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A B S T R A C T

A path-following strategy based on an energy release criterion is proposed and implemented in an
augmented Lagrangian formulation to model localized cohesive cracks. The model is formulated
in a rigourous variational framework of continuous spaces. A procedure for the solution of the
proposed formulation in a continuous spaces context is also presented. The discrete form of the
problem for the implementation within the finite element method is also exposed. The ability and
robustness of the proposed method to track equilibrium paths including snap-back phenomenon
are analyzed and discussed by means of several numerical tests. The restriction based on an
energy release criterion is introduced in the formulation by using a augmented Lagrangian
method. The effect of the interpolation order for the Lagrange multiplier (so-called Lagrange
field), its influence on the proposed constraint equation and the mesh density dependency are
studied and illustrated in the numerical simulations. Different crack patterns are analyzed and
some recommendations concerning the interpolation degree that should be used for the
Lagrangian field to avoid spurious energy release are also included.

1. Introduction

The presence of instabilities expressed in terms of snap-back phenomena is a widespread problem in fracture and damage me-
chanics. As the failure in certain material becomes more brittle, the softening regime tends to have a positive slope, being the linear
elastic fracture mechanics (LEFM) the limit solution. The classical approaches used to simulate non linear response that consist of
calculating the displacements corresponding to imposed forces or calculating the forces corresponding to certain displacements can
no longer be used to trace the equilibrium path in presence of snap-back [1]. In order to clarify these concepts, let us introduce a very
simple schematic example. In Fig. 1, two Force-Displacement responses are presented. The dashed line represents the equilibrium
path. The solid line in Fig. 1(a) is the response obtained when the displacement for increasing load is calculated. In this case the
equilibrium path placed below the A-B segment (snap-through and snap-back) can-not be captured. The solid line in Fig. 1(b) re-
presents the result obtained when the forces corresponding to an increasing displacement are calculated. In this case, the equilibrium
path placed to the left of segments A-B and C-D (snap-back) cannot either be computed.

The first attempts to circumvent this problem were proposed independently by Wempner [2] and later by Riks [3]. Years later,
Crisfield [5] and Ramm [4] developed a method where an additional constraint equation, independent from the equilibrium
equations, is introduced in a staggered solution scheme. The formulation was applied to structural problems with geometrical non
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linearity. However, this kind of formulation failed in the case of problems involving strain localization [6,7].
In the case of material non-linearities, the development of a path-following technique requires additional considerations while

formulating the constraint equation. In this sense, Lorentz [24] states a method where the constraint equation is formulated by using

Nomenclature

b volumetric forces
C elastic fourth-order tensor
Ct elastic fourth-order tensor evaluated at the

pseudo-time t
�t elastic matrix evaluated at the pseudo-time t
E Young’s modulus

̇E elastic potential energy rate
Gc fracture energy

, ,1 2 3G G G variational functionals
h characteristic element size
H higher orders terms in a general expansion

�
+I indicator function

� matrix of interpolation functions for jump dis-
placement over the fracture

� stiffness matrix
�0 initial stiffness matrix
�T updated stiffness matrix
n actual increment
nit number of iterations
nop optimal number of iterations
n normal direction vector to the fracture
� matrix of interpolation functions for displacements
� matrix of interpolation functions for Lagrange

multipliers
p prescribed load
P external power

( )c d
k
,P I polynomial space of order less than or equal to k in

I and with continuous (c) or discontinuous (d)
interpolation

R residue function
� discrete version of the residue
′ ∗t t t, , pseudo-time parameter

tn normal component of the stress on the fracture
tt tangential component of the stress on the fracture
�̇ energy release rate

�̇min pre-defined minimal energy release rate
u displacement field
� space of kinematically admissible displacements

variations
� h approximation of the space �

� space of kinematically admissible Lagrange mul-
tipliers variations

�h approximation of the space �

γ penalty parameter
Γ fracture domain
Γh mesh boundary
δc critical displacement
δeq equivalent displacement
δ (•) increment of (•) in continuum spaces
δ supplementary variable
δn normal component of the supplementary variable
δt tangential component of the supplementary vari-

able
Δ(•) discrete increment of the parameter (or variable)

(•)
Θ null matrix
η load control parameter
κ internal variable
λ Lagrange multipliers
σc critical tension
σ stress Cauchy tensor
ψ cohesive potential function
Ψ pseudo-potential over the crack
ν Poison ratio
Ω elastic body domain
Ωh mesh family

∘(•)| (•) evaluated in (or over) ∘
LATIN LArge Increment TIme
LEFM Linear Elastic Fracture Mechanics
CMOD Crack Mouth Opening Displacement
CMSD Crack Mouth Sliding Displacement

Fig. 1. Computing the equilibrium path.
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the maximal value of the yield function for the elastic predictor. The novel approach called LATIN method (LArge Increment TIme)
proposed in Ref. [20] and expanded in [21–23], departs from the classical step by step scheme used in Newton-Raphson based
schemes. It considers an iteration procedure on the entire loading path, but no quadratic convergence behaviour is obtained with this
procedure. The widespread criteria proposed by de Borst [7] uses a constraint condition based on the well-known crack mouth
opening displacement (CMOD) and the crack mouth sliding displacement (CMSD). The method is capable of tracing the equilibrium
path in mixed-mode fracture that occurs in beams and pull-out specimens. This work is considered as the pioneer of the energy-
release based path following techniques.

