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Abstract
This study aims to analyse university students’ reasoning regarding two laws
of electromagnetism: Gauss’s law and Ampere’s law. It has been supposed
that the problems seen in understanding and applying both laws do not spring
from students’ misconceptions. Students habitually use reasoning known in
the literature as ‘common sense’ methodology that leads to incorrect forms of
reasoning. To test our hypothesis, questionnaires were designed emphasizing
explanations. The results obtained show the low level of students’ reasoning
in both electricity and magnetism in terms of Gauss’s and Ampere’s laws.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

University professors share the belief that the concepts used in the area of electromagnetism
are a source of confusion for students [1–3]. Moreover, the graphic representation of the field
using lines of force misleads students, who tend to display them as ‘force tubes’ giving them
a ‘real’ quality instead of considering them as graphic models devised by scientists to explain
electromagnetic interaction [4].

In this study we are going to analyse students’ reasoning in the field of electromagnetism
and, more precisely, when applying Gauss’s and Ampere’s laws, within a Maxwellian
theoretical frame, using integral formulae in a vacuum. In our study, we shall stick to
stationary electrical and magnetic fields, that is, those constant in time within the classic theory
of electromagnetism, defined by Maxwell’s laws. Our aim is to answer the following questions.

• Which forms of reasoning do students use when applying Gauss’s and Ampere’s laws?
• To what extent can the mistakes made by students in applying Gauss’s and Ampere’s laws

be explained by means of spontaneous or ‘common sense’ forms of reasoning?
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The relevance of Gauss’s and Ampere’s laws is not only justified by the fact that they
provide a much easier way to calculate fields, in some specific symmetry situations, than
Coulomb’s and Biot–Savart’s laws, but also by the fact that they respond to an electromagnetic
interaction field model. In this interpretation we take into account the concept of field, instead
of the concept of action-at-a-distance used in the Newtonian theory. Within the concept of field,
it is still admitted that interaction exists in the moving charges, but such existence is supposed
to go beyond the limits of the charges, and this interaction does not happen instantaneously.
This conception includes retardation and this is the reason why Ampere’s law is relativistically
correct, whereas the Biot–Savart law is not. Ampere’s and Gauss’s laws belong to the set of
basic equations for electromagnetism; these equations represent a ‘field model’ developed by
the scientific community in order to explain electromagnetic interactions in Nature. Thus,
clear comprehension of the features emphasized for Gauss’s and Ampere’s laws is crucial for
students to be able to apply them correctly and achieve learning based on the theoretical and
scientific framework [12].

As a result of the lack of knowledge on students’ learning difficulties in this area,
instructors face a more difficult situation than in other areas when we come to designing
teaching sequences and strategies. We think that the study presented here can contribute to
clarifying teaching strategies that will allow students to attain clear comprehension of the
aforementioned laws.

2. Functional fixedness and reduction as spontaneous forms of reasoning
to be considered in physics education

Spontaneous reasoning and reasoning induced by instruction itself can result from ‘common
sense’ methodology [6] and from the difficulties detected by cognitive psychology when
studying the methods used by problem solvers. In this study, we shall deal with two types of
reasoning: fixedness [7] and functional reductions [8].

One of the characteristics of ‘common sense’ methodology is trying to find fast solutions
to complex problems. This form of reasoning usually employs a single strategy which
generally involves specific and direct application of a ‘recipe’. The problem solver is
only concerned with immediate consistency between the theory and the result obtained; as
such they do not think about global consistency with other results and with the theoretical
framework. In contrast, scientific reasoning is usually richer and more rigorous. In general,
scientific work justifies adopting strategies and forms of reasoning which lead to obtaining
results.

However, we frequently find teaching procedures in physics which involuntarily encourage
repetitive learning of a strategy which, frequently, has no meaning for the student. Furthermore,
if different teachers reiterate the same algorithm as if we were, for example, teaching to divide
and multiply off by heart, functional fixedness of this procedure can occur. Even though the
procedure enables the student to reach the final conclusion, it may prevent him from imagining
other strategies and, therefore, it hinders creative or productive thinking [9].

At times other forms of reasoning are used, for instance spontaneous or induced reasoning,
which is called functional reduction by educational research. Viennot [6] defines this concept
as the tendency to reason in such a way that one does not consider all the variables which
influence a problem. The most common instance of this type of functional reduction is the
reduction of the number of variables in a multivariable problem, which leads students to
‘forget’ some of the fundamental variables. For instance, abundant literature on difficulties
concerning simple electric circuits explains that students only take into account two variables
out of the many involved in the circuit [10]. With respect to this type of reasoning,
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Andersson [7] finds that it is as if an effect can be the result of multiple causes which
were reduced to simple causalism along the lines of ‘one effect is produced by one single
cause’.

