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1. Introduction

The existence of “trapped modes” in open geometries was first proved by Ursell [1, 2]

studying beach waves in semi-infinite canals. Much later, Schult and collaborators [3],

showed that the ground state of an electron constrained to move in an infinite symmetric

cross, but otherwise free, is localized in the central region of the cross and its energy

falls below the continuum threshold (recently Amore et al. [4] have also studied the

more general case of asymmetric crosses and asymmetric T- and L-shaped waveguides).

Since Ref. [3], a large class of open geometries and of physical problems have been

studied, observing the emergence of one or more localized modes. In particular, Exner

and Seba [5] have proved that the existence of a bound state for an electron confined to

a planar waveguide, with curvature decaying at infinity and obeying Dirichlet boundary

conditions at the border; Goldstone and Jaffe [6] have proved that an electron confined

to an infinite tube of constant cross section, in two or more dimensions, has always a

bound state, when the tube is not perfectly straight. The effect of bound states in infinite

non–straight waveguides has been studied in [7, 8, 9, 10, 11, 12]. It is worth mentioning

a recent pedagogical article by Londergan and Murdock [13], that illustrates different

numerical methods for the solutions of confined systems, in particular two-dimensional

waveguides.

Bulla and collaborators [14] have obtained the expression for the fundamental

energy of an infinite two-dimensional waveguide, where the upper border is slightly

deformed, to second order in the parameter controlling the deformation. Their result

proves that a bound state is always present, whenever the deformation corresponds to

a local enlargement of the waveguide. Exner and Vugalter [15] have then considered

the interesting question of what happens when the leading expression of Bulla et al.

vanishes, and whether a bound state can still exist. This situation corresponds to the

case where the local deformation of the waveguide contains both a local enlargement

and a local shrinking of the waveguide, which preserve the total area. They showed that

the problem presents a critical behavior, related to the size of the deformation, where

the bound state can be lost below a critical size.

A different but related problem, concerns the existence of bound states in open

geometries, that are not necessarily deformed, but contain local heterogeneities. For the

solvable case of an infinite, straight, two-dimensional waveguide, containing a segment

of different density, Wang [16] has proved the existence of bound states. Moreover, at

least in two dimensions, the problem of studying the spectrum of a deformed waveguide

can be reduced to the problem of studying the spectrum of a heterogeneous straight

waveguide, by using a suitable conformal map which transforms one domain into the

other. In a similar way one could study the spectrum of a waveguide both deformed

and heterogeneous.

The purpose of the present work is to establish rigorously the conditions for

the existence of bound states on general planar weakly deformed and heterogeneous

waveguides, applying a perturbation method and calculating the exact general
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expression for the energy of the fundamental mode to third order in the parameter

controlling the perturbation. When our formula is applied to the study of homogeneous

and weakly deformed waveguides the ”density” appearing in our expression is directly

related to the conformal map used to transform the deformed waveguide into a straight

one (for an example of use of conformal maps to the infinite waveguide see [12, 17]).

In this case our second order formula should be equivalent to the formula of [14] for

a specific class of maps. Our results can also be used in more than two dimensions,

to describe straight heterogeneous waveguides (conformal maps are limited to two

dimensions). Finally, we stress that the perturbation scheme used in the present paper,

could be applied to include higher order perturbative contributions in a systematic way.

The paper is organized as follows: in Section 2 we describe the perturbation method

used in the calculation and derive the exact expressions for the energy of the ground

state up to third order in the perturbative parameter; in Section 3 we reproduce

the second order expression for the energy of the ground state using the variational

method; in Section 4 we discuss a simple solvable example of an infinite, straight,

weakly heterogeneous waveguide and reproduce the exact results to third order, using

our formulas; finally, in Section 5 we present our conclusions.

2. Perturbation theory

Following [18, 19] we consider the Helmholtz equation for an inhomogeneous medium,

(−∆)Φn(x) = EnΣ(x)Φn(x) , (1)

where x ∈ Ωd, and Ωd is a region of ℜd. This region may either be finite or

infinite, and the spectrum of the eigenvalues En can either be discrete, continuum

or both. In particular, several aspects of the behavior of the spectrum of eq. (1),

in one or more dimensions, have been studied by one of the present authors. The

aspects studied earlier include the description of non–perturbative methods for the

calculation of the lowest part of the spectrum [18, 20, 21], of a perturbation method

for the calculation of the eigenvalues of two-dimensional domains obtained from a

small deformation of a reference (solvable) domain [22], the derivation of spectral zeta

functions associated to heterogeneous systems in one and two dimensions [23] and the

sum rules of heterogeneous domains in one or more dimensions, for different boundary

conditions [19, 24, 25].

