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Abstract Automatic extraction of semantic information from text and links in Web
pages is key to improving the quality of search results. However, the assessment of
automatic semantic measures is limited by the coverage of user studies, which do not
scale with the size, heterogeneity, and growth of the Web. Here we propose to
leverage human-generated metadata—namely topical directories—to measure
semantic relationships among massive numbers of pairs of Web pages or topics.
The Open Directory Project classifies millions of URLs in a topical ontology,
providing a rich source from which semantic relationships between Web pages can
be derived. While semantic similarity measures based on taxonomies (trees) are well
studied, the design of well-founded similarity measures for objects stored in the
nodes of arbitrary ontologies (graphs) is an open problem. This paper defines an
information-theoretic measure of semantic similarity that exploits both the
hierarchical and non-hierarchical structure of an ontology. An experimental study
shows that this measure improves significantly on the traditional taxonomy-based
approach. This novel measure allows us to address the general question of how text
and link analyses can be combined to derive measures of relevance that are in good
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agreement with semantic similarity. Surprisingly, the traditional use of text
similarity turns out to be ineffective for relevance ranking.
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1. Introduction

Developing Web search mechanisms depends on addressing two central questions:
(1) how to find related Web pages, and (2) given a set of potentially related Web
pages, how to rank them according to relevance. To evaluate the effectiveness of a
Web search mechanism in finding and ranking results, measures of semantic
similarity are needed. In traditional approaches users provide manual assessments of
relevance, or semantic similarity. This is difficult and expensive. More importantly,
it does not scale with the size, heterogeneity, and growth of the Web—subjects can
evaluate sets of queries, but cannot cover exhaustively all topics.

The Open Directory Project1 (ODP) is a large human-edited directory of the
Web, employed by hundreds of portals and search sites including Google. The ODP
classifies millions of URLs in a topical ontology. Ontologies help to make sense out
of a set of objects. Once the meaning of a set of objects is available, it can be
usefully exploited to derive semantic relationships between those objects. There-
fore, the ODP provides a rich source from which measurements of semantic
similarity between Web pages can be obtained.

An ontology is a special kind of network. The problem of evaluating semantic
similarity in a network has a long history in psychological theory [32]. More
recently, semantic similarity became fundamental in knowledge representation
where special kinds of networks or ontologies are used to describe objects and their
relationships [8].

Ontologies are often equated with Bis-a’’ taxonomies, but ontologies need not be
limited to these forms. For example, the ODP ontology is more complex than a
simple tree. Some categories have multiple criteria to classify subcategories. The
BBusiness’’ category, for instance, is subdivided by types of organizations (cooper-
atives, small businesses, major companies, etc.) as well as by areas (automotive,
health care, telecom, etc.). Furthermore, the ODP has various types of cross-
reference links between categories, so that a node may have multiple parent nodes,
and even cycles are present.

While semantic similarity measures based on trees are well studied [7], the design
of well-founded similarity measures for objects stored in the nodes of arbitrary
graphs is an open problem. A few empirical measures have been proposed, for
example based on minimum cut/maximum flow algorithms [20], but no information-
theoretic measure is known. The central question addressed in this paper is how to
estimate semantic similarity in generalized ontologies, such as the ODP graph,
taking advantage of both their hierarchical (Bis-a’’ links) and non-hierarchical (cross
links) components.

1 http://dmoz.org
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1.1. Contributions and outline

In the next section we briefly review some of the existing information-theoretic
proposals to estimate semantic similarity, in particular, we focus on a tree-based
notion of semantic similarity proposed by Lin [17]. In Section 3 we propose a
semantic similarity measure that generalizes the tree-based similarity to the case of
a graph. To the best of our knowledge this is the first information-theoretic measure
of similarity that is applicable to objects stored in the nodes of arbitrary graphs, in
particular topical ontologies and Web directories that combine hierarchical and
non-hierarchical components such as Yahoo!, ODP and their derivatives. We close
the section by addressing the question of how to generalize our definition of graph-
similarity and by proposing a family of measures that can be used to compute
semantic similarity on other kinds of ontologies.

Section 4 compares the graph-based semantic similarity measure to the tree-
based one, analyzing the differences between the two measurements and presenting
an evaluation against human judgments of Web page similarity. We show that the
new measure predicts human responses to a much greater accuracy.

Having validated the proposed semantic similarity measure, in Section 5 we begin
to explore the question of applications, namely how text and link analyses can be
used to derive measures of relevance that are in good agreement with semantic
similarity. We consider various extensions and combinations of basic text and link
similarity and discuss how these correlate with semantic similarity. We find that
surprisingly, classic text-based content similarity is a very noisy feature, whose value
is at best weakly correlated with semantic similarity. We discuss the potential
applications of this result to the design of semantic similarity estimates from lexical
and link similarity and to the optimization of ranking functions in search engines.

2. Information-theoretic measures of semantic similarity

Many measures have been developed to estimate semantic similarity in a network
representation. Early proposals have used path distances between the nodes in the
network (e.g., [28]). These frameworks are based on the premise that the stronger
the semantic relationship of two objects, the closer they will be in the network
representation. However, as it has been discussed by a number of sources, issues
arise when attempting to apply distance-based schemes for measuring object
similarities in certain classes of networks where links may not represent uniform
distances [10, 11, 29].

In ontologies, certain links connect very dense and general categories while
others connect more specific ones. To address this problem, some proposals estimate
semantic similarity in a taxonomy based on the notion of information content [17,
29]. In these approaches, the semantic similarity between two objects is related to
their commonality and to their differences. Given a set of objects in an Bis-a’’
taxonomy, the commonality of two objects can be estimated by the extent to which
they share information, indicated by the most specific class in the hierarchy that
subsumes both. Once this common classification is identified, the meaning shared by
two objects can be measured by the amount of information needed to state the
commonality of the two objects.
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In information theory [3], the information content of a class or topic t is measured
by the negative log likelihood, �log Pr½t�, where Pr½t� represents the prior prob-
ability that any object is classified under topic t. In practice Pr½t� can be computed
for every topic t in an Bis-a’’ taxonomy by counting the fraction of objects stored in
node t and its descendants out of all the objects in the taxonomy.

