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a b s t r a c t 

In this work we present a Distributed Demand-Side Management system based on the 

Artificial Immune Network algorithm. It implements an intelligent, distributed and au- 

tonomous control of the customer’s Air Conditioning devices in order to meet the desired 

demand. The system is particularly adapted to tackle the Peak Load problem that appears 

in Tropical and Subtropical climates due to the use of thousands of these devices at the 

same time. The design follows the guidelines set by the Smart Grid paradigm, in the sense 

that it is fault tolerant, distributed and self-controlled. It requires minimal communication 

infrastructure when compared to a centralized system. 

The algorithm was evaluated using synthetic and real data. We define Maximal and Av- 

erage Tolerance as performance metrics, and show that the system keeps the consumption 

within 1% of the given load limit in all 5 cases. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Energy consumption, and in particular the electric energy consumption, has grown steadily over the last few years, due

to the natural increase of the population and new technologies [29] . In this new scenario it is necessary to improve the

features of the electrical grid, which brings about the Smart Grid paradigm [10,28] . This kind of electrical grid provides a

set of characteristics that allow a better use of energy, an increased control, an improvement of management adding real-

time monitoring. They also lower the maintenance costs, help in the decision-making process and providing a better electric

service, among other aspects. Moreover, Smart Grids must be auto-regenerative, able to support different types of anomalies

in the system, give a certain degree of reliability and efficiency, while always having control of the entire network stages

(Generation, Transport, Distribution and Client stage). 

Currently, one of the most influencing problem is the so-called Peak Demand or Peak Load Problem [27] . The Peak

Demand Problem consists in an overload generated by the simultaneous energy consumption of several devices connected
∗ Corresponding author at: Grupo de Investigación en Tecnologías Informáticas Avanzadas (GITIA), Facultad Regional Tucumán, Universidad Tecnológica 

Nacional, Rivadavia 1050, San Miguél de Tucumán, Tucumán, 40 0 0, Argentina. 

E-mail address: diego.lizondo@gitia.org (D. Lizondo). 

https://doi.org/10.1016/j.ins.2018.01.039 

0020-0255/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.ins.2018.01.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.01.039&domain=pdf
mailto:diego.lizondo@gitia.org
https://doi.org/10.1016/j.ins.2018.01.039


D. Lizondo et al. / Information Sciences 438 (2018) 32–45 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to the grid (in general Air Conditioning or Heating devices) in a relatively short period of time. This electric consumption

reaches critical energy levels that severely affect distribution equipments. This problem causes different types of damages

related to technical and operational issues, being sometimes irreversible or irreparable. The economic cost associated with

repairing damages or replacing burnt or broken devices is high. Other collateral effects related to this problem are the

inconveniences and discomfort caused to the consumers, gradually affecting the image of utility companies. Even in the case

where no equipment is damaged, the difference between low and peak consumption forces utility companies to oversize

several expensive aspects of the grid in order to cope with this demand. 

The Peak Load problem is complex because it changes depending on the particular population and involves different

kinds of actors and factors, and its effects cannot be entirely measured. To tackle this problem, some researches were con-

ducted to avoid the peak using different viewpoints with techniques like Spinning Reserve [9] and Load Leveling [16] , Peak

Shaving [19,20] and Battery Storage [25] . Previous research related to the Peak Load Problem can be categorized in two

approaches: top-down and bottom-up. The first mainly focuses on Generation and Transport stages, the second focuses on

distribution and client stages. Our work is inspired by the second approach with the Demand-Side Management [23,30] and

Demand Response techniques [21] . 

In this work, a heuristic algorithm based on the Artificial Immune System (AIS from now on) [14] is presented in order

to address the peak demand problem. The proposed algorithm uses the dynamic and auto-regulation capacities of the AIS

to control the energy consumption in a determined zone and time period. The algorithm controls the load in a determined

spot in the grid called the Energy Supply Node (ESN), to avoid the possible damages of an overload. Moreover, the sys-

tem provides a mechanism that allows the electric utility company to regulate and diminish the consumption in a given

area, redirecting the energy to other uses or simply saving it. The algorithm features follow the guidelines set by the Smart

Grid paradigm, in the sense that it is fault tolerant, distributed, autoregulated and self-controlled (features provided by AIS

heuristic). Other algorithms found in the relevant literature are centralized, require human supervision, and/or require an

expensive and complex communications infrastructure, but the proposed one requires minimal communication infrastruc-

ture when compared to a centralized system. This paper corresponds to a patent application, presented in No. 2016 (see

Section 7 ). 