Observe that the density of the medium is a positive definite function, Σ(x) > 0

for x ∈ Ωd.

If we introduce the functions

ξn(x) ≡
√

Σ(x)Φn(x) , (2)

we see that the Helmholtz equation becomes

1√
Σ
(−∆)

1√
Σ
ξn(x) = Enξn(x) , (3)
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and the ξn are eigenfunctions of the operator Ô ≡ 1√
Σ
(−∆) 1√

Σ
. Notice that the two

equations are isospectral. It is a matter of convenience to work with one equation or

the other ¶.
To solve the problem perturbatively we assume

Σ(x) = 1 + ησ(x) , (4)

where |η| ≪ 1 is a dummy perturbation parameter that one sets to unity after the

calculation and

En =
∞
∑

j=0

ηjE(j)
n , (5)

ξn(x) =

∞
∑

j=0

ηjξ(j)n (x) . (6)

We work with the operator

Ĥ ≡ 1√
Σ
(−∆)

1√
Σ

(7)

on the strip defined by (x, y) ∈ {−∞ < x <∞,−b/2 ≤ y ≤ b/2}. Dirichlet boundary

conditions at y = ±b/2 are assumed. We also assume that σ(x, y) corresponds to a

localized inhomogeneity, i.e.,

lim
|x|→∞

σ(x, y) = 0 . (8)

For a straight and homogeneous waveguide the spectrum is continuous and therefore

if one applies perturbation theory to the general problem of an inhomogeneous waveguide

using the straight and homogeneous waveguide as the unperturbed problem, one

inevitably encounters infrared divergences, due to the contribution of the states of very

soft momentum, just above the fundamental mode. To avoid the emergence of such

divergences, in the different context of quantum mechanics and quantum field theory,

Gat and Rosenstein [26] have devised a perturbation scheme which uses a regularized free

theory and obtained explicit results for the bound state of weak short range potentials

(thus reproducing a result first obtained by Simon [27]) and for the mass of the bound

state meson in the Thirring model.

Applying the ideas of Ref. [26] to our case, we modify the original operator in a

way that it can support a bound state:

Ĥ → 1√
Σ
(−∆− 2βδ(x))

1√
Σ
, (9)

where β > 0. We use as unperturbed operator Ĥ0 ≡ −∆ − 2βδ(x), and we will let

β → 0 at the end of the calculation.

¶ In the following we will work with the form of eq. (3), which has the advantage of using manifestly

Hermitian operators; the approach using eq. (1) is described in Appendix B.
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The basis set of eigenfunctions of Ĥ0 is given by

Ψp,n(x, y) = ψn(y)⊗











φo(x) , ground state ,

φ
(e)
p (x) , even ,

φ
(o)
p (x) , odd ,

where the longitudinal wave functions are

φ0(x) =
√

βe−β|x| ,

φ(e)
p (x) =

√
2

√

p2 + β2
[p cos(px)− β sin(p|x|)] ,

φ(o)
p (x) =

√
2 sin(px) , (10)

and the transverse wave functions are

ψn(y) =

√

2

b
sin
[nπ

b
(y + b/2)

]

. (11)

The corresponding eigenvalues are

ǫ0,n = − β2 +
n2π2

b2
,

ǫ(e)p,n = ǫ(o)p,n = p2 +
n2π2

b2
. (12)

It is convenient to use Dirac notation

φ0(x) → |0〉 ; φ(e)
p (x) → |p(e)〉 ; φ(o)

p (x) → |p(o)〉 ; ψn(y) → |n〉, (13)

and

Ψp,n(x, y) →











|0, n〉 ,
|p(e), n〉 ,
|p(o), n〉 .