Yet another form of reasoning considered as functional reduction is what Rozier [11]
called linear causal reasoning, which usually occurs in multiple variable situations that
demand complex arguments and where the solver gradually diminishes the complexity of
the problem by constructing simple implications in the style ‘one cause one effect’ in the
form of a linear chain, without ramifications in the argumentation, a chain that progresses
sequentially until it reaches the final solution.

3. The study

In view of the need to establish a close relation between learning theoretical concepts and
scientific reasoning skills so that students learn the theoretical corpus, we shall need to take into
account not only their previous ideas, but also the way they use them in their reasoning. From
this point of view, we designed a questionnaire where the questions placed an emphasis on the
students’ explanations. We have designed one paper-and-pencil questionnaire and an interview
based on the previous bibliography review and our experience as teachers. The questionnaire
has seven questions similar to those in the textbooks used for teaching Introductory Physics in
university. The first three questions were about Gauss’s law, while the following four questions
were about Ampere’s law (see the appendix).

To devise the current questionnaire, a prior study was carried out to analyse the coherence
between the way the questions were written and how the students answered [12]. These
studies confirmed that, in general, students had no problem in understanding the meaning
of the questions but they show serious difficulties in applying Gauss’s and Ampere’s law
correctly.

The interviews were based on four questionnaire tasks (questions 1, 3, 4 and 7) in an
attempt to get an in-depth look at how the students apply Gauss’s and Ampere’s laws in
three situations. Similarly, the interviews also tried to see whether there was any convergence
between these explanations and those given by the students in the questionnaire. The interviews
lasted approximately 40 min and were designed so that, firstly, the students would first propose
the strategy to be used in Gauss’s or Ampere’s law and then justify that strategy. Secondly,
they were to apply the law to the question, and thirdly stimulation was provided for students
to perform critical analysis on the result and, where applicable, rework the question [13].

Sixty-five students from two first-year engineering classes filled out the questionnaire. The
two classes were chosen randomly from the six first-year engineering classes at the University
of the Basque Country (Spain). The students completed the questionnaire under examination
conditions during a class lasting 55 min. Another 18 students from these classes voluntarily
took part in the interviews. Competent, experienced physics teachers had instructed all the
groups. Students received four lectures per week and laboratory sessions were held 1 h a
week.

4. Results and discussion

In order to make it easier to present the results which were obtained, we shall display them in
two sections and also include qualitative results from the interviews.

• How do the students use field sources when they apply Gauss’s and Ampere’s laws?
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Table 1. Percentage of answers by students to questions 2, 4 and 5.

Question 2 Question 4 Question 5
percentage percentage percentage

Answer category of answers of answers of answers

A: all the charges or currents in the universe produce the field 7 9 9
B: only the charges/currents inside the Gaussian/Amperian 57 60 66

pathway produce the field
C: the answer is not justified 9 11 13
D: impossible to categorize 27 20 12

Questions 2, 4 and 5 were designed with the intention of investigating the reasoning used
by students in a situation where it is explicitly necessary to take into account which field is
involved in Gauss’s law (question 2) or Ampere’s law (questions 4 and 5).

The answers given by the students have been categorized as shown in table 1.
In category A, we have grouped the correct answers which indicate that the electric or

magnetic field calculated by Gauss’s law or Ampere’s law is due to all charges/currents in the
universe (all plane charges in Q2, all current loops in Q4, the three currents in Q5). Examples
of answers included in category A are as follows.

• Example 1 (Q2)
‘The field that is applied in Gauss’s law is formed by the charges inside and outside the
Gaussian, although in the formula it is the one inside the Gaussian.’

• Example 2 (Q5)
‘The answer is not correct, because acting on any point of the line is the magnetic field
produced by the current from within and the magnetic field generated by the other current
cable. I believe that . . . we have two magnetic fields to put inside the integral. I do not
believe that it is easy to do this kind of exercise. I believe that the integral is complex.’

However, in Q2, no answer includes a justification, such as only the presence of all the
charges allows for the existence of a special symmetry for the electric field, which in turn
allows the type of simple mathematical treatment which we are familiar with for Gauss’s law.
In the same way, in Q4 and Q5 students do not justify why it is necessary to take into account
all currents-loop (in Q4) or two currents (in Q5).