Based on this quantitative characterization of object commonality Resnik [29]
introduced an information theoretic definition of similarity that is applicable as long
as the domain has a probabilistic model. This proposal can be used to derive a
measure of semantic similarity between two topics t1 and t2 in an Bis-a’’ taxonomy:

�ðt1; t2Þ ¼ max
ts2Sðt1;t2Þ

ð�log Pr½ts�Þ

where Sðt1; t2Þ is the set of topics that subsume both t1 and t2. Resnik_s measure has
been applied with some degree of success to diverse scenarios, including concept
relatedness in WordNet [25] and protein similarity based on their Gene Ontology
(GO) annotations [19]. A limitation of Resnik_s measure is that the similarities between
all the children of a topic t are identical, independently of their information content.

Lin [17] has investigated an information theoretic definition of semantic similarity
closely related to Resnik_s measure. In Lin_s proposal, not only the common
meaning of the two topics but also their individual meaning is taken into account.
Indeed, according to Lin_s proposal, the semantic similarity between two topics t1

and t2 in a taxonomy is defined as a function of the meaning shared by the topics
(represented by the most specific topic that subsumes t1 and t2) and the meaning of
each of the individual topics:

�ðt1; t2Þ ¼ max
ts2Sðt1;t2Þ

2� log Pr½ts�
log Pr½t1� þ log Pr½t2�

Assuming the taxonomy is a tree, the semantic similarity between two topics t1 and
t2 is then measured as the ratio between the meaning of their lowest common
ancestor and their individual meanings. This can be expressed as follows:

�T
s ðt1; t2Þ ¼

2� log Pr½t0ðt1; t2Þ�
log Pr½t1� þ log Pr½t2�

where t0ðt1; t2Þ is the lowest common ancestor topic for t1 and t2 in the tree. Given a
document d classified in a topic taxonomy, we use tðdÞ to refer to the topic node
containing d. Given two documents d1 and d2 in a topic taxonomy the semantic
similarity between them is estimated as �T

s ðtðd1Þ; tðd2ÞÞ. To simplify notation, we use
�T

s ðd1; d2Þ as a shorthand for �T
s ðtðd1Þ; tðd2ÞÞ. From here on, we will refer to measure

�T
s as the tree-based semantic similarity. The tree-based semantic similarity measure

for a simple tree taxonomy is illustrated in Figure 1. In this example, documents d1

and d2 are contained in topics t1 and t2, respectively, while topic t0 is their lowest
common ancestor.

This measure of semantic similarity has several desirable properties and a solid
theoretical justification. It is designed to compensate for the fact that the tree can be
unbalanced both in terms of its topology and of the relative size of its nodes. For a
perfectly balanced tree �T

s corresponds to the familiar tree distance measure [15].
In prior work [21, 22, 23] we computed the �T

s measure for all pairs of pages in a
stratified sample of about 150,000 pages from across the ODP. For each of the
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resulting 3:8� 109 pairs we also computed text and link similarity measures, and
mapped the correlations between these and semantic similarity. An interesting
result was that these correlations were quite weak across all pairs, but became
significantly stronger for pages within certain top level categories such as Bnews’’
and Breference.’’ However, because �T

s is defined only in terms of the hierarchical
component of the ODP, it fails to capture many semantic relationships induced by
the ontology"s non-hierarchical components (symbolic and related links). As a
result, the tree-based semantic similarity between pages in topics that belong to
different top-level categories is zero even if the topics are clearly related. For
instance, according to the tree-based semantic similarity the pages stored under the
topic BBusiness/E-Commerce’’ are unrelated to the ones stored under the topic
BComputers/Software/Business/E-Commerce.’’ This yielded an unreliable picture
when all topics were considered.

3. Graph-based semantic similarity

Let us now generalize the semantic similarity measure to deal with arbitrary graphs.
We wish to define a graph-based semantic similarity measure �G

s that generalizes the
tree-based similarity �T

s to exploit both the hierarchical and non-hierarchical
components of an ontology.

A topic ontology graph is a graph of nodes representing topics. Each node contains
objects representing documents (pages). An ontology graph has a hierarchical (tree)
component made by Bis-a’’ links, and a non-hierarchical component made by cross
links of different types.

For example, the ODP ontology is a directed graph G ¼ ðV;EÞ where:

& V is a set of nodes, representing topics containing documents;
& E is a set of edges between nodes in V, partitioned into three subsets T, S and R,

such that:

– T corresponds to the hierarchical component of the ontology,
– S corresponds to the non-hierarchical component made of Bsymbolic’’ cross-

links,
– R corresponds to the non-hierarchical component made of Brelated’’ cross-links.

Figure 2 shows a simple example of an ontology graph G. This is defined by
the setsV ¼ ft1; t2; t3; t4; t5; t6; t7; t8g,T ¼ fðt1; t2Þ; ðt1; t3Þ; ðt1; t4Þ; ðt3; t5Þ; ðt3; t6Þ; ðt6; t7Þ;

t0

t1

t2
d2

d1

Figure 1 Illustration of tree-
based semantic similarity
in a taxonomy.
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ðt6; t8Þg, S ¼ fðt8; t3Þg, and R ¼ fðt6; t2Þg. In addition, each node t 2 V contains a set
of objects. We use jtj to refer to the number of objects stored in node t (e.g., jt3j ¼ 4).

The extension of �T
s to an ontology graph raises two questions. First, how to find

the most specific common ancestor of a pair of topics in a graph; second, how to
extend the definition of subtree rooted at a topic for the graph case.

An important distinction between taxonomies and ontologies such as the ODP
graph is that edges in a taxonomy are all of the same type (Bis-a’’ links), while in the
ODP graph edges can have diverse types (e.g., Bis-a,’’ Bsymbolic,’’ Brelated’’).
Different types of edges have different meanings and should be used accordingly.
One way to distinguish the role of different edges is to assign them weights, and to
vary these weights according to the edge_s type. The weight wij 2 ½0; 1� for an edge
between topic ti and tj can be interpreted as an explicit measure of the degree of
membership of tj in the family of topics rooted at ti. The weight setting we have
adopted for the edges in the ODP graph is as follows: wij ¼ � for ði; jÞ 2 T, wij ¼ �
for ði; jÞ 2 S, and wij ¼ � for ði; jÞ 2 R. We set � ¼ � ¼ 1 because symbolic links
seem to be treated as first-class taxonomy (Bis-a’’) links in the ODP Web interface.
Since duplication of URLs is disallowed, symbolic links are a way to represent
multiple memberships, for example the fact that the pages in topic BSociety/Issues/
Fraud/Internet’’ also belong to topic BComputers/Internet/Fraud.’’ On the other
hand, we set � ¼ 0:5 because related links are treated differently in the ODP Web
interface, labeled as Bsee also’’ topics. Intuitively the semantic relationship is
weaker. Different weighting schemes could be explored.