(14)

The completeness of the longitudinal basis reads

|0〉〈0|+
∫ ∞

0

dp

2π

[

|p(e)〉〈p(e)|+ |p(o)〉〈p(o)|
]

= 1̂ , (15)

while the completeness of the transverse basis is
∞
∑

n=1

|n〉〈n| = 1̂ . (16)

We express the operator Ĥ of eq. (7) in terms of the ”unperturbed” operator Ĥ0,

expanding it for small inhomogeneities (Σ = 1 + σ, |σ| ≪ 1):

Ĥ = Ĥ0 −
1

2

[

Ĥ0σ + σĤ0

]

+
1

8

[

2σĤ0σ + 3σ2Ĥ0 + 3Ĥ0σ
2
]

−
{

3

16

[

σ2Ĥ0σ + σĤ0σ
2
]

+
5

16

[

σ3Ĥ0 + Ĥ0σ
3
]

}

+ . . .

≡ Ĥ0 + V (1) + V (2) + V (3) + . . . (17)

Now we use the standard Rayleigh-Schrödinger perturbation theory (RSPT) with

the basis above. Notice that, in contrast to the usual applications of RSPT, here
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the “perturbation” contains contributions of different orders in σ, and therefore

contributions of a given order in σ can originate from different orders of the perturbative

expansion (see ref. [22]).

2.1. First order

To first order we have

E
(1)
0 = 〈0, 1|V (1)|0, 1〉

= − β

2

∫ ∞

−∞
dx

∫ b/2

−b/2

dy e−β|x|ψ1(y)
[

Ĥ0σ + σĤ0

]

e−β|x|ψ1(y)

= − βǫ0,1

∫ ∞

−∞
dx

∫ b/2

−b/2

dy e−β|x|ψ1(y)σ(x, y)e
−β|x|ψ1(y) . (18)

The correct physics is recovered after taking the limit β → 0, for which one has

lim
β→0

E
(1)
0 = 0 . (19)

2.2. Second order

We introduce the operator

Ω̂ ≡
[ ∞
∑

n=2

1

ǫ0,n − ǫ0,1
|0, n〉〈0, n|+

∞
∑

n=1

∫ ∞

0

dp

2π

1

ǫp,n − ǫ0,1
|p, n〉〈p, n|

]

. (20)

The second order correction is simply

E
(2)
0 = 〈0, 1|V (2)|0, 1〉 − 〈0, 1|V (1)Ω̂V (1)|0, 1〉 . (21)

Using the explicit expressions for V (1) and V (2) and simplifying, we obtain

E
(2)
0 = ǫ0,1〈0, 1|σ|0, 1〉2 − ǫ20,1〈0, 1|σΩ̂σ|0, 1〉 , (22)

where the first contribution vanishes for β → 0.

Using the explicit expressions for G(x,x′) = 〈x|Ω̂|x′〉 given in the Appendix A, we

write the second contribution

lim
β→0+

E
(2)
0 = − lim

β→0+
ǫ20,1〈0, 1|σΩ̂σ|0, 1〉

= − lim
β→0+

ǫ20,1

∫ ∞

−∞
dx

∫ b/2

−b/2

dy

∫ ∞

−∞
dx′
∫ b/2

−b/2

dy′σ(x, y)σ(x′, y′)

×G(x,x′)φ0(x)φ0(x
′)ψ1(y)ψ1(y

′)

= − π4

b6

[

∫ ∞

−∞
dx

∫ b/2

−b/2

dy σ(x, y) cos2
(πy

b

)

]2

. (23)
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2.3. Third order

The third order correction reads

E
(3)
0 = 〈0, 1|V (3)|0, 1〉 − 〈0, 1|V (1)Ω̂V (2)|0, 1〉 − 〈0, 1|V (2)Ω̂V (1)|0, 1〉

+ 〈0, 1|V (1)Ω̂V (1)Ω̂V (1)|0, 1〉 − 〈0, 1|V (1)|0, 1〉〈0, 1|V (1)Λ̂V (1)|0, 1〉 ,(24)
where we have introduced the operator

Λ̂ ≡ Ω̂2 =

[ ∞
∑

n=2

1

(ǫ0,1 − ǫ0,n)2
|0, n〉〈0, n|+

∞
∑

n=1

∫ ∞

0

dp

2π

1

(ǫ0,1 − ǫp,n)2
|p, n〉〈p, n|

]

.(25)

Using the explicit expressions for V (i) and simplifying we obtain +

E
(3)
0 = − ǫ0,1〈0, 1|σ|0, 1〉3 + ǫ30,1〈0, 1|σ|0, 1〉〈0, 1|σΛ̂σ|0, 1〉

+ 3ǫ20,1〈0, 1|σ|0, 1〉〈0, 1|σΩ̂σ|0, 1〉 − ǫ30,1〈0, 1|σΩ̂σΩ̂σ|0, 1〉 . (26)