More recently, Gutierrez [8] presented a discussion about an energy release control strategy implemented within the context of a
gradient enhanced damage model. Dissipation equation is stated and simultaneously solved with the rest of the equilibrium equa-
tions. The method is based on the fact that a fracture involves a monotonically increasing energy dissipation process. Later, an
extension of the approach to plasticity and damage with geometrically non-linearity was introduced by Verhoosel et al. [9]. Fol-
lowing the same philosophy, new arc-length functions were developed for a phase field damage model in [1,10,12]. Their im-
plementation in approaches such as damage and fracture modelling for several contexts can be viewed in [11,19] (isogeometric
analysis) and [18] (piezoelectric polycrystals), among others.

The methodologies based on Lagrangian functionals and path-following technique to treat damage and fracture mechanics
problems have an increasing use in the recent literature [13–16]. However, there are some numerical problems and/or instabilities,
such as artificial unloading and spurious energy release that require a detailed treatment. In [17], a continuum formulation was
presented where the equivalence between the stationary point of the one-field classic approach and the saddle point of the mixed
formulation was proven by solving the double inequality in the continuum space. As a natural extension of the previous work [17], in
this paper the formulation is enhanced by combining it with a path-following technique in the context of a Lagrangian formulation to
model quasi-brittle fractures. A three-fields formulation is developed within a continuous approach in a rigorous variational fra-
mework. The path-following strategy is based on a released energy criterion. This strategy allows controlling the response or tracing
the equilibrium path in the material non-linear problems involving cracks evolution.

A constraint equation implemented in an augmented Lagrangian functional to capture snap-back is proposed in this paper for the
case of an initially elastic body capable of dissipating energy via a displacement discontinuity driven by a traction-separation law.
Basic equilibrium equations for a fractured body under small displacements and small strains are developed following the three-field
formulation and they are presented in Section 2. The path following technique is stated starting from an energy analysis, and an
additional function to control the fracture process via the released energy is obtained. The finite element discretization, including all
the information needed for the computational implementation, is presented in Section 3. Numerical examples are exposed in Section
4, where a discussion about the influence of mesh density on the robustness of the numerical method is presented. The interpolation
degree that should be used for the Lagrangian field to avoid spurious energy release in the cases of different crack patterns is also
discussed. Finally, the concluding remarks are drawn in Section 5.

2. Variational formulation

2.1. Mixed variational statement for fracture equilibrium problems. Basic equations

The equilibrium approach of the fracture problem consists of a cohesive zone model implemented in a mixed formulation based
on an augmented Lagrangian functional. The basic elements of this approach are provided in this work. Further details related to the
mathematical foundations can be found in [17]. The functional that describes the energetic behaviour of an infinitesimally de-
formable body with a discontinuity in the displacement field, as that schematically represented in Fig. 2, can be written as follows:
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Fig. 2. Domain decomposition of Ω considering a cohesive fracture Γ. Continuum and discrete notation.
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where ∂ Ωt is the Neumann boundary, ∈ ∂p L ( Ω)t2 is a prescribed load controlled by the parameter ∂η, Ωu is the Dirichlet boundary, σ
is the Cauchy tensor,∇ us denotes the symmetric part of the displacement field gradient, γ is the penalty parameter, λ represents the
Lagrange multipliers, ∈ ⧹b L (Ω Γ)2 are the volumetric forces, = −+ −• (•) (•)Γ Γ  represents the jump of the field (•) over the domain

δΓ, is a supplementary variable, � is the space of kinematically admissible displacements variations uδ , and � is the space of
kinematically admissible Lagrange multipliers variations λδ , defined as:

�

�

⧹ = ∈ ∧ ∈ =

⧹ = ∈
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−

{ }
{ }

v v v

x x

H H

H
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(2)

Note that the deformable body outside of the discontinuity Γ remains elastic. The functional 1G in (1) enforces the balance
between the internal forces represented by the two first terms and the external forces represented by the last two terms. The
functional 2G weakly enforces the equality =u δ  . The supplementary variable δ is solved in a staggered scheme motivated by the
coordination decomposition method [25] in the so-called collocation points. In this way, the traction-separation law is solved in an
inverse way, starting with a predicted Lagrange multiplier field and a displacement field and finally computing the supplementary
variable [17]. To this end, the following functional is defined for each collocation point:

= − − − ∈ ∂u λ t λ u δ t δγ κ( ; ) ( ), Ψ( , ).δ0G   (3)

where Ψ is a pseudo-potential over the crack Γ [13]:

�= ++u I u uκ ψ κΨ( , ) ( ) ( , ),n      (4)

with �
+I an indicator function to avoid the penetration between crack lips in the fracture normal direction n, and � �→+ψ:

representing the cohesive potential function defined in Section 2.2. The operator ∂∘(·) represents the sub gradient or generalized
derivative of the functional (·) respect to ∘. The sub gradient is equal to the partial derivative ∂

∂∘
(·) only when (·) is differentiable, see

[27]. The internal variable κ is used to set the irreversibility nature of the process and it will be defined later. Therefore, the problem
is reduced to: For some �∈ +γ and �∈η , find � �∈ ×u λ( ; ) such that

�

�

= ∀ ∈
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u λ u
u λ λ

δ
δ

( ; ) 0 , ,
( ; ) 0 , ,

1

2

G

G (5)

where ∈δ u λ u λ( ; ) ker ( ; )0G and u and λ are fixed in collocation points.
Note that, due to initial assumptions, the problem under considerations is geometrically linear and the path-following technique,

not presented yet, is used to capture complex behaviours related to material non-linearities such as snap-back in the traction-
separation response.

Fig. 3. Traction separation law with linear unloading proposed for the paper. (a) Tangential traction-separation law. (b) Normal traction-separation
law. (c) Initiation criteria.
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2.2. Traction-separation law

A simple traction-separation law consisting of a linear cohesive zone model that considers contact and adhesion regimes with
linear unloading, is used in this paper (see Fig. 3). The potential is defined as follows:

=
⎧
⎨
⎩

− ⩽

>
( )ψ δ

G if δ δ

G if δ δ
( )

2 ,

,
.eq

c
δ
δ

δ
δ eq c

c eq c

eq

c

eq

c

(6)

The parameter =G σ δc c c
1
2 is used to denote the fracture energy, σc is the critical tension and δc is the critical displacement. The

potential is totally defined by two of the three parameters (G σ δ, ,c c c). The cohesive forces in the crack are driven by an equivalent
displacement:

= =δ δ δδ ‖ ‖ · .eq (7)

An irreversible variable κ is introduced to control the crack opening/closure:

= ′
′< ∗

κ t δ t( ) sup ( );
t t

eq
(8)

where ∗t is the actual time. The initiation criteria used to detect the cracking onset is shown in Fig. 3(c).

2.3. Path-following technique for an augmented Lagrangian formulation

A path following strategy based on a released energy criterion, is developed to control the response. To this end, the load
parameter �∈η is introduced as an independent variable. By taking into account the thermodynamics laws, the energy release
during the failure is positive and monotonically increasing and its rate can be expressed as follows

�− =̇ ̇ ,P E (9)

whereP is a measure of the power introduced by the external loads, ̇E is the elastic potential energy rate and the difference between
them �̇ is a positive function that represents the energy release rate. The elastic potential can be expressed as follows:

∫= ⎡
⎣

∇ ⎤
⎦⧹

σ ux t x t d1
2

( , ): ( , ) Ω .s
Ω Γ

E
(10)

This potential can be also interpreted as the potential inserted by external actions minus the potential dissipated by the system.
Applying Green’s theorem and taking into account the elastic equilibrium equation:

∫ ∫ ∫= + ∂ − + −∂b u p u λ u δ ux t x t d η t x x t d γ d[ ( , )· ( , ) Ω ( ) ( )· ( , ) Ω [ ·( )]· Γ].t1
2 Ω Ω ΓtE     (11)

Note that a penalty term is inserted in the stress projected on the fracture in the above equation to preserve consistency with the
formulation. For the sake of simplicity, let us consider no volume forces, then ̇E is given by:

∫ ∫= + ∂ − +∂ λ u λ uη p η p d ḋ [ [ ̇ ̇ ] Ω [ ̇ · · ̇ ] Γ],t1
2 Ω ΓtE       (12)

where = + −λ λ u δγ ( )  and = p up x( )· . The power due to external loads is:
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∂ ⎤
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η p ḋ Ω .t
ΩtP  (13)

Replacing Eqs. (12) and (13) on the left hand of Eq. (9), the energy release rate can be defined using the following functional 3G :

∫ ∫= − ∂ + +∂ λ u λ uη p η p d d[ [ · ̇ ·̇ ] Ω [ ̇ · · ̇ ] Γ].t
3

1
2 Ω ΓtG       (14)