In category B, the vast majority of the students’ reasoning is based on the formula. Students
establish a causal link between the charge (Q2) or current intensity (Q4, Q5) enclosed by any
closed surface/path and the field at the points on that surface/path. They wrongly infer that
the only sources of the field are those enclosed by the Gaussian surface or Amperian path. We
can observe this form of reasoning in the following examples.

• Example 6 (Q2)
‘If we apply the equation from Gauss’s law, we see that E = qin/ε0S and therefore it is
the internal charge that creates the field.’

• Example 7 (Q4)
‘According to Ampere’s law, I applied the field circulation for that line, and as we have
already seen in class. In the vertical segment and in the external part there is no circulation
of B. Therefore, you would get field B from there, because we know the intensity that

circulates through the loops: µ0�Iinternal = ∮ ⇀

B · d
⇀

l = B
∮

dl = Bd .’
• Example 9 (Q5)

‘I agree, because
∮ ⇀

B · d
⇀

l = B2πR = µ0I1 ⇒ B = µ0I1

2πR
.’
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According to the students’ reasoning, it seems that there is fixedness [14] with respect to
a solving strategy based on the mathematical expression of Gauss’s law or Ampere’s law. It
seems that, by using the formula, they establish a causality link between the charge or current
enclosed by any surface and the field at the points on that surface.

In question 2, within category B, there is another type of ‘ad hoc’ reasoning, which would
be associated, according to the bibliography, with a ‘common sense methodology’ that is
frequently characterized by an absence of doubt, by sure, fast answers based on ‘common
sense evidence’ and a lack of consistency when analysing the situation [3, 13]. One example
is as follows.

In questions 4 and 5, some answers, although to a lesser extent, show forms of reasoning
which confuse the field with the field circulation operator. See the following example.

• Example 12 (Q5)
‘It is true because the Amperian line does not enclose any current and the equation

(
∮ ⇀

B · d
⇀

l = µ0�I ) tells us that we only have take into account enclosed intensities.’

The interviews run on question 4 allow us to carry out a more in-depth analysis of the
processes used by the students when applying Ampere’s law to this problem. Let us look at
an example from category B, which is common to 14 of the 18 students interviewed.

(1) Interviewer: How do you apply Ampere’s law to this case? (Q4)
Student: Well, it was easy, because the problem gives me the integration curve.
I apply the field circulation for that line, and as we have already seen in class, on the
vertical sides and in the external part there is no circulation of B. Therefore, you would
get field B from there, because we know the intensity that circulates through the turns:

µ0�Iinternal =
∮

⇀

B · d
⇀

l = B

∮
dl = Bd.

‘d’ is the length of the rectangle of integration.
(2) Interviewer: Is the field B that you calculated what creates the whole solenoid or only the

turns that are inside the integration curve?
Student: The formula is for the turns inside the integration curve, so these are the ones
that create field B.

(3) Interviewer: But if you take a larger integration curve, for instance we take 15 turns,
would the magnetic field obtained change?
Student: Well (he hesitates). I don’t know. I would have to calculate (further
hesitation) . . . I don’t think so, because it would increase the intensity of the current,
but also the length d of the curve of integration . . . I think it would remain the same . . .

I believe I am right, because in class we have seen that the formula of B works for the
whole solenoid.

(4) Interviewer: So the B calculated is what is generated by the internal turns or those from
the whole solenoid?
Student: What a question. I hadn’t thought of that . . . (he thinks) . . . I think that B is
only what is created by the internal intensity. That is what it says in the formula. But,
I think that once it is calculated, it is good for the whole solenoid, because the intensity
circulating through the cable is the same.

In the interview, it has been shown that most of the interviewed students have fixedness
upon the formula from Ampere’s law (‘I think that B is only what is created by the internal
intensity. That is what it says in the formula’; section 4). It seems that students do not
understand the physical meaning of the law. Likewise, it has been possible to verify that they
calculate B (section 1) without specifying the directions of the field vector and the dl vector
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Table 2. Percentage of answers to questions 1, 3, 6 and 7.

Question 1 Question 6 Question 3 Question 7
percentage of percentage of percentage of percentage of

Answer category answers (N = 65) answers (N = 65) answers (N = 65) answers (N = 65)

A: correct answer 19 18 15 9
B: confusion between the flux/ 56 57 58 66

circulation operator and field
C: impossible to categorize 18 13 13 13
D: no answer 7 12 14 12

of the curve. It seems as if the student does not take into account the pattern of field and he
considers that B and dl vectors are always parallel and B is constant through the path.