For β → 0+ we have

lim
β→0+

E
(3)
0 = lim

β→0+
ǫ30,1

[

〈0, 1|σ|0, 1〉〈0, 1|σΛ̂σ|0, 1〉 − 〈0, 1|σΩ̂σΩ̂σ|0, 1〉
]

.(27)

Using the expressions for G and F in Appendix A we can obtain the explicit form

of the third order correction

lim
β→0+

E
(3)
0 =

2π6

b9

(

∫ ∞

−∞
dx3

∫ b/2

−b/2

dy3 cos
2
(πy3
b

)

σ (x3, y3)

)

×
∫ ∞

−∞
dx1

∫ b/2

−b/2

dy1

∫ ∞

−∞
dx2

∫ b/2

−b/2

dy2

[

|x1 − x2|σ (x1, y1)σ (x2, y2)

× cos2
(πy1
b

)

cos2
(πy2
b

)

− b cos
(πy1
b

)

cos
(πy2
b

)

× σ (x1, y1) σ (x2, y2)G
(0)
2 (x1, y1, x2, y2)

]

. (28)

Notice that G
(0)
2 (x1, y1, x2, y2) is non analytic at b = 0 and it can be systematically

approximated by

∞
∑

n=2

e−
π
√

n2
−1δx

b

π
√
n2 − 1

= −
e−

πδx
b + log

(

1− e−
πδx
b

)

π

+
−e−πδx

b (b+ πδx) + πδxLi2

(

e−
πδx
b

)

+ bLi3

(

e−
πδx
b

)

2πb
+ . . .(29)

For δx = |x1 − x2| ≫ b this expression decays exponentially while for δx ≪ b the

expression behaves as

∞
∑

n=2

e−
π
√

n2
−1δx

b

π
√
n2 − 1

= − 1

π
+

3δx

2b
− log

(

πδx
b

)

π
+

(ζ(3)− 1)

2π
+

3(ζ(5)− 1)

8π
+ . . .(30)

Therefore, G
(0)
2 (x1, y1, x2, y2) involves transversal modes and it correlates the

perturbations of the density in a region centered at the origin of size δx ≪ b. This

+ Notice that this expression coincides with Eq.(58) of Ref. [22], calculated in a different basis.
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behavior is somehow complementary to that of the first term which is less sensitive to

this region, due to the factor |x1 − x2| appearing in the integral.

After inspecting eq. (28) we discover that, whenever the second order contribution

vanishes, the third order contribution vanishes as well. To assess the presence of a bound

state in this case, one should therefore calculate the further perturbative orders for the

energy and check the sign of the first non-vanishing term.

3. Variational method

In this section we want to derive the second order contribution obtained using

perturbation theory, in a much simpler way, using the variational theorem. In this

case we use the formulation of the problem corresponding to eq. (1):

−∇2ψ(x, y) = EΣ(x, y)ψ(x, y) , (31)

where the solution obeys Dirichlet boundary conditions at the border

ψ(x,±b/2) = 0, (32)

and decays at infinity

lim
|x|→∞

ψ(x, y) = 0 . (33)

The variational theorem provides an upper bound for the lowest eigenvalue

W = −〈ϕ|∇2 |ϕ〉
〈ϕ|Σ |ϕ〉 ≥ E0 . (34)

We calculate W using the trial function

ϕ =
√
ae−a|x|

√

2

b
sin

(

nπ[y + b/2]

b

)

, (35)

where a is a variational parameter. Working in the limit of weak inhomogeneities,

Σ(x, y) = 1 + σ(x, y), with |σ(x, y)| ≪ 1, one obtains the approximate value

a ≈
π2
{

∫∞
−∞
∫ b/2

−b/2
σ(x, y) cos

(

πy
b

)2
dydx

}

b3
(36)

and the approximate energy ∗

W ≈ π2

b2
− π4

b6

(

∫ ∞

−∞

∫ b/2

−b/2

σ(x, y)
[

cos
(πy

b

)]2

dy dx

)2

, (38)

which coincides with the second order result obtained in the previous section.

