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Background: Copper (Cu) is an essential trace metal used as a catalytic cofactor for many enzymes. However,
it can have nocive effects when it participates in the Fenton reaction, producing reactive oxygen species
(ROS). Excess Cu is present in the plasma of patients with diseases in which cell survival is crucial. In order
to investigate the effect of Cu overload on the induction of cellular damage we chose two human cell lines
derived from liver (HepG2) and lung (A-549) as representative cells exposed to exogenous (polluted air)
and/or endogenous (systemic) Cu overload.
Methods: We studied ROS production using thiobarbituric acid reactive substances (TBARS) and fluorimetric
measurements with dichlorofluorescein, cell viability by the trypan dye exclusion test, the methyltetrazolium
(MTT) and lactate dehydrogenase leakage (LDH) assays, various cytotoxic indexes, and caspasa-3 and
calpain-dependent activation as the main signals involved in the apoptosis pathway.
Results: Cu overload induces cell death by a differential activation of calpains (m- and μ-) and caspase-3, and
modifies various proliferative indexes in a cell-type and concentration-dependent manner. The involvement
of these two protease systems and the response of the two main Cu homoestatic proteins ceruloplasmin and
metallothioneins are specific to each cell type. We demonstrated that Cu can trigger cell death by activation
of specific protease systems and modify various proliferative indexes in a cell-type and concentration-
dependent manner.
General significance: These findings contribute to understanding the diverse effects of Cu overload on the
pathogenesis of human diseases like cancer, cirrhosis and degenerative disorders.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Copper (Cu) is an essential trace metal used as a catalytic co-
factor for many enzymes [1–3] and is an important oligoelement
in the food and water ingested by humans [3]. However, excess
Cu is potentially hazardous to human health since it can partici-
pate in the Fenton reaction, producing radical species [4–6].
Many studies have reported that Cu overload leads to oxidative
stress and subsequent oxidative damage to proteins, lipids and
nucleic acids [7–10]. It is widely recognized that elevated levels
of free radicals derived from oxygen (ROS) are related to the path-
ogenesis of various human diseases [11–23]. Cu-derived substances

are extensively used in a broad range of industries around the
world, from smelting to the production of electrical and electronic
goods [24], agrochemicals (pesticides and fungicides) [24–28] and
Cu-based intrauterine devices (Cu-IUDs) [29]. Cu environmental
pollution therefore comes as no surprise [24,27,30] and is already
a matter of international concern [27]. More common than acute
exposure [1,26,30], involuntary exposure to Cu overload under
sub-clinical or sub-symptomatological conditions is very difficult
to be detected [5,31]. It is a well-documented fact that farmers
handling agrochemicals and women using Cu-IUDs are chronically
exposed to Cu ions, resulting in elevated levels of Cu in their
plasma [24–28].

Cross-sectional and case–control data have shown higher serum
Cu levels in cancer patients [32–37] and Linder et al. [34] reported
that tumor cells contain relatively high concentrations of Cu. Howev-
er, very few studies have investigated the exact role of Cu in human
cancer pathophysiology. High Cu intake is also associated with the de-
velopment of childhood cirrhosis [38]. We and other authors have
demonstrated that elevated concentrations of Cu in the plasma of pa-
tients with neurodegenerative disorders [23,39]and the putative clin-
ical value of the Cu ion concentration in peripheral plasmas are useful
tools for characterizing pathologies such as Alzheimer's, vascular de-
mentia and Parkinson's disease [23].
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Our aim was therefore to study the role of Cu overload in the sur-
vival of human cells using an in vitro system. Since cultured cells are
frequently used to investigate the effects of different noxae [40–42],
we chose two human cell lines derived from liver (HepG2) and lung
(A-549) as representative cells exposed to exogenous (polluted air)
and/or endogenous (systemic overload) Cu in living organisms to
study (i) the effect of different degrees of Cu overload in these two
cell lines by determining various indexes of cellular proliferation
and damage; (ii) the production of ROS as a possible causative factor
of damage; and (iii) activation of the two main protease systems in-
volved in programmed cell death (caspase-3 and calpains).

