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Abstract

Based on the classical laminated plate theory, a variational approach for the study of the statical and dynamical

behaviour of arbitrary quadrilateral anisotropic plates with various boundary conditions is developed. The analytical

formulation uses the Ritz method in conjunction with natural coordinates to express the geometry of general plates in a

simple form. The deflection of the plate is approximated by a set of beam characteristic orthogonal polynomials gen-

erated using the Gram–Schmidt procedure. The algorithm developed is quite general and can be used to study fibre

reinforced composite laminates with symmetric lay-ups, which may have general anisotropy and any combinations

of clamped, simply supported and free edge support conditions. Various numerical applications are presented and some

results are compared with existing values in the literature to demonstrate the accuracy and flexibility of the present

method. New results were also determined for plates with different geometrical shapes, combinations of boundary con-

ditions, several stacking sequences and various angles of fibre orientation.
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1. Introduction

Composite structures, especially laminated composite plates, have been widely used in many engineering

advantages of high strength (as well as high stiffness) and light weight. Another advantage of the laminated

composite plate is the controllability of the structural properties through changing the fibre orientation
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angles, the number of plies and selecting proper composite materials. With the wide use of composite plate

structures in modern industries, dynamic and static analysis of plates of complex geometry becomes an

important design procedure. An adequate understanding of the free vibration and the flexural behaviour

of these plates components, is crucial to the design and performance evaluation of a mechanical system.

However, static and dynamic solutions to these plate problems are strongly dependent on the geometrical
shape, boundary conditions and material properties. It is widely recognised that closed form solutions are

possible only for a few specific cases [1,2].

Analytical studies about vibration of isotropic and anisotropic plates of different shapes and configura-

tions are well documented. The excellent reviews of Leissa [2,3], Blevins [4] and Bert [5–7], show that most

of these results are for isotropic and orthotropic rectangular, circular, elliptical and other regular shaped

plates. Nevertheless, analytical studies on general quadrilateral laminated plates with unequal side lengths

and different combinations of boundary conditions are rather limited. This may be due to the difficulty in

forming a simple and adequate deflection function which can be applied to the entire plate domain and sat-
isfy the boundary conditions. In general, for the analysis of arbitrary shaped plates, several numerical tech-

niques such as finite elements, finite difference and finite strip methods have been deployed by many

researchers (see for instance Refs. [8–13]). Although the discretisation methods provide a general frame-

work for the analysis of general plates, they invariably result in problems which possess a large number

of degrees of freedom. Therefore, for large scale structural design and analysis, where repeated calculations

are often required, one may think of using the Ritz method [14] which, in its conventional form, does not

require a mesh generation because only one single super element is used in the whole process. The difficulty

associated with the Ritz method is the choice of suitable functions to approximate the deflected shape,
which must satisfy the prescribed geometrical boundary conditions of the plates. Bhat [15] proposed a

set of beam-characteristic orthogonal polynomials to study the bending deflection of rectangular isotropic

plates under static loading. The set of orthogonal polynomials was also used by Bhat [16] to study the free

vibration of isotropic rectangular plates. After Bhat contributions�, Liew and his co-workers studied the
behaviour of different plates using Ritz method with a set of two-dimensional plate functions, which ex-

presses the entire plate domain into two implicitly related variables (see Refs. [17–28]).

The aim of the present paper is to propose a general variational approach using a set of beam charac-

teristic orthogonal polynomials for the static and dynamical analysis of laminated composite plates having
different boundary conditions. The analysis is based on the classical Kirchhoff assumptions and the use of

natural coordinates in conjunction with the Ritz method to provide one single super-element which ex-

presses the whole plate. In this way, laminates of different geometrical shapes may be represented by the

mapping of a square one defined in terms of its natural coordinates. This variational approach allows to

investigate the static bending behaviour and the free vibration characteristics of several composite lami-

nated plates with any combination of boundary conditions.

To demonstrate the validity and efficiency of the proposed formulation, several numerical examples are

solved and some of them are verified with results from others authors. In addition, a particular case is
experimentally verified.
2. Mathematical formulation

2.1. Strain, kinetic and potential energies

Let us consider a flat, thin and composite plate with an arbitrary-shaped quadrilateral planform, as
shown in Fig. 1a. The laminate is of uniform thickness h and, in general, is made up of a number of layers

each consisting of unidirectional fibre reinforced composite material. The fibre angle of the kth layer

counted from the surface z = �h/2 is b measured from the x axis to the fibre orientation, with all laminate



Fig. 1. (a) General description of the composite plate model. (b) Geometry of an N-layered symmetric laminate.
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having equal thicknesses. Symmetric lamination of plies are considered, where the fibre angle of each ply is

either b or �b such that the sequence with respect to the midplane is symmetric (Fig. 1b).
The present study is based on the classical laminated plate theory (CLPT) [29]. In this theory it is as-

sumed that the Kirchhoff hypothesis holds, which requires the displacements in the x,y,z directions, de-

noted by �u; �v; �w respectively, to be such that
�uðx; y; z; tÞ ¼ �z owðx; y; tÞ
ox

; �vðx; y; z; tÞ ¼ �z owðx; y; tÞ
oy

; �wðx; y; z; tÞ ¼ wðx; y; tÞ; ð1Þ
where w(x,y,t) is the mid-plane plate deflection.

The strain energy of the laminated plate can be expressed in rectangular co-ordinates as
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where the integration is carried out over the entire plate domain R (see Fig. 1a) and Dij are the laminate

stiffness coefficients and are obtained by integrating the material properties of each layer of the composite

plate [29,30].

The kinetic energy for free transverse vibrations of the plate is given by
T ¼ qh
2

Z Z
R

ow
ot

� �2
dxdy; ð3Þ
where q is the material density, which is considered here to be uniform through the volume of the laminate.
The deflection function is assumed periodic in time; i.e.,
wðx; y; tÞ ¼ W ðx; yÞ sinxt; ð4Þ

where x is the radian natural frequency and W(x,y) is the deflection amplitude of the vibration.
The maximum strain energy Umax and maximum kinetic energy Tmax in a vibratory cycle are derived by

substituting Eq. (4) into Eqs. (2) and (3), respectively, whence Umax becomes:
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and Tmax becomes
Tmax ¼
qhx2

2

Z Z
R
W 2 dxdy: ð6Þ
For the statical analysis of the laminate, let us consider the potential energy of a transversal load q(x,y)

distributed over the plate surface, which is given by
V ¼ �
Z Z

R
qðx; yÞW dxdy: ð7Þ
2.2. Transformation of coordinates

An arbitrarily shaped quadrilateral plate in the Cartesian coordinates may be expressed simply by map-
ping a parent square plate, which will be call master plate, defined in the natural coordinates by the simple

boundary equations n = ±1 and g = ±1 (Fig. 2). The mapping of the Cartesian coordinate system is given
by [8,9]:
x ¼
Xnp
i¼1
Niðn; gÞxi;

y ¼
Xnp
i¼1
Niðn; gÞyi;

ð8Þ
Fig. 2. Mapping of an arbitrary quadrilateral plate into natural coordinates.
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where (xi,yi), i = 1, . . . ,np are the coordinates of np points on the boundary of the quadrilateral region R

and Ni(n,g) are the interpolation functions of the serendipity family [8,9]. The transformation (8) maps a
point (n,g) in the master plate ~R onto a point (x,y) in the real plate domain R, and vice versa if the Jacobian
of the transformation given by:
j J j¼ ox
on

oy
og

� ox
og

oy
on

ð9Þ
is positive.

Applying the chain rule of differentiation it can be shown that the second derivatives of a function
W(x,y) are related by
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where [Op(1)] and [Op(2)] are the derivate transformation matrixes which are defined in Appendix A.