The rest of the paper is organized as follows. In Section 2 the peak load problem is described followed by the mathemat-

ical formulation presented in Section 3 . Section 4 describes the related works and the focus of this paper. Section 5 contains

the main contribution of this article. In this section, the basic concepts of AIN are presented followed by the full description

of the proposed AIN-PS Model. Finally, Section 6 contains the results and Section 7 presents our conclusions and future

works. 

2. Peak load problem 

The electric emergency was declared as one of the major problems that should be addressed taking into account the

efficiency and the environmental impact [33] . Also, most of the aspects that influence the energy consumption have regional

validity, and the characteristics of the problem change depending on the scale, certain infrastructure, market conditions, or

even political and socio-cultural aspects [3,15] . Additionally, thermo-controllable devices are commonly associated with the

Peak Load problem, and its effects are more visible in countries with Tropical and Subtropical climates due to the utilization

of a high number of air conditioning devices. 

In the Tucumán province (Argentina), during the hot season, the average apparent temperature is about 35 °C with a

maximum of 60 °C, and 40% of Humidity [18] . This scenario holds for over 80% of the time during this period. Consequently,

the use of cooling devices is extremely high and their use increases every year. Furthermore, the houses and buildings in the

province are usually not adequately insulated relying in a wide use of Air Conditioning devices to maintain a comfortable

temperature. In fact, they are kept running for long periods of time for the heat does no drop considerably during the night.

Peak hours or in our case “peak consumption hours” in the summer span up to four hours (from 1 p.m. to roughly to 5 p.m.,

o even more). It is a long period of time of high electric consumption in about two to four months a year. 

As the installed capacity fails to meet the energy demand, there are periodical and partial denials of service, followed

by blackouts covering large areas on extreme cases. This extreme peak consumption affects and reduces the lifespan of the

nodes and equipments that provide the electric energy. In December 2015, the Argentine government in an official statement

[7] decreed the energy emergency, highlighting that although the energy production is in good shape, but the distribution

sector is severely affected by this situation. 

This problem affects not only the social and economic aspects of several countries, but it also has an impact on global

climate change: many works emphasize that Energy Management and Optimization are some of the most feasible and

proactive approaches to climate change in the short and medium term according to section two of the Kyoto Protocol. 1

Even more, in the Paris Agreement 2 one of the main Energy Efficiency Targets is to achieve at least 27% increase in energy

efficiency. Furthermore, the proposal of setting air conditioning devices to 25 °C (77 ° Fahrenheit) was evaluated by the

ClimateLab, 3 and it estimates a global CO emission saving of 194.16 Mt of CO . That amounts to an energy saving of about
2 2 

1 http://www.kyotoprotocol.com/ . 
2 http://unfccc.int/paris _ agreement/items/9485.php . 
3 http://climatecolab.org/contests/2016/industry/c/proposal/1329804 . 

http://www.kyotoprotocol.com/
http://unfccc.int/paris_agreement/items/9485.php
http://climatecolab.org/contests/2016/industry/c/proposal/1329804
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327 [TWh/year] and a cost savings of 29,500 million [USD/year] with an estimated average energy cost of 90 USD/MWh,

among other benefits. 

3. Mathematical formulation 

As a viable solution for these problems, we propose in this work a distributed control system which manages the run-

ning periods of the Air Conditioner (AC) devices. This involves working with smart ACs, or Installing appropriate control

devices. In this case, the system decides the energy consumption state of each controlled AC in order to avoid the peak

load generated in the Energy Supply Node (ESN) by their simultaneous use. So, the problem was classified as a constrained

Job Scheduling problem. These constraints are related to the state of consumption of each cooling device connected to the

electric energy provider node or ESN, and to technical characteristics of the devices. 

We restrict ourselves to the most common Air Conditioning devices in our country, but it can be easily extended to freez-

ers, refrigerators, and other appliances depending on the consumption characteristics. ACs present two energy consumption

states: Consuming or High state and Waiting or Low state. In the High state, the device freely consumes the amount of energy

that is needed (refrigeration mode). In Low mode, the energy consumed is restricted to a minimum value, usually close to

zero (Ventilation Mode). 