2. Materials and methods

2.1. Chemicals

All chemicals used were of analytical grade and obtained from
Sigma Chem. Co. (Buenos Aires, Argentina or USA), Merck (Darm-
stadt, Germany) or Carlo Erba (Milan, Italy).

2.2. Cell culture

Human liver (HepG2) and lung (A-549) cell lines from ATCC
(American Type Culture Collection) were used. Monolayer cultures
were grown in Eagle's minimum essential medium (MEM), with
15 mM HEPES, free of antibiotics, supplemented with 10% inactivated
fetal calf serum (Natocor, Córdoba, Argentina) and microbiologically
(pathogen-free) tested for cell culture.

2.3. Cell treatment

HepG2 and A-549 cell lines were seeded and grown to semi-
confluence in disposable culture dishes (Falcon, CA, USA) in a humid-
ified atmosphere with 5% CO2 in air at 37 °C. When cultures reached
the logarithmic phase of growth they were treated with fresh medi-
um supplement with ultrafiltered (Millipore 0.22 μm, NY, USA) sterile
PBS solutions of CuSO4, at different final concentrations (20–160 μM).
Doses were on the basis of our assays demonstrating that concentra-
tions around 80 μM Cu in the culture medium reduced viability by
50% with respect to control cultures. Other authors have used similar
doses in HepG2 cells [43]. None of the treatments produced detect-
able changes in the pH of the culture medium. Control cultures
were run simultaneously, supplemented with an equivalent aliquot
of PBS. After 24-h treatment, some culture flasks were washed with
cold sterile PBS (5 mL/three times), mechanically harvested and col-
lected for centrifugation at 4 °C (10 min/2000 g). The pellet was man-
ually homogenized on ice with 4 mL of PBS using a stainless-steel
hand homogenizer (Khonte, IL, USA) to complete lysis (10 strokes,
controlled by optical microscopic observation). The homogenates
were used in the analysis of the markers listed below, except those
for cell viability calculated with the values of total cellular protein
(TCP), in which case the culture flasks were treated with Cu for 24
and 48 h and then processed as previously described. Three indepen-
dent experiments were performed and each determination was re-
peated at least three times.

2.4. Copper concentration

Aliquots of washed cells were mineralized with a mixture of 4 mL
of HNO3 (c) and 1 mL HCLO4 (Aldrich or Sigma Chem. Co., Buenos
Aires, Argentina) by heating at 120°C for 60 min in a mineralization
block [44]. The digests were cooled, diluted with ultrapure water
(18 mΩ cm, Carlo Erba, Milan, Italy) and ultrafiltered using a 0.22 μ
Millipore membrane (Milli-Q Purification System, Millipore, CA,
USA). Ultrafiltered dissolutions were directly aspirated into the
flame of a Perkin-Elmer 1100 B spectrophotometer equipped with a

Perkin-Elmer cathode lamp (Perkin-Elmer Corp., Norwalk, CT, USA)
at a spectral width of 1 nm. Calibrations were performed with a stan-
dard solution of Cu(NO3)2 in HNO3 0.5 N (Tritrisol, Merck Co., Darm-
stadt, Germany) and 18 Ω cm water ultrafiltered through a Millipore
membrane. All measurements were performed in peak height mode
(324.7 nm line). The intra-[(SD/ξ).100] and inter-[(ΔSD/Δξ).100]
assay coefficients of variations were 15.5 and 6.0%, respectively. We
routinely obtained a similar equation for the calibration curve
(IR=0.00055+0.04788 [Cu, mg/L] and the statistical analyses dem-
onstrated a correlation coefficient always comprise between 0.956
and 0.991). In addition, we explored the so-called matrix effects
that may modify the slopes of the standard regressions. In spiked
samples the obtained values varying from 0.00041 to 0.00062
resulted very similar to those of copper standard solutions. So, matrix
effect was considered not significant or negligible. The mean for re-
covery and RSD for spiked samples were 99.7% and 3.3%, respectively.
Detection limit was 0.09 mg/L. Concerning accuracy of the method;
we explored the influence of time after dilution, temperature of acid
digestion, and concentration of HNO3/HCLO4 following the sugges-
tions of Terrés-Martos et al. [45]. Also our results with biological sam-
ples (homogenates) were checked against a Seronorm™ Trace
Elements Serum (Sero Labs, Billingstad, Norway) with no significant
differences between the obtained and the declared (certified) con-
centrations. The concentrations of copper in test media were routine-
ly checked by atomic absorption methodology and the results
obtained were not significantly different to those of nominal concen-
trations. Based on previous experiments using similar copper concen-
trations, and on the results of measurements of total, free, and
unbound copper performed in serum samples of rat and human pa-
tients made in our laboratory, the availability of copper in the test
media seemed to be almost complete (the amount of bound copper
to proteins was negligible in comparison to that used for the experi-
ments) [23,28,29].