In category C we grouped the answers which do not consider Gauss’s law or Ampere’s
law, but instead are based on the general principle that the electrical field or magnetic field
is generated by all of the charges or currents in the space without providing any further
justifications. In our opinion, this type of answer does not justify the claim it makes. One
example of this type of answer is as follows.

• Example 13 (Q2)
‘The field that we calculate when applying Gauss’s law is the one generated by the charged
plane, because the field formula works for the entire plane.’

• How do students use flux and field circulation operators and consider the field pattern of
symmetry?

In question 1, proper reasoning on the question would lead students to indicate that the
condition � = 0 does not necessarily imply that the field is null at each point on the surface.
Question 6 is similar to question 1 but using the context of magnetic fields and Ampere’s law.
In this question, the correct interpretation of Ampere’s law would lead students to reject the
argument which is offered.

In questions 3 and 7, it is necessary to take into account the patterns of field to apply
Gauss’s and Ampere’s laws. Students have to reason that these laws are an easy path to
obtaining the value of field (because direct integration is easy) when there are some symmetry
conditions between the pattern of field and choosing surfaces and paths. The students’ answers
are shown in table 2.

We have grouped correct answers into category A; some examples of this category are as
follows.

• Example 1 (Q1)

‘Flux is defined as � = ∮∫ ⇀

E · d
⇀

S and therefore if vectors E and dS are perpendicular,
flux can be equal to zero without the field E being so.’

• Example 2 (Q7)
‘The symmetry conditions for the field in paths (1) and (2) are completely different. In
path (1), the field is constant in all points and the integral is simple. In path (2), the
integral is complex and the field cannot be considered as constant. I do not agree with
student E2.’

For questions 1 and 6, category B comprises the answers which indicate that the condition
flux φ = 0 or circulation � = 0 implies that the field is null. Students reason in accordance
with two variants of reasoning. One of them (more common than the other) includes answers
which explain that, because the flux/circulation is null, the charged/current enclosed is zero
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and therefore the field will be zero, which is consistent with the idea that only internal
charges/currents on the Gaussian surface/by the Amperian path produce an electrical field on
the points of the surface/path.

• Example 1 (Q1)

‘If the flux is zero, it is verified that 0 = ∮∫ ⇀

E · d
⇀

S, there is no charge and therefore the
field on the Gaussian surface is zero.’

• Example 2 (Q6)

‘If we apply Ampere’s law: 0 = ∮ ⇀

B · d
⇀

l there is no current to create B, and so
B = 0.’

In this case, it seems as if the students are simplifying a situation which requires complex
arguments based on constructing simple inferences such as flux/circulation zero implies field
zero (a cause produces an effect) in the form of a linear chain, using the law’s formula as a link
(functional reduction). Let us look at an example of an answer from one of the interviews.

• Interviewer: Why do you say that the field on the Gaussian surface is zero? (Q1)
Student: If the flux is zero, that means that there is no charge, doesn’t it? Well, in Gauss’s
law, flux is proportional to charge, and if the charge is zero, this indicates that there is
no field. In other words, if we use Gauss’s law in this case, then if the flow is zero, the
charge is zero and there is no field.

The second form of students’ reasoning seems to correspond to a strategy commonly used
in class but which has a very specific field of validity (symmetry conditions to be B constant
in the Amperian path). One standard answer of this kind of reasoning is as follows.

• Example 3 (Q6)

‘If we apply Ampere’s law: 0 = ∮ ⇀

B · d
⇀

l = B
∮

dl ⇒ B = 0 so I believe the student is
right.’

In the interview for question 1, students do not analyse the field of validity of Gauss’s law
and use it in a non-critical manner, as we can see in part of the following interview.

• Interviewer: Why do you say that the field on the Gaussian surface is zero? (Q1)
Student: If we look at Gauss’s law, it is clear. If the flow is zero, the following equation

is fulfilled: 0 = ∮∫ ⇀

E · d
⇀

S = E
∮∫

dS ⇒ E = 0 and therefore the field on the Gaussian
surface is zero.

In the reasoning followed by the students, they do not establish the need for field E to
be constant in value throughout the Gaussian surface and for the angle formed with each
differential element of the area to also be constant in such a way that it can be taken out of
the integral. It seems to respond to a strategy commonly used in class but which has a very
specific field of validity. However, the students apply it in a general manner, demonstrating
functional fixedness upon one strategy.