Besides, the elemental area dxdy in the real plate domain R is transformed into jJjdndg. Consequently,
the maximum kinetic energy expression given by Eq. (6) and the potential energy given by Eq. (7) reduce,

respectively, to:
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hqx2
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where now W =W(n,g).
Finally, substituting the derivatives o2W

ox2 ,
o2W
oy2 ,

o2W
oxoy from Eq. (10) into Eq. (5) the maximum strain energy

expression becomes
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where Si (i = 1, . . . ,15) are functions that depend on the problem parameters, i.e., geometry and material
coefficients of the plate, and are defined in Appendix B.

The total energy functionals for free vibration and transverse bending of the plate are respectively given
by:
F d ¼ Umax � Tmax; ð14aÞ

F s ¼ U þ V ; ð14bÞ
which are to be minimised according to the Ritz principle, as will be discussed in following sections.
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2.3. Boundary conditions and the approximating function

Grossi and Nallim [31,32] determined the boundary conditions which correspond to the boundary and

the boundary-eingenvalue problems that describe the static and dynamic behaviour of anisotropic plates

with non-smooth boundaries. In addition to these geometric and natural boundary conditions which cor-
respond to free, clamped and simply supported edges; they determined that when a plate has a corner

formed by the intersection of two free edges, unstable additional corner conditions must be considered.

In the application of the Ritz method only the essential boundary conditions are required to be satisfied

by the assumed functions [14]. The fact that the natural boundary conditions need not be satisfied by

the chosen coordinate functions is a very important characteristic of the Ritz method, specially when deal-

ing with problems for which these satisfaction is very difficult to achieve [33,34]. For instance, this is the

case of a rectangular simply supported anisotropic plate where, the Navier analytical solution does not

work because of the presence of the bending–twisting coupling: D16, D26.
The use of beam orthogonal polynomials to study anisotropic rectangular plates is very satisfactory, as

has been demonstrated by Nallim and Grossi [31,35], since the convergence of the solution is rapid and

practically without oscillations. This is also true in the response which requires derivates of the deflections.

For this reason, in the present paper the transverse deflection of the plate is expressed in terms of the nat-

ural coordinates system by a set of beam characteristic orthogonal polynomials, {pi(n)} and {qj(g)}, as
W ðn; gÞ 	 W MN ðn; gÞ ¼
XM
i¼1

XN
j¼1
cijpiðnÞqjðgÞ; ð15Þ
where cij are the unknown coefficients.

The procedure for the construction of the orthogonal polynomials has been developed by Bhat [15,16].

The first members of the set, p1(n) and q1(g) are obtained as the simplest polynomials that satisfy all the
geometrical boundary conditions of the plate in their respective n and g-directions of the natural coordinate
geometry domain to which they are applied. In the present paper, plates having a variety of boundary con-
ditions on the boundary o~R ¼

S4
i¼1o

~Ri are considered. For instance, the geometric boundary conditions for
a clamped edge along o~R1 applied to q1(g) are q1(g)jg=�1 = 0 and [oq1(g)/og]jg=�1 = 0. For a simply sup-
ported edge along o~R2 there is only one geometric boundary condition given by p1(n)jn=1 = 0. No geometric
boundary conditions exist for the free edges.

The starting polynomial of the set in the n direction is as follows:
p1ðnÞ ¼
XI
i¼0
ain

i; ð16Þ
where I is equal to the total number of geometric boundary conditions on the two opposite edges. The arbi-

trary constants ai, are determined by substituting Eq. (16) in the corresponding boundary conditions. The

starting polynomial of the set in the g direction, q1(g) is constructed in the same way.
The higher members of the set {pi(n)} are constructed by employing the Gram–Schmidt orthogonalisa-

tion procedure:
p2ðnÞ ¼ ðn � B2Þp1ðnÞ; pkðnÞ ¼ ðn � BkÞpk�1ðnÞ � Ckpk�2ðnÞ; ð17Þ
where
Bk ¼
R 1
�1 nðpk�1ðnÞÞ

2
dnR 1

�1ðpk�1ðnÞÞ
2
dn

; Ck ¼
R 1
�1 npk�1ðnÞpk�2ðnÞdnR 1

�1ðpk�2ðnÞÞ
2
dn

:
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The coefficients of the polynomials are chosen in such a way as to make the polynomials orthonormal,R 1
�1 p

2
kðnÞ ¼ 1. The polynomials set along the g direction is also generated using the same procedure.
It is important to point out that working with the master element in natural coordinates allows us to use

the same set of orthogonal polynomials for plates of different geometric shapes. This fact makes possible a

unified treatment.
3. Application of the Ritz method

The Ritz method is applied to determine analytical approximate solutions for laminated plates of differ-

ent shapes. For the dynamical analysis the Ritz procedure requires the minimisation of the energy func-

tional (14a) with respect to each of the cij coefficients
o

ocij
ðUmax � TmaxÞ ¼ 0; i; j ¼ 1; . . . ;N ;M ; ð18Þ
where M, N are the numbers of polynomials in each natural co-ordinate.

In the same manner the statical analysis requires the minimisation of the energy functional (14b) with

respect to each of the cij coefficients
o

ocij
ðU þ V Þ ¼ 0; i; j ¼ 1; . . . ;N ;M : ð19Þ
The application of Eq. (18) leads to the following governing eigenvalue equation:
XM
k¼1

XN
h¼1

Kijkh � x2Mijkh

� �
ckh ¼ 0: ð20Þ
On the other hand, Eq. (19) leads to the following set of M · N algebraic equations among ckh
XM
k¼1

XN
h¼1

Kijkh ckh � Bij ¼ 0; ð21Þ
where
Kijkh ¼
X15
m¼1

P ijkh;mðn; gÞ;

Bij ¼ 2
Z 1

�1

Z 1

�1
qðn; gÞpiðnÞqjðgÞ j J j dndg;

Mijkh ¼ 2qh
Z 1

�1

Z 1

�1
piðnÞpkðnÞqjðgÞqhðgÞ j J j dndg
The details of the deduction of Eqs. (20) and (21) from Eqs. (18) and (19) together with the analytical

expressions of the terms P�s are given in Appendix C.
Equation (20) yields an eigenvalue determinant, whose zeros give the natural frequencies of the plate.

Back substitution yields the coefficient vectors; and finally substitution of these coefficient vectors into

Eq. (15) gives the corresponding mode shapes of the plate.
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4. Verification and numerical applications

4.1. Generalities

A computer code, based on the variational algorithm developed in this paper, was implemented and used
for the analysis of plates having different shapes, material properties and boundary conditions. The pre-

sented results correspond to the dynamical and statical analyses of the above mentioned plates. For the

dynamical analysis, natural frequencies parameter and modal shapes were computed. While, for the statical

analysis, deflections and bending moments were calculated under uniformly distributed loads. Although, in

the present study, only plates under uniformly distributed loads are presented, the developed algorithm can

handle many others applied loads.

In order to establish the accuracy and applicability of the approach described, numerical results were

computed for a number of plate problems for which comparison values were available in the literature.
Additionally, a great number of problems were solved and since the number of cases was extremely large,

results were presented for only a few cases. Calculations have been performed taking plates with different

geometrical shapes, material properties, angles of fibre orientation and stacking sequences.

Let us introduce the terminology to be used throughout the remainder of the paper for describing the

boundary conditions of the plates considered. The designation C–S–F–S, for example, identifies a plate

with edges (1) clamped, (2) simply supported, (3) free and (4) simply supported (see Fig. 3). The reference

flexural rigidity is Db = ELh
3/12(1 � mLTmTL), the subscripts L and T represent the directions parallel with

and perpendicular to the fibre direction.
Fig. 3. Laminates of various shapes.
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The main purposes of these exercises are twofold. One is to demonstrate the accuracy and efficiency of

the proposed method, and the other is to produce some results which may be regarded as benchmark solu-

tions for other academic research workers and design engineers.