2.5. Copper homeostatic proteins

2.5.1. Ceruloplasmin (CRP)
Samples were analyzed by conversion of p-phenylenediamine into

a blue-colored product [46] measured at 550 nm at 37 °C in a buffer of
glacial acetic/sodium acetate (50 mM, pH 5.5) directly into flat-
bottomed plates, using a Microplate Reader SpectraMax M2/M2e
model from Molecular Devices Analytical Technologies (Sunnyvale,
CA, USA), for 3 min. Intra- and inter-assay coefficients of variation
were 8.3 and 4.4%, respectively. CRP concentrations were calculated
by comparison with the reaction rate of pure human ceruloplasmin
standard (Sigma Chem. Co., Buenos Aires, Argentina).

2.5.2. Metallothioneins (MTs) determination
Appropriate aliquots of samples (100 to 150 μL) were added to an

excess of Ag+ (500 μL/20 μg Ag+/mL) and the mixture was incubated
with 100 μL of red blood cell hemolysate (2% in a buffer of Tris/HCl
30 mM pH: 8). The samples were then heated (2 min at 100 °C) and
the denatured proteins discarded by centrifugation (5 min at
15,000×g). MTs were quantified in the supernatant fraction previ-
ously acidified with HNO3 using an atomic absorption spectrometer
Avanta Ultra Z (GBC Scientific Equipment, Hampshire, IL, USA). For
the calculations it was assumed that the stoichiometry of Ag+-thio-
nein was 17 g-at. Ag+ per mole of MTs [47,48]. This method was pre-
viously studied in comparison with other available methodologies
such as thiomolybdate or enzyme-linked immunosorbent assays.
With the Ag+-saturation assay, recovery of purified Cu-MTs was
100±8%within the range 0.012 to 1.805 μg of MTs. At higher concen-
trations the method tends to underestimate the real amount of MTs
present in the sample. Reproducibility between assays, as calculated
by different mean coefficient of variations did not exceed 8% with a
limit of detection of 0.012 μg of MTs. Matrix effect (rat cytosol) as
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studied by the above mentioned group was negligible. Other analyti-
cal parameters were essentially identical to those described in the
above mentioned papers [47,48].

2.6. Determination of proliferative indexes

For the last 10 h of culture, the cells were treated with colchicine
(Sigma Chem. Co., Buenos Aires, Argentina) at a final concentration of
0.1 μg/mL. For light microscope studies the cells were seeded
(5.0×104 cells/10 mL medium) on sterile glass slides placed in the
plastic culture dishes. After the treatments, the cells were immedi-
ately fixed with methanol:acetic acid (3:1), air dried and thereafter
stained with 5% Giemsa in Sorensen buffer (pH 6.80). As a parameter
of mitotic arresting activity, the mitotic index (MI) was determined
by scoring 1000 cells/slide. Normal and abnormal cell division stages
were evaluated from at least 200 mitotic cells/slides (three slides per
experiment). MI was expressed as a factor (f) of the mean MI from
treated cells (MIt) over the mean from control assays (MIc)
(f=Mit/Mic) [49], or as a relative mitotic index (RMI) calculated as
MIt/MIc, where MIt was obtained from treated cultures and MIc
from control assays. Abnormal mitotic figures were classified as ini-
tial C-metaphases and full F-metaphases according to Hadnagy et
al. [50] and the C/F ratios were calculated. A minimum of 200 meta-
phase cells per sample was assessed to determine the percentage of
cells which had undergone one (M1), two (M2), and three or more
(M≥3) mitoses. The proliferative rate index (PRI) was calculated
for each experimental point according to the formula PRI=[%M1+
2 ∙(%M2)+3 ∙(%M≥3)] /100.