As for the results of questions 3 and 7, it should be pointed out that forms of reasoning
converged. In general, students’ answers do not take into account the pattern of field lines
and so they suppose that the field is constant along the surface or the path. This form of
reasoning is used by the majority in Q3 and Q7 where most students do not take into account
the symmetry conditions which the field must fulfil in the Gaussian surface or Amperian line
to obtain a mathematically simple solution. These results are convergent with one of the last
forms of reasoning that we explained in the category B of questions 1 and 6. Let us look at a
few examples.
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• Example 7 (Q7)
‘Both students are correct as if we apply Ampere’s law we obtain∮
(1)

⇀

B · d
⇀

l = µ0I ⇒ BAl = µ0I and
∮
(2)

⇀

B · d
⇀

l = µ0I ⇒ BAl = µ0I .’
• Example 8 (Q3)

‘In any closed surface (Gaussian surface) we can apply Gauss’s law:
∮∫ ⇀

E · d
⇀

S = q

ε0
so

the electric field will be E = q

Sε0
. I agree with student.’

It has been shown that fixedness to a formula leads students to confuse field operators
and the field itself (i.e. when the flux or the circulation is zero, it is deducted that the field
value is zero in the Gaussian surface or in the Amperian path). Most of the students find it
difficult to distinguish clearly between the field operators and the field itself. They show a
lack of meaning of the flux and field circulation operators, as well as a lack of meaning for
the field itself. The results agree with those obtained by Albe et al [14]. These authors state
that ‘the physical definition of magnetic flux appears to be confused for undergraduates and
pre-service physics teachers’ (p 201).

5. Discussion and implication for physics teaching

The results obtained seem to show that, after instruction, most of students mechanically apply
reasoning based on incorrect strategies such as functional reduction and functional fixedness
which evidence the lack of meaning for flux and circulation operators and for the field itself.
We summarize these forms of reasoning in the following chart:

Non-scientific forms of reasoning Examples of standard answers

1. Functional fixedness on the formula: answers which
assume that the field is constant along the surface or the
path in all the situations where Gauss’s and/or Ampere’s
law is applied.

1. ‘If � = 0, then 0 = ∮ �E · d �S = E
∮

dS ⇒ E = 0.’

2. Functional reduction based on drawing simple
conclusions from complex phenomena.

2.1. ‘If the flow is zero and the �E and d �S vectors are not
perpendicular, the field at any point of the surface must
be zero, because

∮ �E · d �S = 0.’
2.1. When flow or circulation is zero it is deduced that
the field at any point of the Gaussian surface or Amperian
line is zero.

2.2. ‘Ampere’s law states that only the intensity that flow
through the Amperian line create the field’.

2.2. The only field sources are those inside the Gaussian
surface or Amperian line.
3. Preparation of ‘ad hoc’ explanations for each
case. Reasoning is not in accordance with the search
for generality and systematicity characteristics of the
scientific method, which imposes stricter and more
rigorous conditions.

3. ‘The field calculated is only in respect of the Gaussian
surface, but as the plane has a uniform density of field, a
generalization may be made for the rest of the plane.’

We have seen the low level of students’ reasoning in both the area of electricity and
the area of magnetism. We can interpret that these incorrect forms of reasoning are framed
within an inappropriate understanding of the field model which affects a great variety of
both electrical (Gauss’s law) and magnetic (Ampere’s) phenomena. Students present a lack
of epistemological relevance for the model that scientists use to interpret electromagnetic
phenomena, and so there is a lack of context where Gauss’s and Ampere’s laws are applied. A
partial explanation of these results could be the strategies used in traditional teaching which
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consider that the pattern of field lines is obvious and start discussing the convenience of
Gauss’s or Ampere’s laws for a proposed surface or path.

Teachers should keep in mind that students already have ways of approaching questions
and problems, and these are prototypical of a common sense methodology (i.e. repeating
a strategy mechanically, thinking through the formula, etc); therefore, teaching should be
planned more according to scientific epistemology. Thus, to avoid the common tendency
towards functional fixedness in a strategy (i.e. field always constant in the application of
Gauss’s and Ampere’ laws), it may be very useful to propose a different task in a teaching
sequence that encourages students to draw up the field patterns and to establish a ‘criteria of
acceptability’ for different forms of Gaussian surfaces and Ampere pathways. In this way,
students must use different strategies for the field sources and their pattern of symmetry, for
example discussion about the feasibility of the strategy based on the field model (Gauss’s and
Ampere’s laws) or on the model of action at a distance (Coulomb’s law), in relation to the
symmetry of the patterns of field lines.

