 s
(decrease by 0.5 °C for ten cycles), extension of 72 °C
for 1 min, followed by ten cycles at 58 °C, and an
additional 15 cycles at 52 °C. Double-stranded ampli-
cons were checked by electrophoresis on a 1% agarose
gel, purified using a MultiScreen PCR (mu) 96 (Mil-
lipore Corp.), and directly sequenced using the
BigDye Terminator v3.1 Cycle Sequencing Ready
Reaction kit (Applied Biosystems, Foster City, CA).
Excess dye terminator was removed with MultiScreen
plates (Millipore Corp.), and sequences were fraction-
ated by polyacrylamide gel electrophoresis on an
ABI3730xl DNA Analyzer DNA sequencer (PE
Applied Biosystems) at the DNA Sequencing Center
at Brigham Young University (BYU). Sequences were
deposited in GenBank under accession numbers
JN614915 to JN614990. Sequences were edited and
aligned using SEQUENCHER (Gene codes, 2000). No
stop codons or indels were present in the protein
coding genes, and the number of gaps present in the
12S and MXRA5 genes was limited. This permitted
parsimonious alignments of these regions by eye to
maximize blocks of base pair identity.

The Bayesian information criteria (BIC; Schwartz,
1978) from jModeltest (Posada, 2008) were used to
determine the most appropriate model of evolution for
each gene fragment. Data were first analysed using a
partitioned Bayesian analyses in MrBayes v.3.1.2
(Ronquist & Huelsenbeck, 2003). Four separate runs
were conducted with the trees and their parameters
sampled every 1000 generations. Each run used a
random starting tree and was run for 1 ¥ 107 genera-
tions with unlinked parameters, and one cold and five
heated chains to ensure proper mixing amongst
chains. Stationarity of the likelihood scores was deter-
mined by examining the convergence in posterior
probabilities between the simultaneous runs using
the standard deviation of split frequencies based on
Rubin & Gelmans’s ‘r’ statistic (Gelman et al., 1995).

To ensure an appropriate clock model and to test for
deviation from a constant rate of molecular evolution
(i.e. a ‘strict’ molecular clock), we conducted likelihood
ratio tests (LRT) for each gene implemented in the
program HYPHY (Pond, Frost & Muse, 2005). To
estimate dates of origin for each crown group, we used
BEAST v. 1.5.4 (Drummond & Rambaut, 2003). The
partitioned analyses were constructed using the
appropriate models determined by the BIC with a
relaxed uncorrelated lognormal clock model for the
cyt b, 12S, and MXRA5 genes, and a strict molecular
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clock for CMOS (see Results). We used the newly
described fossil from the Eulaemus clade, represent-
ing the earliest record of this subgenus (Albino, 2008),
to place a mean prior of 20 Mya on the tree height.
This fossil allows for a minimum age estimate to be
placed away from the tips of the phylogeny, where
calibration points are most informative (Drummond
et al., 2006), and by applying a prior distribution that
reflects the uncertainty in the fossil calibration, diver-
gence estimates should give more realistic confidence
intervals. A lognormal prior is typically most appro-
priate for the majority of fossil calibrations (Hedges &
Kumar, 2004), because it assumes that the divergence
event actually occurred some time before the appear-
ance of the fossil. Under this model, fossils thus
represent a hard lower bound and a soft upper bound
on a given divergence event.

Following the recommendations from Ho (2007), a
lognormal prior distribution with a standard devia-
tion of 0.13 (23.47–16.89 Mya) was determined to be
the most appropriate for the tree height. This age
range spans the Early Miocene sub-epoch from which
the fossil was collected (Albino, 2008). To ensure
convergence, analyses were run four times using a
randomly generated starting tree and a Yule tree
prior. The Yule prior assumes a constant lineage birth
rate for each branch in the tree and is considered
most suitable for trees describing the relationships
between individuals from different species (Ho et al.,
2005). Analyses were run for 1 ¥ 108 generations with
the parameters logged every 1000th iteration. Diver-
gence estimates for each node in each analysis were
compared across runs to ensure that the analyses
converged on roughly the same mean for each time to
most recent common ancestor (TMRCA) estimate,
using TRACER v.1.4 (Drummond & Rambaut, 2003).
The log files from each run were combined using
LOGCOMBINER (Drummond, 2006) following a
burn-in of 20 000 generations.