Other proliferative indexes were determined using the changes in
total cellular protein (TCP). Appropriate aliquots were taken for de-
termination of the TCP using the methodology of Lowry et al. [51].
The following parameters were calculated using the TCP data: relative
increase in cellular mass (RICM)=[increase in TCP in treated cells
(final− initial) / increase in TCP in control cells (final/ initial)] ∙100,
and relative populations doublings (RPDs)=[number of populations
doubling in treated cultures/number of populations doubling in con-
trol cultures] ∙100, where population doubling (PD)=log [(post-
treatment TCP/ initial TCP)]/ log 2 [52].

2.7. Assessment of cellular viability

2.7.1. Lactate dehydrogenase activity (LDH)
Medium samples were collected and centrifuged (10 min at

10,000 g) and then ultrafiltered through Millipore membranes
(0.22 μm) in order to completely remove cell debris. Appropriate ali-
quots were taken for determination of lactate dehydrogenase activity
(LDH) by a kinetic UV method using the commercial kit Optima-LDH-
P UV/AA fromWiener Laboratories (Rosario, Argentina). Results were
determined in triplicate and expressed as mUI LDH/mL of culture me-
dium for A-549 and HepG2. In another series of culture flasks, at-
tached cells were washed with PBS and treated with 100 μL of 0.1%
solution of trypan blue dye (in PBS, pH 7.40). After 1 min incubation
at room temperature they were examined under optical microscopy
to determine the percentage of viable cells according to the method
described by Jauregui et al. [53]. At least four fields of one hundred
cells per field were counted and the results were expressed as the
percentage of viable cells.

2.7.2. MTT assay
The mitochondrial-dependent reduction of colorless 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to a
blue-colored formazan was performed as previously described [54].
In brief, cultured cells were treated with CuSO4 as indicated and
then incubated for 30 min in MTT solution (500 μg/mL medium).
After washing with PBS, the intracellular formazan was dissolved in
dimethyl sulfoxide and the absorbance determined at 595 nm.

2.8. Biomarkers of ROS production

2.8.1. Fluorescent detection of ROS production
Formation of intracellular reactive oxygen species, specifically hy-

drogen peroxide, was measured spectrophotometrically using
dichlorofluorescein-diacetate (DCF-DA), as described by Osseni et al.
[55]. DCF-DA readily diffuses through the cell membrane and is hy-
drolyzed by intracellular esterases to nonfluorescent 2′,7′-dichloro-
fluorescein. It is then rapidly oxidized to highly fluorescent 2′,7′-
DCFH-DA in the presence of reactive oxygen species. The fluorescence
intensity is proportional to the amount of intracellular reactive oxy-
gen species formed.

2.8.2. Thiobarbituric acid-reactive substances (TBARS)
The extent of lipid peroxidation in cellular homogenates was cal-

culated by analyzing the levels of TBARS [56]. TBARS (mainly malon-
dialdehyde (MDA) generated by lipid peroxidation) reacted with TBA
to yield TBA-MDA adducts which were quantified at 532 nm. The con-
centration of the chromophore was calculated from a calibration
curve prepared with fresh tetrametoxipropane (TMP) solutions
(TMPwas purchased from Sigma Chem. Co., Buenos Aires, Argentina).

2.8.3. Total thiol content
Total thiol concentration was determined by the dithio-

nitrobenzoic (DTNB) method [57]. An aliquot of sample containing
approx. 100 μg protein was mixed with sodium phosphate buffer
80 mM (pH 8.0), EDTA 2 mM and 250 μM (final concentration) of
DTNB. The mixture was incubated for 10 min at 30 °C and the op-
tical density was recorded at 415 nm in a two-beam spectropho-
tometer (Cintra-20, Sydney, Australia). GSH was utilized as the
calibration standard. Results were expressed as nanomoles of
thiol groups/mg TCP.