4.2. Convergence and comparison of eigenvalues

Results of a convergence study of eigenvaluesxa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
are presented in Table 1. Four-ply E-glass/epoxi

laminates (EL = 60.7 GPa, ET = 24.8 GPa, GLT = 12 GPa, mLT = 0.23), with stacking sequence (b,�b,�b,b)
are considered for b = 30� and 60�. The rate of convergence of eigenvalues is shown for F–S–F–S trapezoidal,
skew and rhomboidal laminates. It is well known that the Ritz method gives upper bounds eigenvalues. The

convergence of the mentioned eigenvalues is studied by gradually increasing the number of polynomials used

in each natural co-ordinate. It can be seen thatM,N = 12, is sufficient to reach stable convergence. Moreover,

M,N = 10 produces no drastic change in the solutions compared withM,N = 12. Therefore, it was decided to
useM, N = 10 to generate the results with sufficient accuracy from an engineering viewpoint.

The accuracy and reliability of the eigenvalues obtained with the presented approach are demonstrated in

the following three cases. The comparison presented in Table 2, authenticates the validity of the present

method for symmetrically laminated trapezoidal plates with h1 = h2 and various chord ratios c/b (see Fig.
3a). The first eight non-dimensional frequencies xab

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
for four-ply symmetric laminated plates with

stacking sequence (�b,b,b,�b) aspect ratio a/b = 2 and subject to two different boundary conditions are

tabulated in the mentioned Table. The material properties of each lamina are characterised by EL/ET =

40,GLT/ET = 0.5 and mLT = 0.25. The results for F–F–F–C plates with b = 30� and 60� are compared to those
of Liew and Lim [20], and very good agreement is obtained. All the solutions of Liew and Lim [20], are

slightly lower than the present results. This is mainly due to the number of terms used in the approximate

shape functions. As stated by Liew and Lim [20], the results reproduced in Table 2 were calculated by using

a total of 136 terms for the W shape function. However, 10 characteristic orthogonal polynomials in each

natural coordinate were employed in the present study, thus providing a total of 100 terms in the shape func-

tion. Other frequencies for S–C–F–S and C–S–S–F four-ply, symmetric laminates are also included in Table 2.

The second example considers laminates with general trapezoidal planforms (h15 h2) as shown in Fig.
3a. The first eight non-dimensional frequencies xa2=h

ffiffiffiffiffiffiffiffiffiffiffi
q=EL

p
for four-ply symmetrically laminated E-glass/

epoxi plates with stacking sequence (�b,b,b,�b), aspect ratio a/b = 2 and subject to two different boundary
conditions are tabulated in Table 3. The results for full simply supported and cantilever plates are com-

pared to those of Lim et al. [26], and very good agreement is obtained.

Finally, the third example verifies the accuracy of the eigenvalues for thin skew fibre reinforced laminates

with five symmetric angle-ply layers and stacking sequence (45,�45,45,�45,45). The geometry of the skew
plate is defined by means of a, b and a as shown in Fig. 3b. The material properties of each lamina are
EL/ET = 40, GLT/ET = 0.6, mLT = 0.25 and three skew angles, i.e., a = 0�, 30� and 45�, are used for comparison
in this case. The first eight non-dimensional frequenciesxðb2=hp2Þ

ffiffiffiffiffiffiffiffiffiffiffi
q=ET

p
obtained with the present approach,

for two kinds of boundary conditions, i.e., fully simply supported (S–S–S–S) and fully clamped (C–C–C–C),

are compared with the solutions of Wang [36] in Table 4. Excellent agreement is achieved between both solu-

tions. Additional results for C–F–F–S and S–S–C–F skew laminates, are also included in the mentioned table.

4.3. Comparison of nodal patterns and modal shapes

In this section a comparison between experimental and numerical results obtained with the proposed for-

mulation are shown. The analysed test plate has a general trapezoidal planform, it is made of an isotropic
material and it is clamped on edge (4) and the other edges are free. The geometrical and material properties

of the plate are specified in Table 5. The experimental results have been obtained using electronic speckle

pattern interferometry (ESPI) by the Optical Laser Group (National University of Salta), the details of this



Table 1

Convergence of frequency parameters xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
for symmetrically laminated E-glass–epoxi plates with stacking sequence

(b,�b,�b,b)

b M · N Mode sequence number

1 2 3 4 5 6 7 8

Trapezoidal plate, a/b = 2, c/b = 0.25, h1 = h2
30� 6 · 6 2.0232 7.4693 9.2771 17.6020 21.2079 31.4849 35.4808 37.6965

7 · 7 2.0232 7.4692 9.2763 17.4936 21.0931 31.0497 34.8383 37.2965

8 · 8 2.0232 7.4691 9.2757 17.4897 21.0844 30.6832 34.6169 36.7673

9 · 9 2.0231 7.4691 9.2755 17.4885 21.0826 30.6643 34.5845 36.7423

10 · 10 2.0231 7.4691 9.2753 17.4883 21.0820 30.6547 34.5770 36.7288

11 · 11 2.0231 7.4691 9.2752 17.4884 21.0816 30.6543 34.5760 36.7275

12 · 12 2.0231 7.4690 9.2751 17.4884 21.0814 30.6542 34.5758 36.7268

60� 5 · 5 1.5957 6.4867 8.4909 15.0218 19.2174 33.1934 40.1868 43.7078

6 · 6 1.5956 6.4773 8.4802 14.8122 19.1379 27.3909 32.2560 40.1359

7 · 7 1.5956 6.4771 8.4797 14.6767 19.1012 26.8725 32.1018 39.5945

8 · 8 1.5956 6.4770 8.4791 14.6715 19.0990 26.1922 31.8788 39.5786

9 · 9 1.5956 6.4770 8.4789 14.6698 19.0980 26.1592 31.8675 39.4884

10 · 10 1.5956 6.4770 8.4787 14.6697 19.0976 26.1405 31.8618 39.4838

11 · 11 1.5956 6.4770 8.4786 14.6696 19.0972 26.1397 31.8607 39.4746

12 · 12 1.5956 6.4770 8.4784 14.6696 19.0970 26.1395 31.8599 39.4744

Skew plate, a/b = 1, a = 30�
30� 6 · 6 9.2318 15.1783 31.3375 37.7032 47.8373 57.7326 76.8751 83.6220