∗ Notice that a bound state is present only if a > 0, implying the condition
∫

∞

−∞

∫ b/2

−b/2

σ(x, y) cos
(πy

b

)2

dydx > 0 . (37)
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4. A solvable example

Consider an infinite heterogeneous waveguide of width b, parallel to the x axis, and

obeying Dirichlet boundary conditions on x = ±b/2. Let the density be

Σ(x, y) =

{

1 + σ , |x| < δ/2 ,

1 , |x| ≥ δ/2 .
(39)

The Helmholtz equation in this case is

−∆Ψ(x, y) = EΨ(x, y) (40)

for |x| > δ/2, and

−∆Ψ(x, y) = E(1 + σ)Ψ(x, y) (41)

for |x| < δ/2.

We look for a localized solution

Ψ(x, y) =

√

2

b
sin

(

πny

(

b
2
+ y
)

b

)

×











a1e
p1x , x < −δ/2 ,

a2cos(p2x) , −δ/2 < x < δ/2 ,

a3e
−p1x , x > δ/2 ,

(42)

and impose the continuity of the solution and of its derivative at x = ±δ/2:

a1 = a3 = a2 cos

(

dp2
2

)

e
1
2
dp2 tan( dp2

2 ) , (43)

p1 = p2 tan

(

dp2
2

)

. (44)

Matching the solutions at the boundaries between the regions one obtains

π2

b2
− p22 tan

2

(

dp2
2

)

=
π2

b2
+ p22

1 + σ
, (45)

which provides a transcendental equation for p2.

We can look for a solution to this equation analytically, taking the limit σ → 0+

and expressing p2 as a power series in σ:

p22 =
∞
∑

n=0

cnσ
n . (46)

We find

p22 =
π2σ

b2
− π4δ2σ2

4b4
+
π4δ2σ3 (π2δ2 − 3b2)

12b6

+
σ4 (150π6b2δ4 − 23π8δ6)

720b8
+
π6δ4σ5 (630b4 − 686π2b2δ2 + 67π4δ4)

5040b10
+ . . .

and

p1 =
π2δσ

2b2
− π4δ3σ2

12b4
+
σ3 (π6δ5 − 5π4b2δ3)

40b6

+
σ4 (210π6b2δ5 − 23π8δ7)

2520b8
+
π6δ5σ5 (1134b4 − 882π2b2δ2 + 67π4δ4)

18144b10
+ . . .
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The eigenvalue is

E =
π2

b2
− π4δ2σ2

4b4
+
π6δ4σ3

12b6
+
σ4 (90π6b2δ4 − 23π8δ6)

720b8

+
π8δ6σ5 (67π2δ2 − 525b2)

5040b10
+ . . . (47)

When we apply to this model the explicit formula obtained with perturbation theory

(to second and third orders) or with the variational theorem (to second order), we

reproduce the coefficients of the formula above to the corresponding orders.

5. Conclusions

We have derived the exact expressions for the energy of the fundamental mode of an

infinite heterogeneous waveguide, in two or more dimensions, to third order in the small

parameter controlling the heterogeneity. For the two-dimensional case our results also

apply to an infinite, heterogeneous and locally deformed waveguide. Our results show

that, when the second order perturbative term does not vanish, a bound state is always

present when the heterogeneity corresponds to a small region of higher density; in the

case in which the second order perturbative term vanishes, the third order correction

vanishes as well and it is not possible to determine whether a bound state exists.
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Appendix A. Green’s function

We define the operator

Ω̂ ≡
[ ∞
∑

n=2

1

ǫ0,n − ǫ0,1
|0, n〉〈0, n|+

∞
∑

n=1

∫ ∞

0

dp

2π

1

ǫp,n − ǫ0,1
|p, n〉〈p, n|

]

, (A.1)

which obeys the relation

(Ĥ0 − ǫ0,1)Ω̂ =

[ ∞
∑

n=2

|0, n〉〈0, n|+
∞
∑

n=1

∫ ∞

0

dp

2π
|p, n〉〈p, n|

]

= 1̂− |0, 1〉〈0, 1| .(A.2)

Equivalently,

G(x,x′) ≡ 〈x|Ω̂|x′〉 (A.3)

obeys the equation

(Ĥ0 − ǫ0,1)G(x,x
′) = 〈x|1̂|x′〉 − 〈x|0, 1〉〈0, 1|x′〉 = δ(x− x′)−Ψ01(x)Ψ01(x

′) .(A.4)
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Clearly

lim
β→0+

(Ĥ0 − ǫ0,1)G(x,x
′) = δ(x− x′) . (A.5)