Another critical factor is the time during which a device remains in low mode because it is inversely related to the

user’s comfort and the peak load. Therefore, it is desirable for a device to allow a high consumption mode for as long as

possible. The system is designed to maintain a total load consumption below a predefined level. What is more, the ESN has

a maximum physical amount of energy it can provide. Beyond this limit the ESN lifespan will be affected and significantly

reduced, resulting in the partial or total damage of the equipment [5] . 

The optimization function for this problem is not clearly known and depends on a large number of factors, which could

even be random. Moreover, the function is geographically distributed, and the interaction among the related actors presents

a highly complex communication problem. Then, we define the problem as: let AC i , i = 1 . . . n , be a cooling or heating device

connected to a particular ESN, i.e. air conditioners, freezers, refrigerators or any device feasible to be controlled, attached to

an ESN, which could be a transformer, the electric supply entrance of a home, the primary supply of a building or any point

within a power conductor where the consumption must be controlled. The defined function is shown in Eq. (1) . 

T T LOW 

= min 

( 

1 

N 

N ∑ 

i =1 

(T T LM i ) 
2 

) 

(1) 

subject to the following constraints: { 

min (CT HM i (t)) ≥ MT HM, ∀ i = 1 , . . . , N 

max (CT LM i (t)) ≤ MT LM, ∀ i = 1 , . . . , N, ∀ t 
ESN LOAD (t) ≤ ESN LIM 

(t) ≤ ESN MAX , ∀ t 

where: 

• TT LOW 

is the average total time in low mode for all appliances connected to the supply node. 

• TTLM i is the total time that an appliance i was in low mode during one hour. 

• CTLM i ( t ) is equal to 0 if the appliance is On at time t . Otherwise, its value is equal to the time lapse that the device

remains unchanged in low mode and contains the t time. 

• CTHM i ( t ) is equal to 0 if the appliance is Off at time t . Otherwise, its value is equal to the time lapse that the device

remains unchanged in high mode and contains the t time. 

• MTLM is the maximum time that an appliance should be waiting until it changes its state to high. 

• MTHM is the minimum time that an appliance should remain in the high state until it changes (or not) its state to low. 

• ESN LOAD ( t ) is the ESN’s consumption in [ kWh ] at time t . This term could be depicted as the sum of the non-controlled

consumption or BaseLoad, and the controlled ACs consumption. To clarify, the BaseLoad is the consumption generated by

devices that are not controlled or limited. 

• ESN LIM 

( t ) is the maximum predefined energy consumption allowed to be provided by the ESN at time t . 

• ESN MAX is the ESN’s maximum amount of electric energy that it can physically provide. 

and 

ESN LOAD = Base LOAD (t) + 

N ∑ 

i =1 

AC _ State i (t) ∗ AC _ Consumption i (t) (2) 

where: 

• AC _ State i (t) is the state of the AC i at time t . The states is 1 if the AC is in Consuming state, otherwise is zero. 

• AC _ Consumption i (t) is the energy consumption of AC i at time t . 

• Base LOAD ( t ) is the consumption of non-controlled devices at time t . 

To summarize, the problem was described in terms of controlled devices connected to an ESN, the running behavior of

the controlled devices, the ESN consumption and its main restrictions. 
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4. Related works 

The Peak Load problem is a complex one, because it changes depending on the particular population and involves differ-

ent kinds of actors and factors, and its effects could not be entirely measured. To tackle this problem, some researches were

conducted to avoid the peak using different viewpoints. In the generation and transport stages, the Spinning Reserve [9] and

Load Leveling [16] techniques are commonly used, whereas in the distribution stage Peak Shaving [19,20] and Battery Stor-

age [25] are the most usually applied. Additionally, some approaches combine two or more of the previously mentioned

techniques, like Peak Shaving with Battery Storage [25] . 

However, all the mentioned methods and works are based on the management of suppliers and the time when these

provide energy. On the other hand, the Demand-Side Management [13] approach extends the control concept and tries

to solve the problem by introducing changes on the demand itself. Indeed, with the ability to control the consumption

or redistribute the way energy is consumed, a new view point was established. The purpose of this approach consists in

influencing or trying to affect the consumption using methods like the Demand Response or the Dynamic Response [2,24] .

Sometimes, this mechanism is applied by governments or utility companies through social policies like time restrictions or

shorter periods of device use in exchange for electric bills reductions. 