7 · 7 9.2298 15.1629 31.0927 37.6574 47.5086 56.9774 76.6250 81.9833

8 · 8 9.2287 15.1599 31.0846 37.6419 47.4558 56.5084 74.8606 81.5083

9 · 9 9.2282 15.1575 31.0839 37.6396 47.4383 56.4992 74.7724 81.4292

10 · 10 9.2279 15.1565 31.0827 37.6378 47.4330 56.4966 74.7386 81.4217

11 · 11 9.2278 15.1556 31.0824 37.6370 47.4294 56.4965 74.7361 81.4203

12 · 12 9.2277 15.1552 31.0820 37.6364 47.4273 56.4964 74.7343 81.4192

60� 6 · 6 8.4033 12.9794 28.4281 34.5977 46.1778 51.2139 73.9777 81.5947

7 · 7 8.4004 12.9652 28.3039 34.5442 45.7203 50.5577 72.2518 79.6427

8 · 8 8.3990 12.9597 28.3017 34.5301 45.6538 50.4242 71.8564 78.0421

9 · 9 8.3982 12.9560 28.3016 34.5251 45.6333 50.4196 71.8148 77.9019

10 · 10 8.3978 12.9540 28.3014 34.5219 45.6230 50.4185 71.8077 77.8799

11 · 11 8.3975 12.9526 28.3014 34.5200 45.6166 50.4183 71.8052 77.8789

12 · 12 8.3973 12.9516 28.3013 34.5186 45.6122 50.4180 71.8034 77.8787

Rhomboidal plate, a/b = 1

30� 6 · 6 12.6745 26.5317 47.7675 63.2555 75.6158 103.2656 117.0172 136.4726

7 · 7 12.6744 26.5273 47.7402 62.4949 75.5491 101.8325 115.2071 136.2466

8 · 8 12.6744 26.5263 47.7384 62.4838 75.5313 101.7452 114.9393 132.4501

9 · 9 12.6744 26.5255 47.7383 62.4814 75.5295 101.7267 114.9204 132.4088

10 · 10 12.6744 26.5252 47.7382 62.4802 75.5293 101.7250 114.9138 132.3737

11 · 11 12.6744 26.5250 47.7382 62.4796 75.5291 101.7246 114.9128 132.3725

12 · 12 12.6744 26.5249 47.7381 62.4791 75.5290 101.7244 114.9122 132.3717

60� 6 · 6 12.8008 26.3685 48.9445 60.7346 76.6698 107.9375 112.0938 134.5834

7 · 7 12.8006 26.3434 48.9333 60.1017 76.5243 106.1860 110.7694 134.5029

8 · 8 12.8006 26.3344 48.9317 60.0845 76.5017 106.1573 110.5055 130.5065

9 · 9 12.8005 26.3277 48.9315 60.0778 76.4913 106.1316 110.4856 130.4779

10 · 10 12.8005 26.3242 48.9315 60.0724 76.4862 106.1314 110.4712 130.4293

11 · 11 12.8005 26.3214 48.9314 60.0697 76.4821 106.1311 110.4642 130.4242

12 · 12 12.8005 26.3197 48.9314 60.0673 76.4796 106.1311 110.4581 130.4204
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Table 2

Frequency parameters xab
ffiffiffiffi
qh
Db

q
for trapezoidal composite laminates with four symmetric angle-ply layers (�b,b,b,�b) and with

a/b = 2

c/b b Mode sequence number

1 2 3 4 5 6 7 8

F–F–F–C

0.25 30� Present 1.4292 6.5088 11.153 17.447 25.572 34.185 41.231 46.183

Liew and Lim [20] 1.4285 6.5068 11.150 17.443 25.567 34.178 41.228 46.161

60� Present 0.5242 2.5003 6.6330 9.1509 13.133 21.005 22.426 32.954

Liew and Lim [20] 0.5229 2.4973 6.6286 9.1407 13.127 20.987 22.399 32.763

0.50 30� Present 1.2114 5.9881 8.2722 16.103 21.037 29.684 33.877 38.347

Liew and Lim [20] 1.2109 5.9875 8.2713 16.102 21.035 29.683 33.873 38.344

60� Present 0.44363 2.3685 6.5152 6.6008 13.226 16.454 22.346 27.560

Liew and Lim [20] 0.44283 2.3669 6.5092 6.5984 13.222 16.441 22.324 27.539

0.75 30� Present 1.0890 5.2800 6.7605 14.454 17.553 25.360 26.235 33.702

Liew and Lim [20] 1.0891 5.2799 6.7618 14.454 17.555 25.359 26.233 33.701

60� Present 0.39887 2.2993 4.8515 6.5949 13.083 13.817 22.078 23.712

Liew and Lim [20] 0.39842 2.2987 4.8475 6.5939 13.077 13.811 22.062 23.699

S–C–F–S

0.25 30� Present 8.8250 20.7205 31.2324 39.4444 50.9814 63.5851 7.0219 79.2545

60� Present 6.4225 14.0281 23.3516 34.5737 46.2103 49.5273 63.4942 69.0133

0.50 30� Present 8.1296 18.8568 26.3554 34.8923 44.0993 55.3712 59.5676 68.5765

60� Present 5.7021 12.3459 20.6233 30.7605 40.1498 43.5531 54.1623 58.9306

0.75 30� Present 7.6040 17.1370 23.0643 31.2288 40.1085 49.0695 49.9709 61.5169

60� Present 5.1417 11.2012 18.9364 28.5030 33.4761 39.7395 43.6576 52.2321

C–S–S–F

0.25 30� Present 13.6706 30.8146 40.3287 51.0371 66.1227 75.9397 86.2925 95.6579

60� Present 29.2473 47.6310 64.1050 81.0669 90.0585 108.6065 124.7442 139.090

0.50 30� Present 12.5154 24.8775 35.4636 40.2675 54.7443 61.6343 73.0903 78.5758

60� Present 27.6866 40.7856 51.9092 63.1236 74.7997 84.3329 93.3935 110.552

0.75 30� Present 11.2647 20.0165 30.9280 34.6424 47.5583 50.1971 62.8488 69.7796

60� Present 25.9214 33.5302 40.0809 48.1569 58.5164 71.1055 80.7580 94.9314
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experimental technique can be found in Ref. [37]. In Fig. 4 experimentally obtained modal shapes are com-

pared to analytical predictions, obtained with the proposed method for eight of the natural frequencies of

free vibration. It can be seen a remarkable agreement between the calculated modal shapes and those ob-

tained by means the ESPI.

4.4. Rhomboidal plates

In this section, results are presented of the developed approach applied to study the statical and dynam-
ical behaviour of rhomboidal laminates as shown in Fig. 3c. The planform geometry of the rhomboidal

plate is defined by means of the aspect ratio b/a. Four-ply E-glass/epoxi laminates (EL = 60.7 GPa,

ET = 24.8 GPa, GLT = 12 GPa, mLT = 0.23), with stacking sequence (b,�b,�b,b) are considered. As shown
in Table 6 three different combinations of boundary conditions are taking into account. In each category of



Table 3

Frequency parameters xa2

h

ffiffiffiffi
q
EL

q
, for general trapezoidal composite laminates with four symmetric angle-ply layers (�b,b,b,�b) and

with a/b = 2

c
b h1 b Mode sequence number

1 2 3 4 5 6 7 8

S–S–S–S

0.25 0� 0� Present 19.0701 33.8324 50.7168 55.9894 71.9130 82.0421 97.4327 106.214