As a starting point, let wij > 0 if and only if there is an edge of some type between
topics ti and tj. However, to estimate topic membership, transitive relations between
edges should also be considered. Let ti # be the family of topics tj such that either
i ¼ j or there is a path ðe1; . . . ; enÞ satisfying:

1. e1 ¼ ðti; tkÞ for some tk 2 V,
2. en ¼ ðtk; tjÞ for some tk 2 V,
3. ek 2 T [ S [ R for k ¼ 1 . . . n,
4. ek 2 S [ R for at most one k.

The above conditions express that tj 2 ti # if there is a directed path in the graph
G from ti to tj, where at most one edge from S or R participates in the path. The
motivation for disregarding multiple non-hierarchical links in the transitive relations
that determine topic membership is both practical and conceptual. From a
computational perspective, allowing multiple cross links is infeasible because it

t2

t1

t4t3

t5 t6

t7 t8

T

S

R

Edge Type
Figure 2 Illustration of a sim-
ple ontology.
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leads to a dense topic membership, i.e., every topic belongs to almost every other
topic. This is also not robust because a few unreliable cross links make significant
global changes to the membership functions. More importantly, considering
multiple cross links in each path would make the classification meaningless by
mixing all topics together. Considering at most one cross link in each membership
path allows us to capture the non-hierarchical components of the ontology while
preserving feasibility, robustness, and meaning. We refer to ti # as the cone of topic
ti. Because edges may be associated with different weights, different topics tj can
have different degree of membership in ti #.

In order to make the implicit membership relations explicit, we represent the
graph structure by means of adjacency matrices and apply a number of operations to
them. A matrix T is used to represent the hierarchical structure of an ontology.
Matrix T codifies edges in T, augmented with 1s on the diagonal:

Tij ¼
1 if i ¼ j;
� if i 6¼ j and ði; jÞ 2 T;
0 otherwise:

8
<

:

We use additional adjacency matrices to represent the non-hierarchical compo-
nents of an ontology. For the case of the ODP graph, a matrix S is defined so that
Sij ¼ � if ði; jÞ 2 S and Sij ¼ 0 otherwise. A matrix R is defined analogously, as Rij ¼
� if ði; jÞ 2 R and Rij ¼ 0 otherwise. Consider the fuzzy union operation [ on
matrices representing relations, defined as ½A [ B�ij ¼ maxðAij;BijÞ, and let
G ¼ T [ S [R. Matrix G is the adjacency matrix of graph G augmented with 1s
on the diagonal.

We will use the MaxProduct fuzzy composition function � [12] defined on
matrices as follows:2

½A� B�ij ¼ max
k
ðAik�BkjÞ:

Let Tð0Þ ¼ T and Tðrþ1Þ ¼ Tð0Þ � TðrÞ. We define the closure of T, denoted Tþ as
follows:

Tþ ¼ lim
r!1

TðrÞ:

In this matrix, Tþij ¼ 1 if tj 2 subtreeðtiÞ, and Tþij ¼ 0 otherwise. Note that the
computation of the closure Tþ converges in a number of steps which is bounded by
the maximum depth of the tree T, is independent of the weight �, and does not
involve the weights � and �.

Finally, we compute the matrix W as follows:

W ¼ Tþ �G� Tþ:

The element Wij can be interpreted as a fuzzy membership value of topic tj in the
cone ti #, therefore we refer to W as the fuzzy membership matrix of G.

2 With our choice of weights, MaxProduct composition is equivalent to MaxMin composition.
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As an illustration, consider the example ontology in Figure 2. In this case the
matrices T, G, Tþ and W are defined as follows:

T ¼

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

t1 t2 t3 t4 t5 t6 t7 t8

t1 1 1 1 1 0 0 0 0

t2 0 1 0 0 0 0 0 0

t3 0 0 1 0 1 1 0 0

t4 0 0 0 1 0 0 0 0

t5 0 0 0 0 1 0 0 0

t6 0 0 0 0 0 1 1 1

t7 0 0 0 0 0 0 1 0

t8 0 0 0 0 0 0 0 1

G ¼

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

t1 t2 t3 t4 t5 t6 t7 t8

t1 1 1 1 1 0 0 0 0

t2 0 1 0 0 0 0 0 0

t3 0 0 1 0 1 1 0 0

t4 0 0 0 1 0 0 0 0

t5 0 0 0 0 1 0 0 0

t6 0 0:5 0 0 0 1 1 1

t7 0 0 0 0 0 0 1 0

t8 0 0 1 0 0 0 0 1

Tþ ¼

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

t1 t2 t3 t4 t5 t6 t7 t8

subtreeðt1Þ 1 1 1 1 1 1 1 1

subtreeðt2Þ 0 1 0 0 0 0 0 0

subtreeðt3Þ 0 0 1 0 1 1 1 1

subtreeðt4Þ 0 0 0 1 0 0 0 0

subtreeðt5Þ 0 0 0 0 1 0 0 0

subtreeðt6Þ 0 0 0 0 0 1 1 1

subtreeðt7Þ 0 0 0 0 0 0 1 0

subtreeðt8Þ 0 0 0 0 0 0 0 1

W ¼

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

t1 t2 t3 t4 t5 t6 t7 t8

t1 # 1 1 1 1 1 1 1 1

t2 # 0 1 0 0 0 0 0 0

t3 # 0 0:5 1 0 1 1 1 1

t4 # 0 0 0 1 0 0 0 0

t5 # 0 0 0 0 1 0 0 0

t6 # 0 0:5 1 0 1 1 1 1

t7 # 0 0 0 0 0 0 1 0

t8 # 0 0 1 0 1 1 1 1
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The semantic similarity between two topics t1 and t2 in an ontology graph can
now be estimated as follows:

�G
s ðt1; t2Þ ¼ max

k

2�minðWk1;Wk2Þ� log Pr½tk�
logðPr½t1jtk�� Pr½tk�Þ þ logðPr½t2jtk��Pr½tk�Þ

:

The probability Pr½tk� represents the prior probability that any document is classified
under topic tk and is computed as:

Pr½tk� ¼

P

tj2V

ðWkj � jtjjÞ

jUj ;

where jUj is the number of documents in the ontology. The posterior probability
Pr½tijtk� represents the probability that any document will be classified under topic ti

given that it is classified under tk, and is computed as follows:

Pr½tijtk� ¼

P

tj2V

ðminðWij;WkjÞ� jtjjÞ
P

tj2V

ðWkj � jtjjÞ
:

The proposed definition of �G
s is a generalization of �T

s . In the special case when
G is a tree (i.e., S ¼ R ¼ ;), then ti # is equal to subtreeðtiÞ, the topic subtree rooted
at ti, and all topics t 2 subtreeðtiÞ belong to ti # with a degree of membership equal to
1. If tk is an ancestor of t1 and t2 in a taxonomy, then minðWk1;Wk2Þ ¼ 1 and
Pr½tijtk��Pr½tk� ¼ Pr½ti� for i ¼ 1; 2. In addition, if there are no cross-links in G, the
topic tk whose index k maximizes �G

s ðt1; t2Þ corresponds to the lowest common
ancestor of t1 and t2.