Then the problem controlled by the released energy is stated as: For some �∈ +γ , find �� �∈ × ×u λ η( ; ; ) such that
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where �̇ is the constant predefined energy release rate.
Note that this technique was developed to trace the equilibrium path when the problem under analysis presents non-linearities in

the material behaviour. During the simulation, functional 3G is only activated when a pre-defined fracture criterion, characterized by
a initial value of �̇ is reached. If the problem is elastic functional 3G is null and load or displacement control is used. Moreover, if the
simulated problem has a pure elastic regime after a dissipation, the equilibrium path methodology must be switched from the energy
release criterion presented here to load or displacement control. A detailed explanation of the procedure solution adopted in this
work can be found in the next sections.
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2.4. Solution procedure

A strategy to solve the non-linear problem described by Eq. (15) is presented here based on a continuum space approach. First, a
Taylor expansion of the functionals iG , with ∈ …i [1 3] is developed in order to define a residue function R to be solved in a classical
Newton-Raphson scheme. A general expansion of iG with respect to the variables u λ, and η can be written as:

= + ∂
⎯ →⎯⎯⎯⎯

+ ∂
⎯ →⎯⎯⎯⎯

+ ∂
⎯ →⎯⎯⎯⎯

++ + +u λ u λη η( ; ; ) ( ; ; ) | | | ,u λi n n n i n n n i n i n η i n1 1 1G G G G G H (16)

where subindex n indicates the actual increment. The higher orders terms H in Eq. (16) can be neglected and the directional
derivatives ∂

⎯ →⎯⎯⎯⎯
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,u λi iG G and ∂
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with• representing any one of the variables u λ, or η. Now, by replacing 1G and 2G in Eq. (17), the following directional derivatives are
obtained:
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To obtain the derivative of 3G , the pseudo temporal increments should be discretized. To this end, an Euler-forward scheme is
used. The symbol (•) n denotes the converged value of variable • in the previous pseudo-time step and the actual variable is denoted
with (•). Therefore, the directional derivatives of 3G are given by,
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By replacing the directional derivatives of the continuum functionals iG , given by Eqs. (18)–(26), in the expansion presented in Eq.
(16), a residue R can be defined as follows:
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It must be remarked that the above coupled problem must be solved when energy dissipation exists. Therefore, the functional 3G

in Eq. (27) is used to enforce the equilibrium path. In the elastic regime, where load or displacement control is used, the problem to
be solved can be simplified to:
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The simulation begins with a load (or displacement) control methodology characterized by the residue (28). When the released
energy reaches a pre-defined threshold �̇0, the path following technique is introduced and the residue is expanded to calculate η
taking into account functional 3G , defined in Eq. (27). For successive loads steps, the following criterion is used to estimate an
appropriate value for the release energy rate
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� �=
+

n
n

̇ ̇ ,
n n

op

it n1 (29)

where nit n and �̇ n are the number of iterations and the released energy rate of the last converged load step, respectively. The
parameter nop is the optimal number of iterations and it must be defined for each problem. If the energy release rate in an iteration is
below a certain pre-defined value �̇min, it is assumed that the problem is within an elastic regime. Under this situation, the strategy
based on the functional 3G is avoided and the problem to be solved is contracted to (28), where a load (or displacement) control
technique is activated.

The problem based on the residues presented above is numerically solved in the context of the finite element method. The main
elements needed for the discretization are presented in the next section.

3. Finite element implementation

Let >Ω |h
h 0 be a mesh family that converges exactly to Ω, where >h 0 is the characteristic element size, and let >Γ |h

h 0 be the set of
the mesh boundary that converges exactly to Γ. By considering a polynomial discretization of the domain, characterized by the
parameter >h 0, the spaces hV and hX are the approximations of the continuum spaces presented in Eq. (2), where the supra-index h
is used to denote its discrete version. Therefore, the spaces hV and hX can be expressed in a discrete manner as:

= =(Ω ) and (Γ ),h
c

h h
c d
k h2
,V P X P (30)

where ( )c d
k
,P I denotes a polynomial space of order less than or equal to k inI and the sub-indexes c and d represent a continuous or

discontinuous interpolation, respectively. Taking into account the above approximation, the displacement field u, the strain field ε
and the Lagrange multiplier λ can be written as:
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being � x t( , ) the matrix of interpolation functions for displacements and � s t( , ) the matrix of interpolation functions for Lagrange
multipliers. The matrix � � �= −+ −s s st t t( , ) ̆ ( , ) ̆ ( , ) is a jump operator that maps the displacement field u to the gap field u  and it is
introduced as follows:

� � �≈ = − =+ −u s u s s U s Ut t t t( , ) [ ̆ ( , ) ̆ ( , )]·{ } [ ( , )]·{ },h    (34)

where �+̆ and �−̆ are computed as the bulk shape function particularized in both sides of the crack lips. Consequently

�≈ =u u s Uδ δ t δ[ ( , )]·{ }.h    (35)