Lim et al. [26] 19.070 33.832 50.718 55.988 71.852 82.017 96.895 105.98

30� Present 21.1688 35.9472 52.3902 62.9348 72.8788 88.3813 97.8691 114.105

Lim et al. [26] 21.168 35.947 52.387 62.928 72.741 88.237 97.295 112.86

60� Present 23.4112 37.3871 52.9366 69.3333 74.0400 90.5069 99.9535 119.4007

Lim et al. [26] 23.411 37.386 52.916 69.233 73.926 89.683 99.628 112.27

90� Present 23.2906 36.8643 52.0483 68.9188 73.1376 89.0716 99.0967 118.566

Lim et al. [26] 23.290 36.863 52.020 68.774 73.099 87.969 98.949 109.26

5� 0� Present 18.6992 33.4684 50.8896 54.3244 72.2477 80.6193 98.0837 105.4503

Lim et al. [26] 18.699 33.468 50.890 54.323 72.193 80.607 97.564 105.36

30� Present 20.4967 35.4311 52.3098 60.5054 72.8539 87.3175 97.3830 113.2849

Lim et al. [26] 20.497 35.431 52.308 60.503 72.739 87.263 96.896 112.74

60� Present 22.8287 36.9593 52.7782 68.8655 72.1939 90.9500 97.8008 119.9634

Lim et al. [26] 22.829 36.959 52.763 68.822 72.067 90.295 97.637 113.22

90� Present 23.0681 36.6096 51.8279 68.9544 72.1472 88.9842 98.1283 118.5196

Lim et al. [26] 23.068 36.609 51.802 68.803 72.132 87.975 98.074 109.26

F–F–F–C

0.5 0� 0� Present 1.2221 5.6951 6.8472 15.3477 18.5433 28.3769 33.8152 35.6139

Lim et al. [26] 1.2221 5.6950 6.8471 15.348 18.543 28.376 33.815 35.613

30� Present 1.0061 5.2731 6.7338 13.9645 17.8660 26.1989 32.3001 37.4719

Lim et al. [26] 1.0061 5.2730 6.7339 13.964 17.866 26.197 32.300 37.469

60� Present 0.82147 4.44336 6.06730 11.9046 15.7535 22.9109 27.5990 37.1082

Lim et al. [26] 0.82145 4.4432 6.0671 11.904 15.753 22.909 27.598 37.097

90� Present 0.78989 4.2837 5.4574 11.4872 14.2802 22.1285 25.2617 35.8900

Lim et al. [26] 0.78987 4.2836 5.4573 11.487 14.280 22.128 25.261 35.883

5� 0� Present 1.2441 5.8082 6.7956 15.8474 18.2620 29.4464 33.1838 35.3629

Lim et al. [26] 1.2441 5.8081 6.7955 15.847 18.262 29.446 33.183 35.362

30� Present 1.0396 5.4977 6.6585 14.6412 17.7271 27.5625 32.3319 36.3853

Lim et al. [26] 1.0395 5.4976 6.6585 14.641 17.727 27.561 32.332 36.384

60� Present 0.83427 4.5300 6.1437 12.1786 15.9430 23.5677 27.8769 38.4930

Lim et al. [26] 0.83424 4.5299 6.1435 12.178 15.942 23.566 27.876 38.483

90� Present 0.79708 4.3421 5.4137 11.6678 14.1548 22.5941 24.9532 37.0395

Lim et al. [26] 0.79706 4.3420 5.4136 11.668 14.155 22.593 24.953 37.033
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boundary conditions two aspect ratios, i.e., b/a = 1 and 2 are considered, and the angle of fibre orientation

ranges from b = 0� to 90�. In this table, b = 0� and 90� mean cross-ply laminates with stacking sequences
(0�, 90�, 90�, 0�) or (90�, 0�, 0�, 90�) respectively.
For the statical analysis, deflections and bending moments in an specific point of the rhomboidal plate

(point marked by A in Fig. 3c), under uniform distributed load q are calculated. For the dynamical analysis,

the first eight natural frequencies of free vibrations are determined.

As can be observed in Table 6, for S–S–S–S laminates with b/a = 1 the lowest fundamental frequency

occurs for b = 45�. On the other hand, the maximum values are obtained for the cross-ply configurations.
For the same aspect ratio b/a = 1, but C–C–C–C boundary condition, the dynamical behaviour of the lam-

inate with regards to the angle of fibre orientation, is quite different. In this case, the fundamental frequency



Table 4

Frequency parameters xb2

hp2

ffiffiffiffi
q
ET

q
, for skew composite laminates with five symmetric angle-ply layers (45�,�45,45,�45,45) and with a = b

a Mode sequence number

1 2 3 4 5 6 7 8

S–S–S–S

0� Present 2.4339 4.9865 6.1820 8.4869 10.2535 11.6467 12.8259 15.2168

Wang [36] 2.4339 4.9865 6.1818 8.4870 10.2536 11.6464 12.8260 15.2173

30� Present 2.6099 5.6869 6.8246 9.4721 11.8822 13.2191 14.2739 17.3240

Wang [36] 2.6119 5.6902 6.8316 9.4773 11.8900 13.2355 14.2809 17.3382

45� Present 3.3192 6.9005 9.6936 10.7209 15.5313 16.1444 19.3509 21.2960

Wang [36] 3.3182 6.9002 9.6908 10.7206 15.5318 16.1447 19.3481 21.3005

C–C–C–C

0� Present 3.9009 7.1463 8.4583 11.2109 13.3212 14.7414 16.1260 18.8114

Wang [36] 3.9009 7.1464 8.4585 11.2112 13.3216 14.7425 16.1271 18.8145

30� Present 4.5389 8.3765 9.8697 12.8450 15.6794 17.4656 18.3284 21.9142

Wang [36] 4.5431 8.3819 9.8810 12.8533 15.6906 17.4889 18.3396 21.9364

45� Present 6.3046 10.8189 14.4932 15.4684 21.0550 22.0641 25.8787 27.6348

Wang [36] 6.3048 10.8193 14.4949 15.4692 21.0620 22.0759 25.8849 27.6869

C–F–F–S

0� Present 0.61806 1.7646 2.8216 4.2823 5.2460 6.8291 7.6222 9.3103

30� Present 0.71969 1.9514 3.1401 4.5279 6.3471 7.6705 8.4890 10.6722

45� Present 0.67251 2.0793 4.0722 4.4189 7.5341 8.7412 11.1661 11.7505

S–S–C–F

0� Present 1.7740 3.6275 5.1019 6.5743 8.0841 10.0992 10.6657 12.4583

30� Present 2.1794 4.0524 6.5728 7.3611 9.2862 11.6196 13.4776 14.4630

45� Present 2.8343 4.8471 8.4746 9.1855 12.3188 12.9092 17.7200 18.4634

Table 5

Mechanical and geometrical properties of the general trapezoidal test plate (Fig. 3a)

Geometric planform h1 = 29.985�, h2 = 11.183�
a = 87 mm, b = 90 mm

Thickness h = 0.98 · 10�3 m
Poisson�s modulus m = 0.35
Young�s modulus E = 6.82 · 1010 N/m2

Flexural rigidity D = 6.1 Nm

Mass density per unit volume q = 2.86 · 103 kg/m3
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parameter reaches the highest level for b = 45� and the lowest level for b = 75�. However, when the aspect
ratio is b/a = 2, the variation of the fundamental frequency, is similar for both simply-supported and

clamped rhomboidal laminates. In this case, it is observed that the fundamental frequency has its highest

value for b = 0� in the S–S–S–S laminate and for b = 15� in the C–C–C–C laminate. Then, the fundamental
frequencies decrease monotonically and reach minimum values for b = 75�.
Finally, the results for F–S–F–C plates, for both aspect ratios (i.e. b/a = 1 and 2), show similar variation

of the dynamical behaviour, when b varies from 0� to 90�. The fundamental frequencies have minimum
values for b = 15� and increase monotonically for b > 15�. The maximum values occur at b = 90�. In con-
clusion, the boundary constraints and the aspect ratio b/a have significant effects on the behaviour of the

fundamental frequencies with respect to the angles of fibre orientation.