3.1. Towards a more general definition of graph-similarity

A natural question that arises is how to generalize the proposed measure of graph
similarity in such a way that it can be applied to other ontologies. Different
ontologies have different kinds of edges with diverse semantics. As we have seen
earlier, the ODP ontology has three types of edges: Bis-a,’’ Bsymbolic’’ and Brelated.’’
Our choice of a particular weighting scheme (� ¼ 1, � ¼ 1, and � ¼ 0:5) as well as
the selection of a specific composition operator (MaxProduct) and transitive
membership relations reflect our interpretation of the semantics for the different
types of edges.

Applying graph-based semantic similarity to other ontologies requires appropri-
ate mechanisms to model different kinds of ontology components and their
interactions. For example, the Gene Ontology3 has two kinds of hierarchical edges
(Bis-a’’ and Bpart-of’’). On the other hand, the WordNet ontology4 has a much richer
typology of relations. This includes semantic relations between synsets (synonym
sets) such as hypernym, hyponym, meronym and holonym as well as lexical relations
between senses of words (members of synsets) such as antonym, Balso see,’’ derived
forms and participle.

3 http://www.geneontology.org/
4 http://wordnet.princeton.edu/
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Two main aspects of the proposed graph-based semantic similarity measure can
be generalized. One is the definition of �G

s and the other is the way the information
content of a class or topic, characterized by the notion of topic cone, is estimated.
The definition of �G

s as discussed in this work is sufficiently general to suit a variety
of graph ontologies. What seems particularly sensitive to the specific ontologies is
how a topic cone (matrix W) is calculated as this depends directly on the semantics
attached to the edges.

Let matrix Eij codify a class of edges, where Eij is augmented with 1s on the
diagonal. A family of characterizations of the notion of topic cone can be expressed
as instances of the following general formula:

W ¼
[

i

K

j

Eij
ðkijÞ

where
S

is the fuzzy Union operator,
J

is the MaxProduct fuzzy composition
operator (or some other suitable fuzzy composition operator such as MaxMin) and
kij 2 IN [ fþg.

The above formula is expressive enough to model the notion of topic cone in
different classes of ontologies. For example, in the case of a taxonomy it is sufficient
to set E11 ¼ T and k11 ¼ þ. For the case of the ODP graph it is easy to see that our
formulation of matrix W can also be expressed as a special case of the above general
formula as follows:

W ¼ ðTþ � S� TþÞ [ ðTþ �R� TþÞ:

Figure 3(a) illustrates how a path is computed according to this definition of topic
cone.

We are exploring other promising formulations of matrix W, including the fol-
lowing ones:

W ¼ ðTþ � S� TþÞ [ ðTþ �RÞ;

and

W ¼ Tþ � S� Tþ �R:

According to the first formulation, illustrated in Figure 3(b), a path in a topic cone
can contain any number of hierarchical edges (T) but at most one cross-link (S or
R). In addition, it must satisfy that if a cross-link of type Brelated’’ (R) occurs in a
path, it must be the last in the path.

The second formulation of topic cone, illustrated in Figure 3(c), also allows any
number of hierarchical edges in a path. Cross-links of type Bsymbolic’’ and Brelated’’

T+

T+T+

S

R
T+

(a)

T+ T+

T+

S

R

(b)

T+

S R

T+

(c)

Figure 3 Illustration of three ways of identifying paths in a topic cone.

440 World Wide Web (2006) 9: 431–456



can occur at most once each in a path, with links of type Brelated’’ only occurring at
the end of a path.

These and other characterizations of topic cone will be studied in detail in future
work. The results presented in the rest of this article are based on our original
characterization of topic cone.

4. Evaluation

The proposed graph-based semantic similarity measure was applied to the ODP
ontology. The portion of the ODP graph we have used for our analysis consists of
more than half million topic nodes (only World and Regional categories were
discarded). Computing semantic similarity for each pair of nodes in such a huge
graph required more than 5,000 CPU hours on IU_s Analysis and Visualization of
Instrument-Driven Data (AVIDD) supercomputer facility. The computational
component of AVIDD consists of two clusters, each with 208 Prestonia 2.4-GHz
processors. The computed graph-based semantic similarity measurements in
compressed format occupies more than 1 TB of IU_s Massive Data Storage System.
After computing the graph-based semantic similarity, we dynamically computed the
less computationally expensive tree-based semantic similarity on the same ODP
topic pairs.

4.1. Analysis of differences

The first question to ask of the newly proposed graph-based semantic similarity
definition is whether it produces different measurements from the traditional tree-
based similarity. The two measures are moderately correlated (Pearson coefficient
rP ¼ 0:51). To dig deeper, we map in Figure 4 the distributions of similarities. Each
ð�T

s ; �
G
s Þ coordinate encodes how many pairs of pages in the ODP have semantic

similarities falling in the corresponding bin. By definition �T
s is a lower bound for

�G
s . Significant numbers of pairs yield �G

s > �T
s , indicating that the graph-based

measure indeed captures semantic relationships that are missed by the tree-based
measure. The largest difference is hard to observe in the map because it occurs in
the �T

s ¼ 0 bins. Here there are many pairs in different top-level categories of the
ODP, which are related according to non-hierarchical links.

To better quantify the differences between �T
s and �G

s , Figure 4 also shows the
average graph-based similarity h�G

s i as a function of �T
s . The relative difference is as

large as 20% around �T
s ¼ 0:32. The inset highlights the largest difference, which

occurs for �T
s ¼ 0.