Let us now work on the explicit expression of G(x,x′):

G(x,x′) =

[ ∞
∑

n=2

φ0(x)φ0(x
′)ψn(y)ψn(y

′)

ǫ0,n − ǫ0,1
+

∞
∑

n=1

∫ ∞

0

dp

2π

φp(x)φp(x
′)ψn(y)ψn(y

′)

ǫp,n − ǫ0,1

]

=

∫ ∞

0

dp

2π

φp(x)φp(x
′)ψ1(y)ψ1(y

′)

ǫp,1 − ǫ0,1

+

[ ∞
∑

n=2

φ0(x)φ0(x
′)ψn(y)ψn(y

′)

ǫ0,n − ǫ0,1
+

∞
∑

n=2

∫ ∞

0

dp

2π

φp(x)φp(x
′)ψn(y)ψn(y

′)

ǫp,n − ǫ0,1

]

≡ G0(x,x
′) +G1(x,x

′) +G2(x,x
′) . (A.6)

We observe that limβ→0+ G0(x,x
′) = ∞, and that limβ→0+ G1(x,x

′) exists:

G0(x,x
′) =

1

β
G

(−1)
0 (x,x′) +G

(0)
0 (x,x′) + βG

(1)
0 (x,x′) + . . . (A.7)

G1(x,x
′) = βG

(1)
1 (x,x′) + . . . (A.8)

G2(x,x
′) = G

(0)
2 (x,x′) + βG

(1)
2 (x,x′) + . . . (A.9)

The explicit expressions are

G0(x,x
′) = cos

(πy1
b

)

cos
(πy2
b

) [ 1

2bβ
− |x1|+ 2 |x1 − x2|+ |x2|

2b

+O (β)
]

, (A.10)

G1(x,x
′) =

bβ

4π2

(

cos

(

π (y1 − y2)

b

)

+ cos

(

π (y1 + y2)

b

)

+ 2i

(

log
(

−e−
iπ(y1−y2)

b

)

sin

(

π (y1 − y2)

b

)

+ log
(

e−
iπ(y1+y2)

b

)

× sin

(

π (y1 + y2)

b

)))

+O(β2) , (A.11)

G2(x,x
′) =

∞
∑

n=2

e−
π
√

n2
−1(x1+x2)

b

π
√
n2 − 1

(

θ (x1 − x2) e
2π

√
n2

−1x2
b + θ (x2 − x1) e

2π
√

n2
−1x1

b

)

× sin

(

πn (b+ 2y1)

2b

)

sin

(

πn (b+ 2y2)

2b

)

+O(β) . (A.12)

Similarly we define

F (x,x′) ≡ 〈x|Λ̂|x′〉

=

[ ∞
∑

n=2

φ0(x)φ0(x
′)ψn(y)ψn(y

′)

(ǫ0,1 − ǫ0,n)2
+

∞
∑

n=1

∫ ∞

0

dp

2π

φp(x)φp(x
′)ψn(y)ψn(y

′)

(ǫ0,1 − ǫp,n)2

]

=

∫ ∞

0

dp

2π

φp(x)φp(x
′)ψ1(y)ψ1(y

′)

(ǫ0,1 − ǫp,1)2
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+

[ ∞
∑

n=2

φ0(x)φ0(x
′)ψn(y)ψn(y

′)

(ǫ0,1 − ǫ0,n)2
+

∞
∑

n=2

∫ ∞

0

dp

2π

φp(x)φp(x
′)ψn(y)ψn(y

′)

(ǫ0,1 − ǫp,n)2

]

≡ F0(x,x
′) + F1(x,x

′) + F2(x,x
′) . (A.13)

For our present purposes it is sufficient to calculate F0:

F0(x,x
′) = cos

(πy1
b

)

cos
(πy2
b

)

(

1

8bβ3
− |x1|+ |x2|

8bβ2

+
4 |x1| |x2|+ 16x1x2 − 6 (x21 + x22)

32bβ
+O(β0)

)

. (A.14)

We find it convenient to report some identities which are useful in the calculation

of the third (and higher) orders,
(

Ĥ0 − E
(0)
0

)

|0, 1〉 = 0 , (A.15)

(

Ĥ0 − E
(0)
0

)

Ω̂ = Ω̂
(

Ĥ0 − E
(0)
0

)