Fig. 4. Natural frequencies and modal shapes of a general trapezoidal cantilever plate. (a) Experimentally determined mode shapes [37]. (b) Nodal patterns obtained with

the present method. (c) Modal shapes obtained with the present method.
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Table 6

Frequencies of free vibration, static bending deflection and bending moment for four-ply rhomboidal symmetric laminated E-glass–epoxi plates with stacking sequence

(b,�b,�b,b)

b/a b Statical analysis Frequencies of free vibration xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
Mode sequence number

WDb

qa4 jA
Mx
qa2 jA 1 2 3 4 5 6 7 8

S–S–S–S

1 0� 0.00133693 0.02376707 32.8576 75.4172 83.8503 128.528 154.777 156.297 200.106 223.860

15� 0.00141395 0.02596733 32.0502 72.4077 84.9172 124.163 146.326 164.154 192.890 222.625

30� 0.00147775 0.02567914 31.3968 71.2486 85.9382 125.305 139.825 170.808 194.618 221.936

45� 0.00150428 0.02315079 31.0589 70.9395 86.0245 126.585 136.897 173.601 194.546 220.311

60� 0.00146325 0.01892369 31.3628 71.8190 85.0756 125.927 139.761 171.037 193.214 222.200

75� 0.00139288 0.01536088 32.0320 73.0827 83.9750 124.846 146.359 164.213 191.461 222.520

90� 0.00132177 0.01526389 32.8607 75.9610 83.1856 129.063 154.325 156.608 199.122 224.404

2 0� 0.00366604 0.04754341 20.0737 36.6949 56.2655 60.6374 78.8026 92.0729 104.949 121.790

15� 0.00374594 0.04962897 19.9335 36.3469 55.3904 61.1931 77.2267 92.0566 102.409 121.772

30� 0.00414294 0.04882469 19.0271 36.1031 55.4023 59.1633 78.3892 89.6005 104.473 117.161

45� 0.00464907 0.04576604 17.9583 35.7434 53.4624 57.7583 79.7583 86.0722 107.282 110.188

60� 0.00500802 0.04042163 17.2236 35.5353 50.1564 57.6387 81.1768 82.9676 102.106 110.623

75� 0.00508757 0.03561888 16.9929 35.4883 47.8736 57.9540 80.6951 82.7449 96.1798 113.446

90� 0.00469514 0.03581890 17.6523 36.0199 49.6827 58.5220 82.5358 84.1560 98.5616 116.217

C–C–C–C

1 0� 0.00042582 0.01158452 58.2454 112.062 122.379 174.548 205.928 207.868 257.268 283.315

15� 0.00042979 0.01215455 58.0819 108.785 125.147 170.721 196.149 218.795 250.273 283.948

30� 0.00041664 0.01118826 58.8243 108.225 128.858 174.302 189.541 229.261 253.863 286.712

45� 0.00040787 0.00963926 59.1970 108.212 130.331 177.483 185.940 234.419 254.254 285.375

60� 0.00040945 0.00807797 58.7931 108.550 128.284 175.028 188.858 230.784 251.345 288.012

75� 0.00041705 0.00704269 58.0039 109.391 124.142 171.430 195.568 219.788 248.017 283.799

90� 0.00041507 0.00737193 58.1653 112.883 121.239 175.096 205.294 208.253 255.949 283.539

2 0� 0.00111174 0.02207262 36.8314 58.8535 83.1270 87.6450 109.901 125.523 140.416 159.182

15� 0.00110060 0.02254566 37.0481 58.5976 82.0608 89.1788 108.280 125.692 137.699 159.292

30� 0.00115863 0.02137345 36.0536 57.8697 81.2752 87.4305 109.087 122.138 139.372 154.232

45� 0.00126541 0.01952095 34.4103 56.7976 78.8899 84.7655 109.949 117.102 141.701 146.240

60� 0.00140589 0.01768004 32.5536 55.6541 74.3086 82.9053 110.424 112.245 135.837 144.122

75� 0.00152877 0.01651642 31.1404 54.7190 70.1211 81.9192 108.584 110.705 127.178 145.972

90� 0.00146509 0.01713289 31.8310 55.4846 72.0156 82.6599 110.932 112.336 129.614 149.142
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Table 6 (continued)

b/a b Statical analysis Frequencies of free vibration xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
Mode sequence number

WDb

qa4 jA
Mx
qa2 jA 1 2 3 4 5 6 7 8

F–S–F–C

1 0� 0.00192178 0.02097692 20.0749 35.9246 60.7807 69.0070 98.0648 116.767 129.733 141.435

15� 0.00222384 0.01947506 18.8546 33.9168 57.7059 67.2526 91.9433 113.083 126.054 138.325

30� 0.00227301 0.01482298 18.9978 32.3254 58.0007 65.9827 89.2559 114.376 125.899 134.964

45� 0.00224813 0.01482298 19.3527 31.2364 59.3839 64.1125 88.4524 117.130 123.865 132.590

60� 0.00221066 0.01122682 19.7787 31.2895 61.3389 62.7327 89.3265 118.306 123.680 131.693

75� 0.00208758 0.01000555 20.5661 32.2784 62.3017 64.2770 91.8491 115.788 128.965 132.427

90� 0.00180005 0.01006510 22.0410 34.4608 64.0139 68.5484 97.9682 117.646 133.655 138.400

2 0� 0.00575835 0.05424203 8.51802 19.2463 25.8933 38.1105 43.7022 57.8248 63.5934 75.7244

15� 0.00671898 0.05168905 8.17785 18.5432 24.8294 37.3132 41.8714 56.5665 60.9715 72.8666

30� 0.00733401 0.04091217 8.36055 18.2451 24.8001 37.4033 41.7509 57.7187 58.9622 72.4577

45� 0.00768447 0.03488778 8.54956 17.7511 25.1077 36.9631 42.2672 55.9722 60.5213 71.9866

60� 0.00802293 0.03481320 8.62899 17.3105 25.6321 36.0528 43.2175 54.2805 62.6014 71.6312

75� 0.00813069 0.03593550 8.75546 17.3887 26.4330 35.4586 44.6321 54.0893 63.2167 73.3099

90� 0.00706228 0.03732225 9.19851 18.5509 27.6271 36.8327 46.5567 57.2937 63.6317 77.1701
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Fig. 5. Transverse vibration frequencies xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
and mode shapes of a S–F–C–S general quadrilateral E-glass/epoxi laminate.
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4.5. Other quadrilateral plates

The developed Ritz formulation has been further applied to generate results for laminated E-glass/epoxi

plates with general quadrilateral planforms (see Fig. 3d). The presented results correspond to a angle-ply

laminate with stacking sequence (30�,�30�,�30�, 30�) and to a cross-ply laminate with stacking sequence
(90�, 0�, 0�, 90�) and aspect ratio b/a = 1/2, for both cases. The plates are simply supported on edges (1) and
(4), free on edge (2) and clamped on edge (3). Fig. 5 shows the first eight non-dimensional free vibration

frequencies xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
and their corresponding modal shapes. It is observed that the frequency parame-

ters are higher for the cross-ply laminate than for the angle-ply laminate. There exist a little difference be-

tween the modal shapes for both cases when the first three natural frequencies are considered.
5. Conclusions

A Ritz approach has been developed for the study of the dynamical and statical behaviour of symmetri-

cally laminated composite plates. The proposed method is based on the classical laminated plate theory and
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uses natural coordinates to express the geometry of different laminates in a simple form. The deflection of the

plate is approximated by a set of beam characteristic orthogonal polynomials generated using the Gram–

Schmidt procedure. The algorithm developed is very general and allowed us to take into account a great vari-

ety of geometrical shapes, material properties and combinations of classical boundary conditions.