4.2. Validation by user study

Knowing that tree-based and graph-based measures give us quantitatively different
estimates of semantic similarity, we conducted a human-subjects experiment to
evaluate the proposed graph-based measure �G

s . As a baseline for comparison we
used Lin"s tree-based measure �T

s . The goal of this experiment was to contrast the
predictions of the two semantic similarity measures against human judgments of
Web pages relatedness.
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Thirty-eight volunteer subjects were recruited for a 30 min experiment conducted
online. Subjects answered questions about similarity between Web pages. For each
question, they were presented with a target Web page and two candidate Web pages
(see Figure 5). The subjects had to answer by selecting from the two candidate pages
the one that was more related to the target Web page or by indicating that neither of
the candidate pages was related to the target. Given the constraint on the duration
of an experiment, there is a trade-off between diversity and number of examples.
One could allocate each question to a different triplet, or have a smaller number of
target pages with several different pairs of candidate pages for each target.
Preliminary tests indicated that the former approach imposed a higher cognitive

Figure 4 Top: 200� 200 bin histogram showing the distributions of 1:26� 1012 pairs of pages

according to tree-based vs. graph-based semantic similarity. Colors encode numbers of pairs on a log

scale. Middle: average graph similarity h�G
s i for each �T

s bin, contrasted with the baseline h�G
s i ¼ �T

s

(thin line). The inset highlights the difference between the two similarity measurements. Bottom:

relative difference ðh�G
s i � �T

s Þ=�T
s versus �T

s .
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load on the subjects, requiring more time per question and decreasing the total
number of questions they could answer in the allotted time. To increase the number
of questions and the precision of the results, we settled on the latter approach. A
total of six target Web pages randomly selected from the ODP directory were used
for the evaluation. For each target Web page we presented a series of five pairs of
candidate Web pages, for a total of 30 questions. To investigate which of the two
methods was a better predictor of human assessments of Web page similarity, the
candidate pages were selected with controlled differences in their semantic
similarity to the target page. Given a target Web page pT, each pair of candidate
pages pC

1 and pC
2 used in our study satisfied the following two conditions:

Condition 1 : �T
s ðpC

1 ; p
TÞ � �T

s ðpC
2 ; p

TÞ
Condition 2 : �G

s ðpC
1 ; p

TÞ < �G
s ðpC

2 ; p
TÞ

The use of the above conditions guarantees that for each question the two models
disagreed on their prediction of which of the two candidate pages is more related to
the target page. The pages in the 30 triplets were chosen at random among all the
cases satisfying the above conditions. To ensure that the participants made their
choice independently of the questions already answered, we randomized the order
of the options. Table 1 shows an example of a triplet of pages used in our study,
corresponding to the question in the snapshot of Figure 5. The users were presented

Figure 5 A snapshot of the experiment setup for our user study. The pages displayed are those of
Table 1.
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with the target and candidate pages only—no information related to the topics of
the pages was shown to the users.

The semantic similarity between the target page and each of the candidate pages
in our example, according to the two measurements is as follows:

�T
s ðpC

1 ; p
TÞ ¼ 0:24 �T

s ðpC
2 ; p

TÞ ¼ 0:50

�G
s ðpC

1 ; p
TÞ ¼ 0:91 �G

s ðpC
2 ; p

TÞ ¼ 0:70

For this triplet of pages, the tree-based method predicts that pC
2 is more similar to

the target than pC
1 (�T

s ðpC
2 ; p

TÞ > �T
s ðpC

1 ; p
TÞ). On the other hand, according to the

prediction made by the graph-based method pC
1 should be preferred over pC

2

(�G
s ðpC

1 ; p
TÞ > �G

s ðpC
2 ; p

TÞ).
To test which of the two methods was a better predictor of subjects" judgments of

Web page similarity we considered the selections made by each of the subjects and
computed the percentage of correct predictions made by the two methods. Table 2
summarizes the statistical results. This comparison shows that the graph-based
semantic similarity measure results in statistically significant improvements over the
tree-based one.

5. Case studies

Having validated our semantic similarity measure �G
s , let us now begin to explore its

applications to performance evaluation. Using �G
s as a surrogate for user assess-

ments of semantic similarity, we can address the general question of how text and
link analyses can be combined to derive measures of relevance that are in good
agreement with semantic similarity. An analogous approach has been used in the
past to evaluate similarity search, but relying on only the hierarchical ODP structure
as a proxy for semantic similarity [9, 23].

Table 1 Example of a triplet used in the evaluation.

Page URL Topic

pT http://www.muppetsonline.com/ Arts

Performing_Arts

Puppetry

Muppets
pC

1 http://www.theentertainmentbusiness.com/sesame.htm Arts

Television

Programs

Children_s

Sesame_Street

Characters
pC

2 http://www.yale.edu/yags/ Arts

Performing_Arts

Circus

Juggling

Clubs_and_Organizations

College_Juggling_Clubs
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Let us start by introducing two representative similarity measures �c and �‘ based
on textual content and hyperlinks, respectively. Each is based on the TF-IDF vector
representation and Bcosine similarity’’ function traditionally used in information
retrieval [30]. For content similarity we use:

�cðp1; p2Þ ¼
~ppc

1�~ppc
2

k~ppc
1k � k~ppc

2k

where ðp1; p2Þ is a pair of Web pages and ~ppc
i is the TF-IDF vector representation of

pi, based on the terms in the page. Noise words are eliminated [6] and other words
are conflated using the standard Porter stemmer [27].

For link similarity measure we define:

�‘ðp1; p2Þ ¼
~pp‘1�~pp‘2

k~pp‘1k � k~pp‘2k
where ~pp‘i is the link frequency-inverse document frequency (LF-IDF) vector
representation of page pi. LF-IDF is analogous to TF-IDF, except that hyperlinks
(URLs) are used in place of words (terms). A page link vector is composed of its
outlinks, inlinks, and the pages_s own URL. Link similarity is a measure of the local
undirected clustering coefficient between two pages. A high value of �‘ indicates
that the two pages belong to a clique of pages. Related measures are often used in
link analysis to identify a community around a topic. This measure generalizes co-
citation [31] and bibliographic coupling [14], but also considers directed paths of
length L � 2 links between pages. Such directed paths are important because they
could be navigated by a user or crawler. Outlinks were obtained from the pages
themselves, while inlinks were obtained from a search engine.5

One could of course explore alternative link and content representations and
similarity measures, such as those based on conceptual graphs [24]. However our
preliminary experiments indicate that other commonly used measures such as TF-
based cosine similarity and the Jaccard coefficient do not qualitatively alter the
observations that follow.

5.1. Combining content and link similarity

Once text and links were extracted from the 1:12� 106 Web pages of the ODP
ontology, �c 2 ½0; 1� and �‘ 2 ½0; 1� were computed for each of 1:26� 1012 pairs of
pages. A 200� 200� 200 histogram with coordinates ð�c; �‘; �

G
s Þ was generated to

analyze the relationships between the various similarity measures.