Replacing Eqs. (31)–(34) into Eq. (27), the following relation is obtained:
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The stiffness matrix � is splitted in an initial matrix �0 (computed during the pre process of the finite element method solver), and
�T (updated in each iteration), as follows

� � �
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η η ηη

T T
η

T
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η

T

η
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η
T

ηη
T

0
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(37)

Following the notation presented in Fig. 2, the sub-matrices of the initialization matrix �0 are explicitly expressed as:

� � � � � �∫ ∫= ∇ ∇ +
⧹

x x s st t d γ t t d[ ( , )] [ ][ ( , )] Ω [ ( , )] [ ( , )] Γ ,uu
T Ts t s h h0

Ω Γ Γh h h (38)

� � �∫= s st t d[ ( , )] [ ( , )] Γ ,uλ
T h0

Γh (39)

� � �∫= s st t d[ ( , )] [ ( , )] Γ ,λu
T h0

Γh (40)

� � � � � �= = = = = =Θ; Θ; Θ; Θ; Θ; Θ,λλ u λ u λη η ηη η η
0 0 0 0 0 0 (41)

being Θ the null matrix. Observe that the above components of the stiffness matrix are fixed in the overall simulation. The com-
ponents of the matrix �T are computed as:
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Γ
2
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{ } Ω { }.
T

ηη
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h
t h

nΩh
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Note that the matrix ⎡⎣ ⎤⎦
∂
∂
δ
t is the only element in �T that must be updated in each iteration and it is explicitly calculated in Ref.

[17]. In order to keep the work self-contained the procedure is presented in Algorithm 1.

Algorithm 1. Constitutive model integration

Input: κ γ, λ uσ δ, , ,c c n n 

Output: +δ n 1
∂
∂ +

δ
t n 1

1: ̃ = +t λ uγ·n n n 
2: if =κ 0 and ̃ ⩽+t σ‖ ‖n c then
3: =+δ 0n 1 (Perfect adhesion)
4: else if >κ 0 and ̃ ⩽ + ′+t γ κ ψ κ‖ ‖ · ( )n then

5: ̃=
+

〈 〉

+

+
′δ t

n
γ

1

n
ψ κ

κ
( ) (Unloading)

6: else if >κ 0 and ̃+ ′ < +tγ κ ψ κ· ( ) ‖ ‖n then

7: ̃
̃=

+

〈 〉+
+

δ δ · t
t

n
eq

1
‖ ‖

n
n

; δeq Solution of ̃′ + − =+tψ δ γ δ( ) · ‖ ‖ 0eq eq n (Damage)

8: end if
Derivative of δ in ̃t

9: if ̃ ⩾t 0n n (Tension) then
10: if =κ 0 and ̃ ⩽+t σ‖ ‖n c then (Perfect adhesion)

11: =∂
∂ +

Θδ
t n

x
1

2 2

12: else if >κ 0 and ̃ ⩽ + ′+t γ κ ψ κ‖ ‖ · ( )n then(Unloading)

13: �=∂
∂ + +

′
δ
t n γ1

1
ψ κ

κ
( )

14: else if >κ 0 and ̃+ ′ < +tγ κ ψ κ· ( ) ‖ ‖n then (Damage)
15: if ⩽δ δeq c then

16: �̃
̃

̃
̃

̃ ̃
̃
̃= ⎡⎣

− ⊗ ⎤⎦
+ ⎡⎣ ⎤⎦ ⊗

∂
∂ +

∂
∂

〈 〉
+ + +

+
+

δδ
t t

t
t

t
t t

t
tn

δ
eq

1 ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
eq

n
n

n
n

n
n
n

; δeq Solution of ̃′ + − =+tψ δ γ δ( ) · ‖ ‖ 0eq eq n

17: else if >δ δeq c then

18: �=∂
∂ +

δ
t n γ1

1

19: end if

N.A. Labanda et al. Engineering Fracture Mechanics 194 (2018) 319–336

326



20: end if
21: end if ̃ <t 0n n (Compression) then
22: if =κ 0 and ̃ ⩽+t σ‖ ‖n c then (Perfect adhesion)

23: =∂
∂ +

Θδ
t n

x
1

2 2

24: else if >κ 0 and ̃ ⩽ + ′+t γ κ ψ κ‖ ‖ · ( )n then(Unloading)

25: �= − ⊗∂
∂ + +

′ n n( )δ
t n γ1

1
ψ κ

κ
( )

26: else if >κ 0 and ̃+ ′ < +tγ κ ψ κ· ( ) ‖ ‖n then (Damage)
27: if ⩽δ δeq c then