Numerical applications include trapezoidal, skew, rhomboidal and general quadrilateral laminates. For
the dynamical analysis frequencies and modal shapes of free vibration have been obtained, and for the stati-

cal analysis transverse deflections and bending moments have been determined. For trapezoidal and skew

plates, very close agreement was found between the present results and the comparative solutions. Besides,

all applications demonstrate that the present technique is accurate and efficient. Consequently it constitutes

an efficient tool for the determination of natural frequencies and static deflections in an important number

of plate problems, and it is of interest in design works.
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Appendix A. Coordinate transformation

The definition of the transformation matrixes in Eq. (10), which describe the relation between the deriv-

atives with respect to the Cartesian coordinates (x,y) and the derivatives with respect to the natural coordi-

nates (n,g), are obtained applying successively the rule of derivation of composite functions and are given by
½Opð1Þ� ¼
a01 a02 �a03
b01 b02 �b03
�c01 �c02 c03

2
64

3
75; ½Opð2Þ� ¼

P3
i¼1
a0ia

0
i

P3
i¼1
a0ib

0
i

P3
i¼1
b0ia

0
i

P3
i¼1
b0ib

0
i

�
P3
i¼1
c0ia

0
i �

P3
i¼1
c0ib

0
i

2
666666664

3
777777775
where
a01 ¼
J 222
j J j2

; a02 ¼
J 212
j J j2

; a03 ¼ 2
J 12J 22
j J j2

;

b01 ¼
J 221
j J j2

; b02 ¼
J 211
j J j2

; b03 ¼ 2
J 11J 21
j J j2

;

c01 ¼
J 21J 22
j J j2

; c02 ¼
J 11J 12
j J j2

; c03 ¼
J 11J 22 þ J 12J 21

j J j2
;

a0
1 ¼

�J 11;nJ 22 þ J 12;nJ 21
j J j ; a0

2 ¼
�J 21;gJ 22 þ J 22;gJ 21

j J j ; a0
3 ¼

J 11;gJ 22 � J 22;nJ 21
j J j ;

b0
1 ¼

J 11;nJ 12 � J 12;nJ 11
j J j ; b0

2 ¼
J 21;gJ 12 � J 22;gJ 11

j J j ; b0
3 ¼

J 11;gJ 12 � J 22;nJ 11
j J j ;
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J2 ¼

ox
on

� �2
oy
on

� �2
2
ox
on

oy
on

ox
og

� �2
oy
og

� �2
2
ox
og

oy
og

ox
on

ox
og

oy
on

oy
og

ox
on

oy
og

þ ox
og

oy
on

2
666666664

3
777777775
¼

J 211 J 212 2J 12J 11
J 221 J 222 2J 21J 22
J 11J 21 J 12J 22 J 11J 22 þ J 21J 12

2
64

3
75;
and jJj denotes the Jacobian determinant.
Appendix B. Definitions of functions Si in Eq. (13)

After substitution of Eq. (10) into Eq. (5) one obtains the maximum strain energy as a function of

the derivatives of the displacement W with respect to the natural coordinates n, g. The factors of
these derivatives depend on the geometrical and mechanical characteristics of the plates, and are given

by
S1ðn; gÞ ¼ D11a021 þ D22b021 þ 2D12a01b01 þ 4D66c021 � 4D16a01c01 � 4D26b01c01;

S2ðn; gÞ ¼ D11a022 þ D22b022 þ 2D12a02b02 þ 4D66c022 � 4D16a02c02 � 4D26b02c02;

S3ðn;gÞ¼ 2D11a01a02þ2D22b
0
1b

0
2þ2D12ðb01a02þb

0
2a

0
1Þþ8D66c01c02�4D16ðc02a01þ c01a02Þ�4D26ðb

0
2c

0
1þb

0
1c

0
2Þ;

S4ðn; gÞ ¼ D11a023 þ D22b023 þ 2D12a03b03 þ 4D66c023 � 4D16a03c03 � 4D26b03c03;

S5ðn;gÞ¼�2D11a03a01�2D22b03b01�2D12ðb01a03þb03a01Þ�8D66c03c01þ4D16ða01c03þ c01a03Þþ4D26ðb03c01þb01c03Þ;

S6ðn;gÞ¼�2D11a02a03�2D22b
0
3b

0
2�2D12ðb03a02þb

0
2a

0
3Þ�8D66c03c02þ4D16ðc03a02þ c02a03Þþ4D26ðb

0
3c

0
2þb

0
2c

0
3Þ;

S7ðn; gÞ ¼ 2D11a01
X3
i¼1
a0ia

0
i þ 2D22b01

X3
i¼1
b0ia

0
i þ 2D12 a01

X3
i¼1
b0ia

0
i þ b01

X3
i¼1
a0ia

0
i

 !

þ 8D66c01
X3
i¼1
c0ia

0
i � 4D16 a01

X3
i¼1
c0ia

0
i þ c01

X3
i¼1
a0ia

0
i

 !
� 4D26 b01

X3
i¼1
c0ia

0
i þ c01

X3
i¼1
b0ia

0
i

 !
;

S8ðn; gÞ ¼ 2D11a02
X3
i¼1
a0ib

0
i þ 2D22b

0
2

X3
i¼1
b0ib

0
i þ 2D12 a02

X3
i¼1
b0ib

0
i þ b

0
2

X3
i¼1
a0ib

0
i

 !

þ 8D66c02
X3
i¼1
c0ib

0
i � 4D16 a02

X3
i¼1
c0ib

0
i þ c02

X3
i¼1
a0ib

0
i

 !
� 4D26 c02

X3
i¼1
b0ib

0
i þ b

0
2

X3
i¼1
c0ib

0
i

 !
;

S9ðn; gÞ ¼ 2D11a01
X3
i¼1
a0ib

0
i þ 2D22b

0
1

X3
i¼1
b0ib

0
i þ 2D12 a01

X3
i¼1
b0ib

0
i þ b

0
1

X3
i¼1
a0ib

0
i

 !

þ 8D66c01
X3
i¼1
c0ib

0
i � 4D16 a01

X3
i¼1
c0ib

0
i þ c01

X3
i¼1
a0ib

0
i

 !
� 4D26 c01

X3
i¼1
b0ib

0
i þ b01

X3
i¼1
c0ib

0
i

 !
;
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S10ðn; gÞ ¼ 2D11a02
X3
i¼1
a0ia

0
i þ 2D22b

0
2

X3
i¼1
b0ia

0
i þ 2D12 a02

X3
i¼1
b0ia

0
i þ b

0
2

X3
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a0ia

0
i

 !
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X3
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0
i � 4D16 a02

X3
i¼1
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0
i þ c02

X3
i¼1
a0ia

0
i

 !
� 4D26 c02

X3
i¼1
b0ia

0
i þ b

0
2

X3
i¼1
c0ia

0
i

 !
;

S11ðn; gÞ ¼ �2D11a03
X3
i¼1
a0ia

0
i � 2D22b

0
3

X3
i¼1
b0ia

0
i � 2D12 a03

X3
i¼1
b0ia

0
i þ b

0
3

X3
i¼1
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0
i

 !
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X3
i¼1
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0
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0
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i
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i
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;
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X3
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0
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;

S13ðn; gÞ ¼ D11
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a0ia

0
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0
i

 !2
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0
i
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0
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0
i;

S14ðn; gÞ ¼ D11
X3
i¼1
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0
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i¼1
b0ib

0
i
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þ 2D12

X3
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0
i
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i¼1
a0ib

0
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0
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0
i
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0
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0
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S15ðn; gÞ ¼ 2D11
X3
i¼1
a0ia

0
i

X3
i¼1
a0ib

0
i þ 2D22

X3
i¼1
b0ia

0
i

X3
i¼1
b0ib

0
i þ 2D12

X3
i¼1
b0ib

0
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0
i þ
X3
i¼1
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0
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0
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X3
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0
i

X3
i¼1
c0ib

0
i � 4D16

X3
i¼1
c0ib

0
i

X3
i¼1
a0ia

0
i þ
X3
i¼1
c0ia

0
i

X3
i¼1
a0ib

0
i
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� 4D26
X3
i¼1
b0ib

0
i

X3
i¼1
c0ia

0
i þ
X3
i¼1
b0ia

0
i

X3
i¼1
c0ib

0
i

 !
;

where Dij (i,j = 1,2,6) are the conventional laminate stiffness coefficients and a0i; b
0
i; c

0
i; a

0
i; b

0
i; ði ¼ 1; . . . ; 3Þ are

defined in Appendix A.
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Appendix C. Minimisation of energy functionals

In this Appendix the minimisation of the energy functionals as given in equations (18) and (19) are

detailed.