It will be necessary to design teaching sequences that stimulate students to analyse the field
line patterns for different charges or current configurations. This analysis should encourage
students to take into account all field sources and to avoid functional reduction based on the
formula. These activities will encourage students to search for all the sources making up the
field pattern and discuss what the pattern would be if only the charges or currents enclosed by
the surface or path were taken into account.

Designing tasks that should involve students evaluating wrong methods of reasoning
when determining the field sources or the solving strategy may bring students to a global
rational of the model that it is used. For example, a first task can be proposed on ‘pattern
field dependence’. This activity aims to emphasize the factors that may influence choosing a
strategy to calculate the field. After stating the variables that may influence the situation (field
sources, patterns of lines, symmetry in relation to ‘ad hoc’ surface or path, etc), a strategy will
be presented to calculate the value of the field. In this second task, students’ reasoning will
be stressed when explaining how this specific functional analysis is done and whether it has
been developed correctly. Designing, implementing and evaluating a teaching sequence for
these topics based on students’ epistemological difficulties, which have been detected, and on
a global rational compared to the field model, which is taught in introductory physics courses,
will be the objective of our next studies.

Appendix

A.1. Questionnaire

Q1. If the electric field flux across a closed surface is zero, does it mean that the electric field
on each point of the surface is zero?

yes . . . . . . . . . no . . . . . . . . . I don’t know . . . . . . . . . .

Justify your answer.
Q2. Consider an infinite sheet, with a surface charge density: σ . Is the electric field you
determine from Gauss’s law:

(a) the field produced by all the elements of charge in the sheet?

yes . . . . . . . . . no . . . . . . . . . I don’t know . . . . . . . . . .
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(b) the field produced by the charge within the Gaussian surface? (The Gaussian surface we
refer to is the cylindrical one used in textbooks, see figure.)

yes . . . . . . . . . no . . . . . . . . . I don’t know . . . . . . . . . .

Justify your answer.

Q3. A student finds the electric field on the Gaussian surface that surrounds the charge q
(see figure), using the following reasoning: according to Gauss’s law the total electric flux
through the surface is∮ ∫

⇀

E · d
⇀

S = q

ε0
carrying out direct integration: ES = q

ε0
⇒ E = q

Sε0
·

Do you agree with the student?
Justify your answer.

Q4. We consider a long solenoid, where we assume that as long as we are far from the
ends, the magnetic field inside the solenoid is fairly uniform and the magnetic field outside is
very small. As you know, in these conditions we can calculate the field inside the solenoid
by applying Ampere’s law. The Amperian line of integration will be the line shown in the
diagram below. From this we can conclude that
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(A) The calculated magnetic field is caused by all the loops of the solenoid.
(B) The calculated magnetic field is caused only by the loops inside the Amperian line.
(C) Another answer.

Explain your answer.
Q5. Here are two very long parallel straight wires, a distance d apart. The left wire carries a
conventional current I1 and the right wire carries a conventional current I2 in the same direction.
A student uses Ampere’s law and says the magnetic field at any point of the circular path of
radius R is B = µ0I1/2πR. Do you agree with this student?

Q6. An intensity of current, I amps, flows through each of the two ‘infinite’ threads. These
threads are perpendicular to the plane of the paper and in one the current is outward whereas
in the other it is moving inward. Trajectory (1) is circular, it moves anti-clockwise and it
contains two threads.

A student, using trajectory (1), applies Ampere’s law and concludes that the circulation
of the fields being nil, the field B is also nil at all points of the trajectory (1). Do you agree
with this student?

Justify your answers.
Q7. Imagine a very long wire along which current I circulates; this thread of current is
perpendicular to the plane of paper and outward. A student, E1, applies Ampere’s law to
calculate the magnetic field created by this current at A, using the circular trajectory (1) which
contains point A and through the centre of which passes the thread of current, and comes to the
conclusion that the value of the field is: BA = µ0I/	, where 	 is the length of the circumference
corresponding to trajectory (1). Another student, E2, does the same thing but using a closed
non circular trajectory (2), which also contains point A, coming to the conclusion that the
value of the magnetic field in A is: BA = µ0I/L, where L is the length of the trajectory (2).
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Explain the reasons why you agree with student E1, or with E2, or with both, or with neither
of them.

Note. Trajectories (1) and (2) are located on the plane of the paper.
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