28: ̃
̃
̃= ⎡⎣ ⎤⎦ ⊗

∂
∂ +

∂
∂

〈 〉+
+

δ δ;δ
t t

t
tn

eq eq
1 ‖ ‖

n
n

Solution of ̃′ + − =+tψ δ γ δ( ) · ‖ ‖ 0eq eq n

29: else if >δ δeq c then

30: �= − ⊗∂
∂ +

n n( )δ
t n γ1

1

31: else if
32: else if
33: else if

The simulation in the elastic regime must be started with a load or displacement control for the calculation of the residue:

�
� �

� �
= ⎡
⎣⎢

⎤
⎦⎥

+ +
+

{ }u λ Uδ
δΛ

( ; ) ·uu uλ

λu λλ
n n

n n
1 1

1 (51)

where � is the discrete version of the residue formulated in (28). When the path-following is activated, the stiffness matrix is
expanded to calculate η as defined in Eq. (36).

4. Numerical tests

For the numerical simulations presented in this section, a load-displacement control based on a controlled incremental parameter
was used. A prescribed parameter η is applied in the boundary conditions and its value is updated in each increment during the elastic
stage. The simulation begins by setting the control parameter in = × −η 1 10 4 and the updating rule is = ++η η η| | Δn n1 with

Fig. 4. Spurious energy dissipation. Tortuous fracture.
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= × −ηΔ 5 10 5. The released energy threshold is � = × −̇ 2 100
5 [Nmm], the minimal value of the released energy rate is

� = × −̇ 1 10min
8 [Nmm] and the parameter related to the optimal number of iterations is =n 9op , following the recommendations of

Ref. [9]. When the elastic stage appears after a dissipation, typically in snap-back phenomena, and load or displacement control needs
to be activated (following the procedure indicated in Section 2.4), the initial value of η to be considered for the control is the last
converged value from the previous dissipation stage.

4.1. Lagrange field interpolation to avoid spurious energy dissipation

Some considerations about the interpolation order of the Lagrangian field must be made. Two examples are presented as illus-
tration. The first numerical example is a simple test with a tortuous fracture where two different interpolations are chosen. A first
order continuous interpolation = (Γ )h

c
h1X P in the Lagrangian field showed in Fig. 4(a) and a first order discontinuous interpolation

= (Γ )h
d

h1X P in the Lagrangian field showed in Fig. 4(b) are considered. Material properties are presented in Table 1. A 1000 [mm]
side square is subjected to an uniaxial load in vertical direction. The problem is solved by using 43 load steps.

Results are presented in Fig. 5 where the variation of 3G in each load step is plotted. In the first case where = (Γ )h
c

h1X P , a
spurious energy release dissipation in the elastic regime, with a strong dependency of the slope on the value of the penalty parameter
γ , reaching values of 5 [N mm] approximately, can be observed in Fig. 5(a). When a discontinuous interpolation is used, the dis-
sipation in the elastic stage is negligible, corresponding to a residual value in the order of × −1 10 [N mm]11 .

For the second example, the debonding of a stiffer fiber from a softer matrix is analyzed. The structural configuration and
boundary conditions are presented in Fig. 6(a), where a unitary value of the prescribed uniformly distributed forces fp is considered.
The material properties are presented in Table 1. The problem is solved by using 42 load steps. Using a first order continuous
interpolation = (Γ )h

c
h1X P for the Lagrangian field, a spurious dissipation is once again observed in the elastic regime (Fig. 7(a)).

When a second order continuous interpolation = (Γ )h
c

h2X P is used for the Lagrangian field (Fig. 6(b)), this problem is avoided and
no spurious dissipation is observed, see Fig. 7(b). For the case represented in Fig. 6(b), the energy dissipation rate in the elastic stage
is in the order of the residual, being around × −10 [N mm]10 times of the value obtained for the Lagrangian space = (Γ )h

c
h1X P .

The numerical examples presented in this section show the main limitation of the presented method. A correct interpolation order
of the Lagrangian space must be chosen in each fracture case, proving that the released energy rate during the elastic stage is in the
order of the residue.

4.2. Mesh sensitivity of the proposed method

The following example is proposed to study the kindness of the numerical method to find by itself a simple crack path even when
an instability in its propagation occurs. Additionally, this example is used to analyse the sensitivity of the path following technique to
the mesh density. A sample of 47.5 μm side including a notch and consisting of 20 grains joined by interfaces is analysed (see
Fig. 8(a)). The geometry is generated using the algorithm presented by Talischi et al. [26]. The structural configuration and the
displacement boundary conditions considered are presented in Fig. 8(a), where up is a unitary value. The elastic parameters used for
the grains are: =E 75,000 [MPa] for Young’s modulus and =ν 0.34 for Poison ratio. The elastic threshold used for the interface is
=σ 5000 [MPa]c and different values for the fracture energy are considered. Three cell discretization consisting of triangle elements

with 6 nodes (T6) for bulk and linear elements with two nodes (L2) for the interfaces are proposed for this case (see Fig. 8(b-d)). The
properties of the three meshes are presented in Table 2. The number of load steps needed during the simulation is 203 (for Mesh N°1),
1424 (for Mesh N°2) and 1264 (for Mesh N°3).