2.9. Apoptosis biomarkers

2.9.1. Caspase-3 activity (commercial kit from Sigma Chem. Co, USA)
Caspase-3 activity was measured by a colorimetric assay kit

(CASP-3-C), based on the hydrolysis of the synthetic peptide sub-
strate acetyl-Asp-Glu-Val-Asp-p-nitroaniline (Ac-DEVD-pNA) by
caspase-3. The resulting p-nitroaniline (p-NA) released was moni-
tored at 405 nm. Three controls were used for each caspase-3 colori-
metric assay: inhibitor-treated cell lysate (to measure the non-
specific hydrolysis of the substrate), caspase-3 positive control
(using commercial caspase-3, 5 mg/mL provided by the kit's manu-
facturer) and a blank of boiled (inactive) cellular lysate. A calibration
curve using a standard solution of p-nitroaniline (p-NA) was run in
parallel to calculate the activity of caspase-3 expressed as μmol of p-
NA released/min mL of sample (activity=OD×dilution factor/ε
(10.5 mM)×time×vol). All reagents used were provided with the
commercial kit.

2.9.2. Milli (m) and micro (μ) calpains
The assay involves the hydrolysis of whole ultra-pure casein

(Sigma Chem. Co.) by calpain activity [58] and the subsequent detec-
tion of trichloroacetic acid (TCA)-soluble peptide fragments at
280 nm. The level of calcium in the medium was regulated (5 mM
or 500 μM of CaCl2 for m- or μ-calpain, respectively) for the determi-
nation of calpain subtypes. Calculation was performed on the basis
that a unit of calpain is the amount of enzyme that produces a change
of absorbance of 0.01 at 280 nm and the results were expressed as
units/min mg of TCP.

2.10. Statistical analysis

All values represent the mean of at least 3 independent experi-
ments and each experimental point is expressed as mean±
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standard deviation (SD). Data were analyzed by Student's t-test or
ANOVA plus Tukey's test with the aid of Systat (version 15.0 for
Windows) from SPSS Science (Chicago, IL). The results were also
plotted and analyzed using Sigma Scientific Graphing Software
(version 11.0) from Sigma Chem. Co. (St. Louis, MO) and/or GB-
STAT Professional Statistics Program (version 6.0) from Dynamic
Microsystems Inc. (Silver Springs). The statistical significance of
differences was indicated by asterisks or letters, as appropriate.
Levels of significance were tested at p≤0.05 (significant) and
p≤0.01 (very significant).

3. Results

We clearly observed that exposure of A-549 and HepG2 to Cu
overload significantly increased the concentration of this metal in-
side the cells in a dose-dependent manner (Fig. 2), with a concom-
itant increase in ROS production — more specifically in hydrogen
peroxide (Fig. 3). This effect was also observed by indirect parame-
ters of ROS production, such as increased lipid peroxidation mea-
sured as TBARS and a significant decrease in total thiol content
(Table 1).

Since Kim et al. [59] have reported that the underlying mechanism
of most chemicals that determine cytotoxicic effects is impossible to
be determined without a battery of assays, we used the trypan blue
exclusion test and the LDH and MTT methods. A dose-dependent

decrease in the production of formazan was observed (Fig. 1) in
both the HepG2 and A-549 cells exposed to Cu overload. The increase
in cell death was also confirmed by the trypan blue exclusion test
(Fig. 4) and the elevated levels of LDH (Fig. 5). The observed decrease
in cellular viability followed a similar pattern in both types of
cells and the damage caused was aggravated by increments in Cu
concentration.

To study the involvement of programmed cell death in the dam-
age observed, we determined calpain (μ- and m-) and caspase-3 ac-
tivities. Figs. 6 and 7 show the increased activities of caspase-3 and
the two calpain isoforms, respectively. The activity of caspase-3 in-
creased very significantly at 80 μM Cu concentration in both cells;
however, at 80 μM concentration this enzyme was more active in
the liver- than in the lung-derived cells (Fig. 6). Calpains showed a
very different behavior. Above 40 μM Cu concentration a significant
increase in both calcium-dependent calpain subtypes was observed.
Concentrations as low as 20 μM significantly increased calpain activi-
ty only in Hep G2 cells (Fig. 7).