Table 2 Mean, standard deviation, and standard error of the percentage of correct predictions by
tree-based vs. graph-based semantic similarity, as determined from the assessments by the subjects.

N Mean (%) Stdev (%) SE (%) 95% C.I. (%)

�T
s 38 5.70 4.71 0.76 (4.2, 7.2)
�G

s 38 84.65 11.19 1.82 (81.1, 88.2)

The fact that the confidence intervals do not overlap is equivalent to using a t-test to determine that
the difference in average accuracy is statistically significant at the 95% confidence level.

5 We used the Google Web API (http://www.google.com/apis/) with special permission.
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The massive data thus collected allows us to study how well different automatic
similarity measures based on observable features (content and links) approximate
semantic similarity. We considered a number of simple functions f ð�c; �‘Þ including:

& various linear combinations f ¼ ��c þ ð1� �Þ�‘ for 0 � � � 1, of which we
report the cases � ¼ 0 ( f ¼ �‘), � ¼ 0:2, � ¼ 0:8, and � ¼ 1 ( f ¼ �c);

& the product f ¼ �c�‘;
& the step-linear function f ¼ �cHð�‘Þ, where Hð�‘Þ ¼ 1 for �‘ > 0 and 0

otherwise;

and other functions omitted for space considerations. Figure 6 plots the Pearson and
Spearman correlations between �G

s and these functions, versus a threshold on �c.
The Pearson correlation coefficient rP tells us the degree to which the values of

each function f ð�c; �‘Þ agree with �G
s . We can see that the correlations are rather

weak, 0 < rP < 0:2, for all f in the plot when we consider all page pairs. If we

Figure 6 Pearson (top) and Spearman (bottom) correlations between graph-based semantic
similarity �G

s and different functional combinations of content and link similarity, applying

increasing thresholds on content similarity.
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restrict the analysis to pairs that have content similarity �c above a minimum
threshold, the correlations can become much stronger. It is meaningful to use a �c

threshold because in applications such as search engines, the pages to be ranked are
those that are retrieved from an index based on a match, typically between pages
and a user query or some other model page. It is interesting to observe that the
functions that rely heavily on content similarity ( f ¼ ��c þ ð1� �Þ�‘ for high �)
perform particularly poorly at predicting semantic similarity. They are at best
weakly correlated with �G

s unless one applies a very high �c threshold. This is rather
surprising because prior to the introduction of link based importance measures such
as PageRank [1] content was the sole source of evidence for ranking pages, and
content similarity is still widely seen as a central component of any ranking
algorithm.

The Pearson correlation assumes normally distributed values. Since the similarity
functions defined above have mostly exponential distributions, it is worth to validate
the above results using the Spearman rank order correlation coefficient rS, which is
high if two functions agree on the rankings they produce irrespective of the actual
values. This is reasonable in our setting because from a search engine user
perspective, what matters is the order of the hit pages and not the values used by
the ranking function. The Spearman correlation data in Figure 6 confirms the above
observations, with even more striking evidence of the noisy nature of content
similarity. One can see a clear separation between the poor rankings produced by
functions that depend linearly on �c and the relatively good rankings produced by
functions that either do not consider �c or that scale �c by �‘.

The above analysis highlights an extremely low discrimination power of lexical
similarity. This might suggest a filtering role for lexical similarity, in which all pages
below a small threshold would not be considered while above the threshold only
link-based measures would be used for the sake of ranking. While such a bold
strategy must be scrutinized carefully, it could lead to a significant simplification of
ranking algorithms.

5.2. Exploiting term co-occurrence to improve content similarity

The observed poor performance of the traditional measure of content similarity
drove us to explore extended forms of document similarity that exploit latent
semantic relationships coming from term co-occurrence. When computing cosine
similarity based on the vector space model, terms are represented as pairwise
orthogonal vectors and document vectors are represented as linear combinations of
these term vectors. Representing terms as orthogonal vectors presupposes semantic
independence among them, which is clearly an unrealistic assumption.

The negative effects of this simplifying assumption have been addressed by
previous studies and many extensions of the basic vector space model have been
proposed based on the idea that terms that tend to co-occur are semantically
related. For example, techniques such as Latent Semantic Indexing (LSI) apply
singular value decomposition (SVD) to reduce the dimensions of the term-
document space, harvesting the latent relations existing between documents and
between terms [5]. The LSI method is computationally expensive and therefore
many methods have been proposed to approximate LSI with reduced cost. An
example of such methods is based on mapping documents to a kernel space where
documents that do not share any term can still be close to each other [4]. A similar
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idea has also been investigated in [13] and more recently in [18]. In these proposals
term-similarity is computed based on document similarity, and vice versa. This gives
rise to a series of recursive equations that converges to a Bmore semantic’’ form of
content similarity than the traditional one.

In order to investigate the effect of term co-occurrence on document similarity
we implemented an extended form of content similarity. As in previous proposals,
the underlying assumption for this new measure of similarity is that document
similarity affects term similarity and vice versa, but instead of repeatedly computing
one form of similarity in terms of the other, we only looked at a single step in this
recursive process.

As a starting point, we computed term co-occurrence as follows:

�ðt1; t2Þ ¼
~tt1�~tt2

k~tt1k � k~tt2k

where ðt1; t2Þ is a pair of terms and~tti is the vector representation of ti, based on the
documents in which ti occurs.

Finally, given a pair of Web pages ðp1; p2Þ, our extended form of document
similarity was computed as follows:

��ðp1; p2Þ ¼
ð~ppc

1 �KÞ� ð~ppc
2 �KÞ

k~ppc
1 �Kk� k~ppc

2 �Kk

where ~ppc
i �K is the TF-IDF vector representation of pi projected into a non-

orthogonal term space defined by the term–term matrix K, where ½K�ij ¼ �ðti; tjÞ.
In order to investigate if �� is a good approximation of �G

s we used a subset of the
data discussed in Section 5.1. This reduced set consists of 150,000 URLs from 47,174
topics. The sample was obtained by extracting 10,000 URLs from each of the 15 top-
level branches of the ODP ontology. Terms occurring in a single document were
eliminated. After this term cleaning process, those documents containing no terms
were also removed, resulting on a final corpus of 124,172 documents and 94,859
terms. The use of a sample considerably smaller than the one described in Section 5.1
was necessary due to the higher time and memory resources required to compute ��.
We have compared the results obtained for the different functional combinations of
content and link similarity described in Section 5.1 using the original sample and the
reduced one. In this analysis we have observed that the relative performance of the
different functional combinations of content and link similarity remains essentially
unaffected despite the reduction on the number of pages used in the evaluation.
This justifies our use of a smaller corpus for this and future studies.