For minimisation purpose, first we replace the approximating function (15) into the expression of Umax
given by Eq. (13), as follows
Umax ¼
1

2

Z 1

�1

Z 1

�1

(
S1

XM ;N

i;j¼1
cij
d2piðnÞ
dn2

qjðgÞ
 !2

þ S2
XM ;N

i;j¼1
cijpiðnÞ

d2qjðgÞ
dg2

 !2

þ S3
XM ;N

i;j¼1
cij
d2piðnÞ
dn2

qjðgÞ
 ! XM ;N

i;j¼1
cijpiðnÞ

d2qjðgÞ
dg2

 !

þ S4
XM ;N

i;j¼1
cij
dpiðnÞ
dn

dqjðgÞ
dg

 !2

þ S5
XM ;N

i;j¼1
cij
d2piðnÞ
dn2

qjðgÞ
 ! XM ;N

i;j¼1
cij
dpiðnÞ
dn

dqjðgÞ
dg

 !

þ S6
XM ;N

i;j¼1
cijpiðnÞ

d2qjðgÞ
dg2

 ! XM ;N

i;j¼1
cij
dpiðnÞ
dn

dqjðgÞ
dg

 !

þ S7
XM ;N

i;j¼1
cij
d2piðnÞ
dn2

qjðgÞ
 ! XM ;N

i;j¼1
cij
dpiðnÞ
dn

qjðgÞ
 !

þ S8
XM ;N

i;j¼1
cijpiðnÞ

d2qjðgÞ
dg2

 ! XM ;N

i;j¼1
cijpiðnÞ

dqjðgÞ
dg

 !

þ S9
XM ;N

i;j¼1
cij
d2piðnÞ
dn2

qjðgÞ
 ! XM ;N
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cijpiðnÞ
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dg
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d2qjðgÞ
dg2
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 ! XM ;N

i;j¼1
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dqjðgÞ
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 ! XM ;N
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cijpiðnÞ
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i;j¼1
cij
dpiðnÞ
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qjðgÞ
 !2

þ S14
XM ;N

k;h¼1
ckhpiðnÞ
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cij
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 !)
jJ j dndg; ðC:1Þ
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developing de squares and multiplications in (C.1) one obtains
Umax ¼
1

2

Z 1

�1

Z 1

�1
S1

XM ;N

k;h¼1

XM ;N

r;s¼1
ckhcrs

d2pkðnÞ
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dn2

qsðgÞ
 !(
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jJ j dndg: ðC:2Þ
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Then, the derivation of Eq. (C.2) with respect to each coefficient cij, i,j = 1, . . . ,N,M leads to
oUmax
ocij

¼ 1
2

Z 1

�1

Z 1

�1
2S1
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Finally, one obtains
oUmax
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¼ 1
2

XM ;N

k;h¼1
ckh

X15
m¼1

P ijkh;mðn; gÞ
" #( )

; ðC:4Þ
where
P ijkh;1ðn; gÞ ¼
Z 1

�1

Z 1

�1
S12
d2piðnÞ
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d2pkðnÞ
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qjðgÞqhðgÞ j J j dndg;
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P ijkh;2ðn; gÞ ¼
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�1

Z 1
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S22piðnÞpkðnÞ
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dg

þ pkðnÞ
dpiðnÞ
dn

d2qhðgÞ
dg2

dqjðgÞ
dg

" #
j J j dndg;

P ijkh;7ðn; gÞ ¼
Z 1

�1

Z 1

�1
S7qjðgÞqhðgÞ

d2piðnÞ
dn

dpkðnÞ
dn

þ d
2pkðnÞ
dn

dpiðnÞ
dn

� �
j J j dndg;

P ijkh;8ðn; gÞ ¼
Z 1

�1

Z 1

�1
S8piðnÞpkðnÞ

d2qjðgÞ
dg2

dqhðgÞ
dg

þ d
2qhðgÞ
dg2

dqjðgÞ
dg

" #
j J j dndg;

P ijkh;9ðn; gÞ ¼
Z 1

�1

Z 1

�1
S9
d2piðnÞ
dn2

pkðnÞqjðgÞ
dqhðgÞ
dg

þ d
2pkðnÞ
dn2

piðnÞqhðgÞ
dqjðgÞ
dg

� �
j J j dndg;

P ijkh;10ðn; gÞ ¼
Z 1

�1

Z 1

�1
S10 piðnÞ

dpkðnÞ
dn

d2qjðgÞ
dg2

qhðgÞ þ pkðnÞ
dpiðnÞ
dn

d2qhðgÞ
dg2

qjðgÞ
" #

j J j dndg;

P ijkh;11ðn; gÞ ¼
Z 1

�1

Z 1

�1
S11
dpiðnÞ
dn

dpkðnÞ
dn

dqjðgÞ
dg

qhðgÞ þ
dqhðgÞ
dg

qjðgÞ
� �

j J j dndg;

P ijkh;12ðn; gÞ ¼
Z 1

�1

Z 1

�1
S12
dqjðgÞ
dg

dqhðgÞ
dg

dpiðnÞ
dn

pkðnÞ þ
dpkðnÞ
dn

piðnÞ
� �

j J j dndg;

P ijkh;13ðn; gÞ ¼
Z 1

�1

Z 1

�1
S132
dpiðnÞ
dn

dpkðnÞ
dn

qjðgÞqhðgÞ j J j dndg;

P ijkh;14ðn; gÞ ¼
Z 1

�1

Z 1

�1
S142piðnÞpkðnÞ

dqjðgÞ
dg

dqhðgÞ
dg

j J j dndg;

P ijkh;15ðn; gÞ ¼
Z 1

�1

Z 1

�1
S15
dpiðnÞ
dn

pkðnÞqjðgÞ
dqhðgÞ
dg

þ dpkðnÞ
dn

piðnÞqhðgÞ
dqjðgÞ
dg

� �
j J j dndg:
In the same manner, replacing the approximating function (15) into the expression of the maximum

kinetic energy (11) one obtains
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Tmax ¼
hqx2

2

Z 1

�1

Z 1

�1

XN ;M
i;j¼1

cijpiðnÞqjðgÞ
 !2

j J j dndg

¼ hqx2

2

Z 1

�1

Z 1

�1

XN ;M
k;h¼1

XN ;M
r;s¼1

ckhcrspkðnÞqhðgÞprðnÞqsðgÞ
 !

j J j dndg: ðC:5Þ
Then, the derivation of Eq. (C.5) with respect to each coefficient cij, i, j = 1, . . . ,N,M leads to
oTmax
ocij

¼ qh
2

x2 2
Z 1

�1

Z 1

�1

XN ;M
k;h¼1

ckhpiðnÞpkðnÞqjðgÞqhðgÞ j J j dndg
( )

: ðC:6Þ
Finally, replacing the approximating function (15) into the expression of the potential energy (12) one

obtains
V ¼ �
Z 1

�1

Z 1

�1
qðn; gÞ

XN ;M
i;j¼1

cijpiðnÞqjðgÞ
 !

j J j dndg: ðC:7Þ
The derivation of Eq. (C.7) with respect to each coefficient cij, i,j = 1, . . . ,N,M leads to
oV
ocij

¼ �
Z 1

�1

Z 1

�1
qðn; gÞpiðnÞqjðgÞ j J j dndg

� �
: ðC:8Þ
Eqs. (C.4), (C.6) and (C.8) leads to the governing equations (20) and (21) established in the main text.
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