The results of the proposed examples are plotted in Fig. 9, where the displacement corresponds to the top-right corner and the
force is the summation of the top edge reactions. The force-displacement curve for a fracture energy of =G 0.001 J/mmc

2 obtained
with the three proposed meshes are presented in Fig. 9(a). It can be seen that for the coarser meshes, N°1 and N°2, the curves present
an intermittent behaviour between snap back and forward, losing the convergence in the first case. For the finer meshes N°2 and N°3
the convergence was achieved. This fact is due to the cohesive length of the cohesive law not being resolved for the mesh N°1. A
method to avoid this phenomenon is presented in Refs. [28,29], where the adequate finite element size is determined based on the
constitutive properties of the materials. The mentioned effect is not observed when higher fracture energy values are used. For
instance, in Fig. 9(b) the results obtained for the same numerical example but using =G 0.004 J/mmc

2 are shown. The response curves
present a smother behaviour for all meshes. A strong dependence of the released energy rate functional 3G on the mesh density is
detected.

Table 1
Material properties.

Material 1 Material 2 Interface

E [MPa] 3900 86,900 –
Poisson mod. 0.37 0.23 –

σc [MPa] – – 30
Gc [N/mm] – – 30
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4.3. Perforated double cantilever beam

The following example has been proposed in Ref. [9] and it has been reproduced by other researchers [1,19,23] to simulate brittle
behaviour of a crack propagation. The objective of this example is the study of the proposed path-following method in the augmented
Lagrangian context. The proposed structure presented in Fig. 10 is a double cantilever beam with equally-spaced perforations and
unitary opposite displacements at the left corners, i.e. =u 1 [mm]p . In this structural configuration it is expected that the propagating
crack produces a snap-back in the force-displacement response. The beam is discretized using 1866 8-nodes quadrilateral (Q8)
elements with nine gauss points for bulk and 120 2-nodes linear elements (L2) with two gauss points for the interface. The Young’s
modulus is =E 100 [N/mm ]2 , the Poison’s ratio is =ν 0.3 and the critical tension is =σ 1 [N/mm ]c

2 . The problem is solved after 470
load steps and 1860 total iterations.

Fig. 5. Released energy rate in tortuous fracture.

Fig. 6. Proposed example for spurious energy dissipation analysis. Fibre-matrix debonding.
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Figs. 11 and 12 show the obtained results for a fracture energy of =G 0.0025 [N/mm]c . The force-displacement curve is plotted in
Fig. 11(a), showing a behaviour similar to that presented in other papers [9,23,10]. It can be seen that the crack instability, i.e. the
activation of the abrupt crack propagation in each solid segment, depends on its location in the structure with respect to the load
position (Fig. 14). The total released energy � versus the displacement is plotted in Fig. 11(b). The jumps of the released energy at
the ends of each instability are clearly equal to the release energy in each segment between the holes, e.g.

� = =−Δ 0.175·[mm]·1 [mm]·0.0025 [N/mm] 0.0004375 [N mm]A B . The released energy increment computed in each load step is
shown in Fig. 12(a). The load parameter increment ηΔ that represents the third independent variable, computed in each load step is
presented in Fig. 12(b). Clearly, from Fig. 12, the problem presents energy dissipation even when the snap-back is produced (blue
bars in Fig. 12(b)), showing that the energy release functional has a monotonically increasing nature. In Fig. 13 the amount of
iterations needed for each load step in the numerical procedure is presented. From this figure, it can be concluded that for the
proposed procedure, the average number of iterations per load step is half that needed by researchers, such as [19], for this classical
example.

Fig. 7. Results for spurious energy dissipation example based in a fibre-matrix debonding.

Fig. 8. Inter-granular fracture problem. Proposed polycrystal cell.

Table 2
Mesh properties used for polycrystal.

Min [μm] Max [μm] N° T6 N° L2

Mesh 1 0.137 1.78 2623 381
Mesh 2 0.137 0.521 6114 680
Mesh 3 0.0319 0.39 13194 1260
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Fig. 9. Mesh sensitivity analysis in unstable fractures controlled by energy dissipation.

Fig. 10. Perforated double cantilever beam.

Fig. 11. Results for double cantilever beam in terms of total force and total released energy.