Based on this corpus, we generated a 200� 200� 200 histogram with coordinates
ð�c; ��; �

G
s Þ for 1:54� 1010 pairs of pages. Figure 7 plots Pearson and Spearman

correlations between �G
s and the two forms of content similarity, �c and ��, versus a

threshold on �c. For Pearson correlation we observe that �G
s is better correlated to

�� than to �c for �c � 0:8, while for Spearman correlation the improvement of ��
over �c can be observed when �c � 0:5. This result indicates that after filtering
unrelated Web pages, the new measure of content similarity produces a better
ranking of pages than the traditional measure of content similarity. This provides
new supporting evidence for the usefulness of exploiting term co-occurrence to
approximate semantic similarity. A subsequent analysis showed us that the product
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f ¼ ���‘ does not outperform f ¼ �c�‘ or f ¼ �‘, which once again highlights the
superiority of link similarity as an approximation of semantic similarity.

5.3. Integrating content and link similarity

An alternative way to approximate semantic similarity is based on integrating
(rather than combining) content and link similarity. We have implemented a
measure of similarity based on paths of length L � 2 links between pages, where the
importance of a link in a path is adjusted by two weighting factors. First, we used the
link IDF value to discount similarity if the link pointed to a page with many inlinks.

Figure 7 Pearson (top) and Spearman (bottom) correlations between graph-based semantic
similarity �G

s and the two forms of content similarity, applying increasing thresholds on content

similarity.
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Second, we used lexical similarity between pages to weaken the importance of those
links connecting pages with low content similarity.

In order to compute the similarity for a pair of pages ð pi; pjÞ we represent pi and
pj as vectors with elements of the form �

j
i;k and � i

j;k, respectively. As illustrated in
Figure 8, the elements �

j
i;k and � i

j;k are obtained by considering the pages pk

connected to both pi and pj by means of a link. Formally, consider undirected paths
of length L � 2 between pi and pj, where for some k there exist links pi ! pk or
pk ! pi and pj ! pk or pk ! pj. Then, the values of the elements �

j
i;k are defined as

follows:

�
j
i;k ¼

1 if i ¼ k;

�cð pi; pkÞ� IDFð pkÞ=2 if pi ! pk;

�cð pi; pkÞ� IDFð piÞ=2 if pk ! pi;

�cð pi; pkÞ� ðIDFð piÞ þ IDFð pkÞÞ=2 if pi ! pk and pk ! pi:

8
>>><

>>>:

Let ~pp
�2

1

1 and ~pp
�1

2

2 be the vector representation for a pair of pages ð p1; p2Þ. The
integrated content and link similarity measure for these pages is computed as
follows:

�c‘ðp1; p2Þ ¼
~pp
�2

1

1 � ~pp �1
2

2

k~pp �2
1

1 k � k~pp �1
2

2 k

Once again, our measure of graph similarity �G
s was used to investigate if �c‘ is a

good approximation of semantic similarity. To perform this analysis we used a
subset of the ODP data discussed in Section 5.1 consisting of 9:27� 105 URLs and
their corresponding outlinks and inlinks. Figure 9 illustrates the three possible cases
that can occur when computing �c‘ðpi; pjÞ: (1) there is a link from pi to pj (or
viceversa), (2) pi and pj are connected to pk 2 ODP, and (3) pi and pj are connected

k

k

i j

j
ki ,

i
kj ,

j
ki ,

i
kj ,

j
ji ,

ODPFigure 9 Diagram illustrating three
cases of how two pages pi and pj

in the ODP can be connected

to each other by a path of

length L � 2.

k

j
ki ,

i
kj ,

j
ji ,

i j

Figure 8 Diagram illustrating how
two pages pi and pj can be con-

nected to each other by a path

of length L � 2.
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to pk 62 ODP. Because we only collected lexical information for pages inside the
ODP, the measure �cð pi; pkÞ required for the computation �

j
i;k was not available for

pages pk outside the ODP. In such cases, we used �cð pi; pjÞ as a surrogate for
�cð pi; pkÞ.

To complete our analysis we generated two 200� 200� 200 histograms with
coordinates ð�c; �c‘ ; �

G
s Þ and ð�c; �‘; �

G
s Þ for 8:59� 1011 pairs of pages. Figure 10

shows Pearson and Spearman correlations between �G
s and �c‘ , versus a threshold on

�c. The correlations between �G
s and �c�‘ are also shown for comparison. This

preliminary evaluation suggests that �c‘ is not appreciably superior to the simpler
and less computationally expensive f ¼ �c�‘.

Figure 10 Pearson (top) and Spearman (bottom) correlations between �G
s and �c‘ , applying

increasing thresholds on content similarity. The correlations between �G
s and �c�‘ are plotted for

comparison.
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5.4. Evaluating ranking functions

Let us finally illustrate how the proposed semantic similarity function can be used to
automatically evaluate alternative ranking functions. This makes it possible to mine
through a large number of alternative functions automatically and cheaply, re-
serving user studies for the most promising candidates. We want to compare the
quality of a ranking function to the baseline ranking obtained by the use of semantic
similarity. The sliding ratio score [16, 26] compares two rankings when graded
quality assessments are available.6 This measure is defined as the ratio between the
cumulative quality scores of the top-ranked pages according to two ranking
functions. We can generalize the sliding ratio in the following ways:

& use a page as a target rather than an arbitrary query, as is done in Bquery by
example’’ systems;

& use �G
s as a reference ranking function;

& sum over all pages in an ontology such as the ODP, each used in turn as a
target, thus covering the entire topical space and eliminating the depen-
dence on a single target.

Let us thus define a generalized sliding ratio score as follows:

GSRð f ;NÞ ¼

XN

ði;jÞ:rankf ði; jÞ¼1

�G
s ði; jÞ

XN

ði;jÞ:rank
�G

s
ði;jÞ¼1

�G
s ði; jÞ

where ði; jÞ is a pair of pages, f is a ranking function to be tested, and N is the
number of top-ranked pairs considered. Note that for any f , GSRð f ;NÞ ! 1 as N
tends to the total number of pairs. The ideal ranking function is one such that
GSRð f ;NÞ 	 1 for low N as well. In simplistic terms, GSRð f ;NÞ tells us how well a
function f ranks the top N pairs of pages.