We also observed significant decreases in the value of different
proliferative parameters indicating a reduction in cell division rates
and/or alterations in cell cycle progression as assessed by the mitotic
index (MI), proliferative rate indexes (PRI), initial/full metaphases ra-
tios (C/F), mitotic factors (f), relative increase in cellular mass (RICM)
and relative population doubling (RPD) (Table 2).

Considering the elevated levels of Cu inside the lung and liver
cells, we also analyzed the concentration of two main proteins
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Table 1
Thiobarbituric acid reactive substances and thiol content for control and Cu-treated
HepG2 and A-549 cells in culture.

Treatments

Cu concentration [μM]

Culture 0 20 80

HepG2cells
TBARS 0.31±0.05a 0.97±0.1b 1.88±0.11c
Total thiol 204±15.1a 150.7±12.8b 107.4±4.5c

A-549 cells
TBARS 0.23±0.03a 0.57±0.1b 1.40±0.2c
Total thiol 100.4±6.6a 72.1±4.5b 39.6±3.7c

Results were expressed as the mean±standard deviation of three independent
experiments (each experimental point assayed in triplicate). Samples were processed
as indicated in the Materials and methods section. Significant differences between
results were denoted with letters (results with different letters are statistically
significant at the level p≤0.05).
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associated with Cu homeostasis, metallothioneins (MTs) and ceru-
loplasmin (CRP) (Fig. 8). An increase in CRP was observed; it did
not correlate linearly with the levels of Cu ions, though the in-
crease was significant at concentrations as low as 20 μM and very
significant at higher concentrations for both cell lines (Fig. 8-A).
In the case of MTs levels there was an almost linear correlation
with the amount of endocellular Cu in both cell lines, mainly in
A-549 cells (Fig. 8-B). The increase was very significant at 80 μM,

whereas below this value the level of significance depended on
the cell type.

4. Discussion

Our results demonstrated that exposure of lung (A-549) and liver
(HepG2) human-derived cells to concentrations of Cu ions below
80 μM produced a concomitant increase in the intracellular concen-
tration of this metal. At higher levels, Cu input reaches a plateau prob-
ably because the ions have a specific homeostatic system that
regulates metabolism of the metal in all eukaryotic cells [60,61]. Cu
uptake also provokes an increase in hydrogen peroxide production,
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a reduction in the total thiol content and a significant rise in TBARS
production. These findings are in agreement with previous results
by Pourahmad and O'Brien [62]. Moreover, we observed a response
of the Cu homeostatic system elicited by increased levels of the two
main proteins involved in Cu buffering, CRP and MTs. CRP belongs
to the α2-globulin fraction of human plasma and is considered to be

an acute or sub-acute phase reactant. The increase in CRP levels in
both cell lines can be attributed to the oxidative stress condition pro-
duced by exposure to Cu, which triggers the synthesis of pro-
inflammatory cytokines responsible for the activation of the gene
that expresses CRP [63,64]. The dose-dependent increase in MTs ob-
served in our work in response to Cu overload is also in agreement
with the results of a previous paper [65]. In addition, other re-
searchers have reported increased MTs in liver and lung cells follow-
ing administration of ROS-producing agents [66–68]. HepG2 basal
levels of MTs are above those found for A-549, probably because the
liver is the main organ that synthesizes this family of proteins. Like
CRP, the synthesis of MTs is induced by pro-inflammatory cytokines
[68] and by transcription factors in response to metals (MRF-1), espe-
cially Cu [1].