N.A. Labanda et al. Engineering Fracture Mechanics 194 (2018) 319–336

331



4.4. Plate with hole

A square plate of 2000 [mm] side, with a non centered hole of 1000 [mm] diameter and two interfaces subjected to uniaxial tension
is presented and analyzed. The objective of this example is to analyse the behaviour of the proposed method when different properties
are used for the two interfaces. The geometry and boundary conditions of the problem are shown in Fig. 15. The value of the
uniformly distributed force is =f 1 [N]p . The elastic parameters used for bulk elements are =E 20,000 [MPa] for Young’s modulus,
=ν 0.2 for Poison ratio, the ultimate stress is =σ 3 [MPa]c and three different combinations of the fracture energy values are pre-

sented in Table 3. All cases correspond to a total released energy of 100 [N mm]. The plate is discretized by using 840 8-nodes
quadrilateral (Q8) elements with nine gauss points for bulk and 2-nodes linear elements (L2) with two gauss points for the interface,
with a total of 2756 nodes. The number of load steps needed to solve the problem is 920 for Case 1, 1224 for Case 2 and 740 for Case
3.

The stresses in the vertical direction for the analysed cases are presented in Fig. 16. The applied tension versus the vertical

Fig. 12. Results for double cantilever beam in terms of released energy per load step and the load parameter increment.

Fig. 13. Number of iterations in each load step.
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displacement of point P and the variation of the total released energy are plotted in Fig. 17. The points where the instability stage
starts are highlighted in Fig. 17(a) (Points A and B). It can be seen that for Case 1 and Case 3 the fracture modes are almost
equivalent, with less energy dissipation in the second fracture stage (Fig. 17(b)). For Case 2, the fracture mode activated is quite
different compared to the others for which, the crack propagation starts in the left interface. In this case, the instability stage is started
in point A when the fracture advances in both interfaces. After that, due to the lower fracture energy, interface N°2 breaks down
(Point B). Point C shows the last stage before the total rupture. The loading stage from point A′ in Fig. 17(b) is horizontal, showing
that the the load stage does not imply energy release. A similar example can be found in Ref. [24], but different combinations of
material fracture properties are used in this paper, showing the ability of the proposed method to deal with this context. The total
released energy variation during the damage process exhibits that the curve asymptotically approaches to the total energy of
100 [N mm], with a continuous decrease of the load parameter. This could be a limitation of the method because the total damage of
the sample can never be reached.

5. Concluding remarks

A computational fracture method based on an augmented Lagrangian functional equipped with an energy-released control has
been formulated, discretizated and discussed. The proposed path following strategy shows the ability to compute the equilibrium
path using a scalar parameter with a physical meaning (released energy) as control variable. The proposed approach is able to deal
with fracture problems even when the crack path is a priori unknown and presents a good performance in the context of mixed

Fig. 14. Vertical stress distribution in the double cantilever beam and snap-back activation.
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formulations. The proposed constraint equation 3G maintains a variational consistency, resulting in a method with a straightforward
implementation in a classical Newton-Raphson scheme.

Several examples with abrupt crack propagation were presented, including a discussion about the interpolation order in the
Lagrangian field and the presence of spurious energy release in elastic regime. It was proved that an optimal interpolation in the
Lagrangian field is mandatory to avoid spurious dissipations and it depends on the structural configuration. For tortuous fractures the
discrete spaces for the finite elements are = (Γ )h

d
h1X P , while for the case of fiber-matrix debonding they are = (Γ )h

c
h2X P . Using a

simple example based on a polycrystal topology undergoing an inter-granular fracture mechanism, the dependence of the released
energy functional on the mesh density was discussed. An intermittent snap-back is observed for coarse meshes due to the cohesive
length of the cohesive law not being resolved within the size of the considered elements. A smoother response is obtained when the
fracture energy is increased or the mesh is refined. A perforated double cantilever beam and a plate with a non centered hole
combining different fracture properties were presented and analyzed. In those examples, the model shows the ability to efficiently
control and compute the response of different types of cracks, including snap back phenomena with mixed fracture properties. The
analysis of this type of problem constitutes an original result in the bibliography. The hypothesis of monotonically increasing released
energy stated to formulate the path-following functional is verified in the presented examples. Another important feature of the
presented method is that it can accurately capture the total energy that the interfaces are capable of dissipating. In some cases, as in
the last example, this limit value is asymptotically reached. In the double cantilever beam example, it was shown that a negative load
parameter does not implies an artificial unloading, but it can involve energy dissipation. The analysis of the method ability to treat
problems related to composites materials with diffusive failure, dynamic fracture and more complex traction separation laws is left
for future works.

Fig. 15. Plate with hole.

Table 3
Material properties for plate with hole.

Interface mat. No 1 Interface mat. No 2

Case 1 =G 0.1 [N/mm]c =G 0.1 [N/mm]c
Case 2 =G 0.15 [N/mm]c =G 0.073 [N/mm]c
Case 3 =G 0.05 [N/mm]c =G 0.127 [N/mm]c
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.engfracmech.
2018.03.004.

Fig. 16. Stress in vertical direction σy.

Fig. 17. Results for the plate with a hole.
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