RESULTS

The combined aligned data set consisted of 2153 bp
for the four genes for the 19 taxa. The preferred
model of nucleotide substitution for each gene was:
cyt b, general time reversible (GTR + G + I); 12S,
GTR +G + I; MXRA5, HYK + G; and CMOS, HKY. The
partitioned Bayesian analyses produced a well-
supported phylogeny with a marginal likelihood of
-11569 based on the harmonic mean.

The assumption of a strict molecular clock was
significantly rejected by the LRT for each gene with
the exception of CMOS (P > 0.12). For the dating
analysis, Bayes factors favoured the relaxed uncorre-
lated lognormal clock over the relaxed uncorrelated
exponential clock for each gene fragment, thus devi-

ating from a strict clock model. The Yule birth rate for
the phylogeny was 0.11 (95% HPD 5.36-2–0.168). The
coefficients of variation for each gene were high with
the exception of CMOS, suggesting a significant
departure from a molecular clock, further supporting
the results of the LRT. Further, low covariance values
indicate little autocorrelation of rates amongst parent
and daughter branches. The mean rate of evolution
for each gene was: cyt b, 2.23-2 (95% HPD 1.43-2–
3.14-2), 12S, 5.76-3 (95% HPD 3.92-3–7.82-3), MXRA5,
6.56-4 (95% HPD 4.32-4–9.05-4), and a clock rate for
CMOS of 6.79-4 (95% HPD 3.97-4–9.85-4) substitutions
per site per million years, respectively. Both parti-
tioned analyses (MrBayes and BEAST) inferred iden-
tical well-supported topologies. Therefore, because
both analyses produced highly congruent estimates of
phylogenetic relationships, a consensus phylogram
from BEAST is presented with the estimated dates of
divergence and posterior probabilities (Fig. 1).

Dating analyses indicated that the major diver-
gences within the Eulaemus clade occurred through-
out the Miocene (23.03–5.33 Mya). Working forward
from the root of the tree (Fig. 1), the initial divergence
occurred approximately 18.08 Mya during the Early
Miocene with the split of the E. lineomaculatus
and E. montanus sections. Within the E. montanus
section, the divergence between the E. melanops
series and the Eulaemus nigriceps series occurred
12.9 Mya (95% HPD 17.17–8.98), during the Middle
Miocene.

Within the E. nigriceps series, the E. darwinii
group diverged 12.32 Mya (95% HPD 16.58–8.26), fol-
lowed by the E. montanus group 11.5 Mya (95% HPD
15.30–7.45). The split between the E. anomalus group
and the E. wiegmannii group was estimated at
10.21 Mya (95% HPD 14.82–6.95), but this node is
weakly supported (posterior probability = 0.81).

Unlike the E. nigriceps series, the major diver-
gences within the E. melanops series occurred during
the Late Miocene (11.6–5.33 Mya). The divergence
between the E. telsen and E. goestchi groups occurred
9.4 Mya (95% HPD 13.11–6.07), along with the
E. rothi and E. boulengeri complexes [8.03 Mya (95%
HPD 11.54–4.98)] and Eulaemus donosobarrosi and
Eulaemus fitzingerii groups [5.94 Mya (95% HPD
8.59–3.62)]. Each of the terminal groups shared a
most recent common ancestor during the Late
Pliocene or Early Miocene (Fig. 2).

DISCUSSION

We employed multiple loci and several analytical
approaches and newly discovered fossil remains to
reconstruct the phylogenetic relationships of, and
obtain divergence date estimates for, the major crown
groups of the subgenus Eulaemus. The resulting phy-
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logenies had generally strong nodal support and
similar topologies. The fossil-calibrated dating analy-
sis indicates that the initial divergence within Eulae-
mus occurred approximately 18.08 Mya during the
Early Miocene, which roughly corresponds to previous
studies. Using pairwise sequence divergence and
assuming a clock-like model for mtDNA, Schulte et al.
(2000) inferred a Miocene divergence between the two
Liolaemus subgenera, at ~ 12.6 Mya. However, aware
of the limitations of mtDNA alone and clock-like
models, the authors suggested that this estimate may
be too low and the initial divergence may date to an
earlier phase of the Miocene. Our results support
earlier studies suggesting the influence of the
Andean uplift on the diversification of South
American taxa (Schulte et al., 2000; Antonelli et al.,
2009; Hoorn et al., 2010). During the early Miocene
(23.07-15.97 Mya), the morphostructural configura-
tion of the Andes began to develop and the continued
uplift and associated marine transgressions through-
out the middle and late Miocene provided numerous
opportunities for vicariant events (Donato et al.,
2003). However, unlike previous studies using ‘stan-
dard’ mutation rates and assuming clock-like models

(Schulte et al., 2000; Morando et al., 2007), our
analysis suggests that the major crown groups of
Eulaemus diverged after the Miocene (Fig. 2). These
more recent divergences as well as the contemporary
diversity may be a result of the climatic changes
throughout the Pliocene and Pleistocene.