The increased oxidative stress condition in response to Cu over-
load, a well-known causative factor of ROS-dependent damage of im-
portant biomolecules, is likely involved in the activation of the
programmed cell death pathway (apoptosis). This may explain the
progressive loss of viability in both cell types. It is widely known
that calpains are activated in response to proapoptotic stimuli such
as increased reactive oxygenated species [69]. Furthermore,
caspase-3 is known to be the main effector protein common to the in-
trinsic and extrinsic pathways of apoptosis and that ROS overproduc-
tion is effectively involved in both pathways, indicating that both cell
lines enter into apoptosis under Cu overload. However, calpains are
also related to cell death by necrosis. This issue remains unresolved
since there are studies demonstrating that both calpains are activated
in the apoptotic and the necrotic pathways [70–72]. Though we ob-
served a significant increase in calpain activity for HepG2 after expo-
sure to 20 μM of Cu, with even higher activity at higher
concentrations of this metal, the increase in caspase-3 became signif-
icant only at the highest concentration of Cu assayed. This finding
suggests that liver cells preferentially activate calpains, which are
then relieved at higher overload stages by the activation of caspase-
3. This explanation agrees with that of Nawaz et al. [73], who
reported the calcium-dependent activation of μ- and m-calpains in
primary cultures of hepatocytes. Furthermore, van Raam et al. [71]
demonstrated that the inactivation of calpains in granulocytes pre-
vents the activation of caspase-3 by stabilizing XIAP, a target of cal-
pains, and PKC-δ. Choi et al. [74] obtained similar results in stable
pancreatic cells (MIN6N8a) and Ding et al. [75] demonstrated that
calpains are the main proteases involved in apoptosis induced by
microcystin-LR in hepatocytes.

As stated before, the matter of which protease system is mainly
responsible for the activation of programmed cell death is still contro-
versial, though the results reported here appear to indicate specificity
for each type of cell. In recent years it has become increasingly clear
that multiple mechanisms of cell death – as well as crosstalk between
different pathways – contribute to determining cell survival or death
by necrosis or apoptosis. The striking similarity between the sub-
strates for caspases and calpains raises the possibility that both prote-
ase families contribute to structural dysregulation and functional loss
of cells under oxidative stress conditions [76]. Moreover, caspases
have been reported to up-regulate calpain activities through modifi-
cation of calpastatin (an endogenous calpain inhibitor) by proteolytic
cleavage [77]. On the contrary, several studies suggest that calpains
could cleave and inactivate endogenous caspases such as caspase-3,
-7, -8, and -9 [78]. Although there is multiple cross-talk between cas-
pases and calpains, the exact signaling pathway linking the two pro-
tease families remains to be elucidated [79–83]. Our results suggest
that activation of calpains prevents caspase activation, or vice-versa,
depending on the level of Cu overload. The predominant activation
of calpain proteases instead of caspases at higher Cu concentrations
was reported by other authors in models of chronic injury [77,78].
Our own results strongly suggest a direct dependence of both proteo-
lytic systems on the degree of Cu overload. Cu-induced oxidative

Table 2
Proliferative indexes for control and treated HepG2 and A-549 cell cultures after 24 h
treatment with Cu.

Treatments

Cu concentration [μM]

Cell culture 0 20 80

Hep G2 cells
MI (o/oo) 37.1±3.0a 27.0±3.2b 11.2±2.8c
PRI 1.99±0.01a 1.71±0.11b 1.58±0.04c
C/F 1.25±0.06a 0.58±0.11b 0.34±0.03c
f – 0.72±0.03a 0.29±0.02b
RICM (o/o) – 74.3±3.5a 62.5±2.4b
RPDs (o/o) – 72.0±4.1a 43.2±2.8b

A-549 cells
MI (o/oo) 39.2±4.2a 32.0±4.1a 17.0±3.6b
PRI 2.01±0.03a 1.73±0.10b 1.65±0.05c
C/F 1.75±0.08a 0.55±0.04b 0.39±0.02c
f – 0.82±0.04a 0.44±0.03b
RICM (o/o) – 76.8±4.0a 65.5±4.5b
RPDs (o/o) – 57.9±3.7a 40.9±3.1b