The generalized sliding ratio score can be readily measured on our ODP data for
any f ð�c; �‘Þ. Only pairs with �c > 0 are considered, since typically in a search
engine only pages matching the query are retrieved. In Figure 11 we plot GSRð f ;NÞ
versus N for the simple combination functions f ð�c; �‘Þ introduced in Section 5.1.
Consistently with the correlation results, the functions that depend heavily on
content similarity rank poorly. Again this is only an illustration of how the �G

s

measure can be applied to the evaluation of arbitrary ranking functions.

6. Discussion

In this paper we introduced a novel measure of semantic similarity for Web pages
that generalizes the well-founded information-theoretic tree-based semantic simi-

6 In the common case when just binary relevance assessments are available, one resorts to precision
and recall; the sliding ratio score is a more sophisticated measure enabled by more refined semantic
similarity data.
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larity measure to the case in which pages are classified in the nodes of an arbitrary
graph ontology with both hierarchical and non-hierarchical components. This
measure can be readily applied to mine semantic data from topical ontologies and
Web directories such as Yahoo!, the ODP and their derivatives.

Similarity is commonly viewed as an example of relation satisfying the following
three conditions:

& Maximality: �ða; bÞ � �ða; aÞ ¼ 1
& Symmetry: �ða; bÞ ¼ �ðb; aÞ
& Triangular Inequality: �ða; bÞ��ðb; cÞ � �ða; cÞ.

These conditions are adaptations of the minimality, symmetry and triangle
inequality axioms of metric distance functions. The definition of �G

s proposed in
this paper satisfies maximality and symmetry but not the triangular inequality
condition. With sufficient computational resources, a new measure of semantic
similarity satisfying the triangular inequality principle can be computed by applying
an adaptation of Floyd-Warshall transitive closure algorithm [2] to �G

s :

�ð0Þði; jÞ ¼ �G
s ði; jÞ

�ðrþ1Þði; jÞ ¼ maxð�ðrÞði; jÞ; max
k
ð�ð0Þði; kÞ ��ðrÞðk; jÞÞÞ

�ði; jÞ ¼ max
r!1

�ðrÞði; jÞ:

While in many cases the lower limit imposed by the triangular inequality appears to
be intuitive, many authors have argued against it. Tversky [32] illustrates this
position with an example about the similarity between countries: BJamaica is similar
to Cuba (because of geographical proximity); Cuba is similar to Russia (because of
their political affinity); but Jamaica and Russia are not similar at all.’’ This example
fits the case of Web pages and their topics, suggesting that the triangular inequality
should not be accepted as a cornerstone of similarity models.

Figure 11 Generalized sliding ratio score plots for different functional combinations of content and
link similarity. We omit the region N < 105 where GSR is constant for all f up to the resolution of

our histogram bins.
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Computing the graph-based semantic similarity measure is a computationally
expensive task, both in terms of space and time. While matrices T, G, Tþ and W are
sparse and easy to store, codifying the graph-based semantic similarity measure �G

s

for the ODP topics required the use of a dense matrices of size 571; 148� 571; 148.
The time complexity for computing the semantic similarity for n topics is Oðn3Þ in
the worst case; the actual complexity depends on the density of the W matrix. Some
of the techniques adopted to deal with the time complexity of the problem include
indexing the sparse structure of the matrices for fast access and using a software
vector register to compute the MaxProduct fuzzy composition function efficiently.
Our approach may not scale easily to ontologies much larger than the ODP graph as
it is today. However, approximations of �G

s may be computed in reasonable time if
appropriate heuristics are applied (e.g., via the use of thresholds).

We have shown that the proposed semantic similarity measure predicts human
judgments of relatedness with significantly greater accuracy than the tree-based
measure. Finally we have undertaken a massive data mining effort on ODP data in
order to begin to explore how text and link analyses can be combined to derive
measures of relevance in agreement with semantic similarity.

The main, surprising result of our initial analysis with the graph-based semantic
similarity is that the classic text-based TF-IDF cosine similarity is an extremely
noisy feature, unfit for ranking Web pages. While it seems helpful to filter out pages
with very low lexical similarity (�c < 0:05), text-based measures do not seem to
help in ranking the remaining pages. On the contrary they are very poorly corre-
lated with semantic similarity, possibly reflecting the extent to which ambiguous
terms mislead the search process. While this result helps to explain why early search
engines did so poorly and validates the use of link-based measures such as
PageRank, the seemingly unredeemed quality of content similarity is unexpected.
The implication must be a revisitation of the role of content similarity in ranking
Web results.

The methodology described here to evaluate ranking algorithms based on
semantic similarity can be applied to arbitrary combinations of ranking functions
stemming from text analysis (e.g., LSI, query expansion, tag weighting, etc.), link
analysis (e.g., authority, PageRank, SiteRank, etc.), and any other features available
to a search engine (e.g., freshness, click-through rate, etc.). Yet the applications of
the proposed semantic similarity measure are broader than just Web search.
Classification, clustering and resource discovery also rely on semantic mining of
features that can be extracted automatically. Phenomena such as the emergence of
semantic network topologies may also be studied in the light of the proposed
semantic similarity measure. For instance, we are currently using semantic similarity
to evaluate adaptive peer based distributed search systems. In this evaluation
framework queries and peers are associated with topics from the ODP ontology.
This allows us to monitor the quality of a peer_s neighbors over time by looking at
whether a peer chooses Bsemantically’’ appropriate neighbors to route its queries.

In future work the semantic similarity measure should be further validated
through user studies. The study presented here focuses on cases where �G

s and �T
s

disagree, and thus it tells us that �G
s is more accurate than �T

s but is too biased to
satisfactorily answer the broader question of how well �G

s predicts assessments of
semantic similarity by human subjects in general. It is possible that alternative
weighting schemes for the different types of links in the ODP ontology may lead to
measures with improved accuracy.
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The evaluations outlined here have focused on purely local text and link analysis.
For example, we have not looked at the role of more global link and text analysis
techniques such as PageRank and latent semantic indexing in improving the quality
of ranking by favoring authoritative pages or improving content similarity. These
are also directions for future work.

Due to the growing number of emerging Web search techniques and the scale of
the Web, automatic evaluation mechanisms are crucial. In light of the availability of
rich semantic information sources, like the ODP ontology, we have proposed a
reliable method for the algorithmic detection of semantic similarity between Web
pages. The proposed approach will provide insight for better understanding the
limitations of existing search techniques and inspire the development of new and
more powerful Web search tools.
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