Each of the terminal groups used in this study
consists of a multitude of species complexes (Morando
et al., 2003, 2004, 2007; Avila et al., 2006; Breitman
et al., 2011a), and further research into the phyloge-
netic relationships is clearly needed. One option is to
use these divergence date estimates combined with
calibrated substitution rates to estimate other nodes
of interests, in lieu of waiting for the discovery of new
fossils that can be confidently placed at internal
nodes. Although the inclusion of additional fossil taxa
would be ideal, the incorporation of these calibrated
divergence dates and substitution rates provides a
clear step forward from the previous works that relied
on standard mutation rates (Schulte et al., 2000;
Breitman et al., 2011a).

Prior to this work, evidence for rates of evolution
for the Liolaemidae were unavailable and researchers
were forced to use crude estimates of sequence

Figure 1. Fifty per cent majority rule phylogram from the partitioned BEAST analyses of the combined data set
(cytochrome b, 12S, CMOS, and MXRA5). Numbers above and below the nodes represent posterior probability values and
mean estimates of divergence dates (in millions of years), respectively.
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divergence derived from distantly related taxa
(Zamudio & Greene, 1997; Macey et al., 1998; Mal-
hotra & Thorpe, 2000). Typically these estimates
ranged between 1.3 and 2% per million years with an
average of 1.6%, and were sometimes applied to dif-
ferent mitochondrial genes (Morando et al., 2004,
2007; Breitman et al., 2011a) even though numerous
studies have shown that substitution rates across
mitochondrial genes differ (Mueller, 2006; Jiang et al.,
2007). The incorporation of relaxed phylogenetic
methods has been accompanied by simulations
showing that broad assumptions about mutation rate
homogeneity may result in less accurate estimates of
divergence times (Ho et al., 2005; Drummond et al.,
2006). Within the genus Liolaemus, the most fre-
quently used mtDNA genes are cyt b and 12S
(GenBank data). We inferred a substitution rate of
2.23-2 (95% credible interval 1.43-2–3.14-2) for cyt b
across Eulaemus. Although this range incorporates
the ‘standard’ average and upper bound previously
used, our calibrated average for Eulaemus is consid-
erably higher. In contrast, our average estimate for
12S was considerably lower (5.76-3) with a 95% cred-
ible interval that did not encompass the ‘standard’
rate (Fig. 3A). Furthermore, the calibrated rate esti-
mates inferred in this study are similar to those
estimated within the E. lineomaculatus section using
the same fossil calibration and the rate estimate
derived from this study (Brietman pers. comm.).

Divergence date estimates derived solely from
mtDNA sequences can suffer from substitution satu-
ration that can bias results, pushing date estimates
back as much as 20 million years (Zheng et al., 2011).
This bias can be corrected for by including slowly
evolving markers such as nuclear exons into multilo-
cus studies. As the incorporation of multiple indepen-
dent loci for phylogenetic reconstruction grows,
calibrated substitution rates will become increasingly
important in order to address historical biological
events for taxa that either lack fossils or for which
external calibration points are not available. In addi-
tion to the mtDNA rates, we obtained rate estimates
for the commonly used nuclear gene CMOS and the
novel nuclear gene MXRA5. Both genes showed
similar substitution rates with the MXRA5 gene
being slightly faster (Fig. 3B). The MXRA5 gene is
informative in Liolaemus and has been recently used
in both phylogenetic (Olave pers. comm.) and species
tree estimation studies (Camargo et al., in press).