Results were expressed as the mean±standard deviation of three independent
experiments (each experimental point assayed in triplicate). Mitotic indexes (MI),
proliferative rate indexes (PRI), initial/full metaphases (C/F) ratios, index mitotic
factor (f), relative increase in cellular mass (RICM), and relative population doubling
(RPD) were calculated as described in the Materials and methods section. Significant
differences between results were denoted with letters (results with different letters
are statistically significant at the level p≤0.05).
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stress may also contribute to the apoptotic machinery in other ways.
For example, ATP levels [84] and redox cellular status [85] appear to
determine the specific pathway by which cells will die. It was further-
more observed that activation of caspase-3 is dependent on the main-
tenance of a thiol/redox status [85]. Experimental evidence also
indicates that both types of calpains can be activated under the oxida-
tive stress condition induced by Cu overload and that they could play
a functional role in apoptotic death, as suggested in other biological
systems [80,81,86]. Unlike liver cells, in A-549 the activities of
caspase-3 and calpains increase in parallel with Cu concentration.
Thus, we cannot assume – at least in the case of this cell line – that
the involvement of these two protease systems is equivalent. Another
indication of death by apoptosis could be the increased levels of LDH
activity in the culture media of HepG2 and A-549 after Cu treatment.
Although the extracellular increase in LDH activity has traditionally
been considered as an indicator of death by necrosis, there are studies
demonstrating an increase in LDH release in cells undergoing pro-
grammed cell death [58,87]. This marker should therefore be taken
with caution, as indirect evidence.

In addition to the activation of programmed cell death after Cu ex-
posure, we observed significant changes in many proliferative index-
es in both cell lines. These findings may reflect a decrease in sister
chromatid exchange and an increase in the doubling-time of cell divi-
sion as a consequence of which Cu treatment produces significant de-
creases in the RICM and RPD. In agreement with these findings, other
authors have demonstrated that exposure to Cu in a cell line derived
from hamster ovary produced a delay in the progress of the S phase
[88]. Also, Aston et al. [43] showed that HepG2 cells exposed to
64 μM Cu lost their replicative capacity and underwent a significant
decrease in cell viability.

Concerning the significance of the tested concentrations of copper
and potential exposure cases, there are scarce data for humans be-
cause most of the available evidence (experimental or epidemiologi-
cal) were obtained from animal models. However, the regulatory
frameworks for copper chronic exposures in large human populations
indicate that food, drinking water and copper-containing supple-
ments are the main sources of human exposure [30]. Dietary refer-
ence intake for people from USA, United Kingdom, Europe and
Australia varies from 0.16 to 0.98 EAR (Estimated Average Require-
ments)/RDA (Recommended Dietary Allowance) expressed in mg
Cu/kg body weight with a great variation as a function of the age.
PRI (Population Reference Intakes) were reported between 0.3 and
1.5 mg Cu/kg body weights [30,89]; however, these limits were large-
ly surpassed in many circumstances such as ingestion of fish, bivalves,
or contaminated drinking water [90]. In addition, copper ingestion
and absorption is strongly influenced by many foods. For example, a
negative correlation between copper levels in meals with DNA dam-
age in a study with orange juices was demonstrated [91]. Also,
other trace elements modify significantly the bioavailability of copper
(especially zinc) [92]. The usual concentration of copper in human
plasma (as determined by us and other groups) is between the
range 0.3 to 2.1 mg/L for intakes of 1.4 to 2.0 mg copper/day [90].
Considering the available data, we can say that our experimental con-
ditions resemble those Cu levels commonly found as a consequence
of involuntary exposure through air, food and water pollution [88],
in professionals engaged in agrochemical activities [22,28], or female
users of Cu-based intrauterine devices [29,90,93].

5. Conclusion

We concluded that the effect of Cu exposure on human cell surviv-
al depends not only on the degree of overload but also on the cell
type. The production of ROS appears to be involved in a differential
response of the two main protease systems – caspase-3 and calpains
– for programmed cell death. Furthermore, the behavioral response of
Cu-homeostatic proteins to the same degree of Cu exposure is

different. These findings are the starting point for more in-depth
studies aimed at elucidating the diverse effects of Cu overload in the
pathogenesis of a variety of human diseases like cancer, cirrhosis, ath-
erogenesis and neurodegenerative diseases [90].
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