=
∑

n=2

|0, n〉〈0, n|+
∞
∑

n=1

∫ ∞

0

dp

2π
|p, n〉〈p, n| ≡ P̂ , (A.16)

where P̂ is a projection operator (P̂ 2 = P̂ ) that can be used to express the completeness

of the basis in the form

|0, 1〉〈0, 1|+ P̂ = 1̂ . (A.17)

In terms of this operator we also have

σP̂σ = σ2 − σ|0, 1〉〈0, 1|σ , (A.18)

σP̂
(

Ĥ0 −E
(0)
0

)

= σ
(

Ĥ0 −E
(0)
0

)

. (A.19)

Finally
(

Ĥ0 − E
(0)
0

)

Λ̂ = Ω̂ . (A.20)

Appendix B. Alternative perturbation theory

The purpose of this appendix is to obtain the main perturbation equations in an

alternative way. To this end we define

H = −∆− 2βδ(x) , (B.1)

where β > 0. The problem becomes

Hψ0 = E0(1 + λσ)ψ0 , (B.2)

where λ is a dummy perturbation parameter.

We assume that

H |n〉 = ǫn |n〉 , ǫ0 < ǫ1 ≤ ǫ2 ≤ . . . , (B.3)
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and that the lowest eigenvalue ǫ0 is non-degenerate. In this case the label n denotes a

collection of quantum numbers that describe all the degrees of motion of the problem.

Then we have

(H − ǫ0)ψ0 = ∆Eψ0 + λE0σψ0, ∆E = E0 − ǫ0 . (B.4)

If we apply 〈0| from the left and resort to the intermediate normalization

〈0 |ψ0〉 = 1, 〈0 |0〉 = 1 , (B.5)

then equation (B.4) reduces to

∆E = −λE0 〈0|σ |ψ0〉 . (B.6)

We define the projection operator

P = 1− |0〉 〈0| , (B.7)

that satisfies [H,P ] = 0, P 2 = P and P |0〉 = 0. It is also useful to define the operator

G = P (H − ǫ0)
−1 P , (B.8)

that enables us to rewrite equation (B.4) as

Pψ0 = ∆EGψ0 + λE0Gσψ0 . (B.9)

Note that

(H − ǫ0)G
k = Gk−1 , k > 1,

(H − ǫ0)G = P . (B.10)

We obviously have

Gk = P (H0 − ǫ0)
k P =

∑

n 6=0

|n〉 〈n|
(ǫn − ǫ0)

k
. (B.11)

In order to solve equations (B.6) and (B.9) we apply perturbation theory and

expand

ψ0 = |0〉+
∞
∑

j=1

ψ
(j)
0 λj ,

E0 = ǫ0 +
∞
∑

j=1

E
(j)
0 λj , (B.12)

so that

〈0
∣

∣

∣
ψ

(k)
0

〉

= 0 , k > 0. (B.13)

Now equations (B.6) and (B.9) become

E
(k)
0 = −

k−1
∑

j=0

E
(j)
0 〈0|σ

∣

∣

∣
ψk−j−1
0

〉

, k > 0 , (B.14)

and

ψ
(k)
0 =

k
∑

j=1

E
(j)
0 Gψ

(k−j)
0 +

k−1
∑

j=0

E
(j)
0 Gσψ

(k−j−1)
0 . (B.15)
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For the first three orders we have:

k = 1

E
(1)
0 = − ǫ0 〈0|σ |0〉 ,

ψ
(1)
0 = E

(1)
0 G |0〉+ ǫ0Gσ |0〉 = ǫ0Gσ |0〉 , (B.16)

k = 2

E
(2)
0 = − ǫ20 〈0|σGσ |0〉+ ǫ0 〈0| σ |0〉2 ,

ψ
(2)
0 = ǫ0E

(1)
0 G2σ |0〉+ ǫ20GσGσ |0〉+ E

(1)
0 Gσ |0〉 , (B.17)

k = 3

E
(3)
0 = ǫ30 〈0|σG2σ |0〉 〈0|σ |0〉 − ǫ30 〈0|σGσGσ |0〉+ 3ǫ20 〈0|σGσ |0〉 〈0|σ |0〉

− ǫ0 〈0|σ |0〉3 . (B.18)

These equations lead to the results derived in Section 2. In particular, note that G = Ω̂

and G2 = Λ̂.
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