The selection and placement of fossils used to cali-
brate the age of a phylogeny is crucial for both diver-
gence time and substitution rate estimates (Near,
Bolnick & Wainwright, 2005). Wertheim & Sanderson
(2011) found that internally calibrated nodes and the
use of wide prior distributions on the age of calibrated
nodes produced less precise estimates in simulation
studies. Likewise, Battistuzzi et al. (2010) found that
calibrating with deeper nodes performs better than
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Figure 2. Age posterior probability distributions for each of the Eulaemus crown groups. Vertical black line represents
the Miocene-Pliocene boundary (5.33 Mya).
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calibrating with internal nodes. Although the addition
of more calibration points is desirable, it is unlikely
that the addition of internal calibrations (additional
fossils or geological events) will cause a drastic
change in our date estimates. Similarly, the effects of
taxon sampling on divergence estimates has shown no
relationship between the sampling density of the indi-
vidual clades and the age estimation of their subtend-
ing nodes, suggesting that the subclade sampling has
no impact on divergence date estimation (Linder,
Hardy & Rutschmann, 2005). Rannala & Yang (2007)
noted that infinite sequence information does not
shrink age estimates indefinitely because of the
reliance of these age estimates on the width of the
fossil calibration priors. Previous studies addressing

the divergence dates in Liolaemus have relied on
multiple mitochondrial genes (e.g. Schulte et al.,
2000), and because this can drastically overestimate
divergence times (Zheng et al., 2011), we suggest that
the addition of the fossil calibration and nuclear
genes presented here can reduce this type of error.

Although further work is needed to address the
species diversity, taxonomy, and phylogenetic rela-
tionships within Liolaemus, this study provides the
first working hypothesis of divergence dates for the
major Eulaemus crown clades based on independent
evidence, as well as revised substitution rate esti-
mates (with error) for gene regions commonly used in
molecular studies of lizards. Although incorporat-
ing substitution rates from previous studies is less

Figure 3. Posterior probability distributions for mean rates of evolution estimated from the combined data under a
partitioned analysis for the mitochondrial (A) and nuclear genes (B). The middle line of each box plot represents mean
rates and the top and bottom lines indicate the 95% credibility intervals. CMOS; MXRA-5.
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desirable than utilizing reliable fossil calibrations,
our substitution rate estimates can be used for closely
related species or genera that lack a well-defined
fossil record. Additionally, because of the paucity of
South American lizard fossils (Albino, 2005), our
divergence date estimates could be used as external
calibration points (with error) for dating more recent
events that incorporate rapidly evolving markers.
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APPENDIX

Appendix S1. Species, tissue vouchers and collecting localities for the samples used in this study.

Species voucher Province. Department. Locality

L. azarai LG1092 Corrientes. General Paz. Isla Yacyreta.
L. bibronii 5918 Santa Cruz. Lago Buenos Aires. Provincial Road 43, 19 km W Perito

Moreno.
L. boulengeri 3610 Chubut. Cushamen. Provincial Road 12 & Embarcadero La Cancha
L. chacoensis 4241 La Rioja. Capital. Provincial Road 9, 37.3 Km E Anillaco, Sierra de Mazan.
L. cheuachekenk 5629 Chubut. Cushamen. Provincial Road 13, 8 km N El Molle.
L. cuyanus 4155 La Rioja. Famatina. National Road 40, Km 657, 9 Km E Pituil.
L. darwinii 10391 Rio Negro. San Antonio. Gran Bajo del Gualicho. 42,4 Km NW San Antonio

Oeste, Provincial Road 2.
L. donosobarrosi 5051 Mendoza. Malargue. Provincial Road 180, 15 Km S La Cortadera.
L. elongatus 2128 Chubut. Futaleufu. Nacional Road 40, Km 1530, 17 Km S Esquel, 5 Km

intersection National Road 40 & National Road 259.
L. famatinae 2034 La Rioja. Famatina. Close to Station 8, La Mejicana Mine.
L. fitzingerii 4891 Santa Cruz. Deseado. 1 km W Tellier
L. kingii 3040 (fn326) Santa Cruz Deseado Empalme Ruta Nacional 281 con Ruta Nacional 3,

7 km NW Jaramillo
L. magellanicus 6730 Santa Cruz. Guer Aike. Provincial Reserve Cabo Vírgenes.
L. pseudoanomalus 2300 La Rioja. Felipe Varela. Provincial Road 26, 3 Km N Pagancillo.
L. rothi 1 3091 Rio Negro. Bariloche. Bariloche.
L. cf. rothi 2 2550 Neuquen. Aluminé. Provincial Road 13, Pampa de Lonco Luan, 12 Km E Río

Litrán.
L. telsen 5530 Chubut. Telen. Provincial Road 4, 65.5 Km W Telsen.
L. vallecurensis 2698 San Juan. Iglesia. Llanos de La Lagunita.
L. wiegmannii 3099 Buenos Aires. Bahia Blanca. Bahia Blanca.
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