In [34] , the authors present a metaheuristic algorithm based on the Cooperative Particle Swarm Optimization to optimize

scheduling and operation of time-shiftable and power-shiftable devices in a set of smart homes of a district. The dynamics

of this approach consist in having each home (represented by a “Home Agent”) propose a schedule of running time of its

own devices and send it to the “Grid Agent”. This agent makes modifications taking into account a fitness function using the

Cooperative PSO algorithm, and it returns the fixed schedule to each home agent. Its main aim consists in making a local

optimization and through it, a global optimization depending on the aggregation of controlled zones. The only disadvantage

is that the proposed algorithm needs a central computing node that decides how to fix the proposed schedules. The commu-

nication between the nodes and the central node plays a key role. In a similar way [21] introduces a distributed algorithm

for sparse load shifting in demand-side management with a focus on the scheduling problem of residential smart appli-

ances. A Newton method is employed to accelerate the centralized coordination of demand side management strategies that

super-linearly converge to a better Nash equilibrium minimizing the peak-to-average ratio. But, a centralized unit collects

and processes data from customers’ demand to decide the optimal appliances scheduling, being necessary a bidirectional

communication infrastructure. 

Another remarkable work is the one presented in [32] where a hierarchical and distributed control strategy for thermo-

statically controlled applications (TCAs) is proposed. This work is focused on DSM and the Demand Response (DR) strategy.

The authors combine a model based prediction strategy and a customer responsive behavior model into an Improved Origi-

nal Optimal Temperature Regulation (OTR-I). In particular, they proposed the concept of Virtual Power Plant (VPP) which is

the representation of the aggregation of all the participants that are geographically close in a given region. The VPP is con-

nected with the upstream power system reducing the amount of information exchange, being the total power the only data

that should be sent to VPP. The authors said “It (the algorithm) is nearly a center-free algorithm and there is no need to col-

lect information of the DR devices or send a control signal to them”. But apparently, there is some data flow within the VPP

among system actors, and among VPPs which could mean that the system needs a certain degree of complex communica-

tion. However, it is true that the amount of information exchanged in comparison with a centralized system is considerably

reduced. 

An organizational model of the proposed system can be found in [22] . It presents some agent models of the initial

modeling phase of the ASPECS methodology to implement the AIN-PS algorithm proposed in this paper. 

As explained before, previous research related to the Peak Load Problem can be categorized in two approaches: top-down

and bottom-up. The first mainly focuses on Generation and Transport stages, the second focuses on distribution and client

stages. Our work is inspired by the second approach with the Demand-Side Management and Demand Response techniques.

5. AIN model for Peak Shaving 

In this section, a brief description of the basic concepts and the dynamics of the Artificial Immune Network (AIN) is

presented. The model and adaptation of the AIN developed to address the Peak Shaving Problem is fully described in

Section 5.2 . 

5.1. AIN model 

In the literature, several works have been inspired by nature and biology. One of the relatively new models developed

taking the human immune system as a model, which was widely applied, is the well-known Artificial Immune System (AIS)

[14] . Of the different models developed, the most relevant are the Negative Selection mechanism, Clonal Selection, Danger

Theory and the Immune Network Theory [1,6,11,26] . 

The biological immune system is mainly composed of macrophages, antibodies, and lymphocytes. These lymphocytes

can be classified into B-lymphocytes and T-lymphocytes. The first cells type is created and released by the bone marrow,

containing “Y” antibodies shape on their surface. Those antibodies are capable of recognizing specific antigens (foreign sub-

stances, cells, viruses and so on). The portion of the antigen recognized by an antibody receives the name of the epitope,
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(a) Antigen-Antibody interaction.
(b) Dynamics of the AIN.

Fig. 1. Artificial Immune Network [31] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the part of the antibody which recognizes the antigen is called paratope (see Fig. 1 (a)). The T-lymphocyte cells, ma-

turing in thymus, have the task of regulating the concentration of antibodies from B-lymphocytes and killing infected cells.

This behavior was the base to the idiotypic network stated by Jerne [17] . 

The idiotypic theory stated that there is not only interaction between antibodies and antigens, but also among anti-

bodies. So, taking this hypothesis, this kind of interaction in a large scale could be depicted as a network of interactions

which includes stimulations and suppressions. In few words, when an antibody paratope matches an epitope of the antigen,

the antigen stimulates the B-Cell and the antibody suppresses the antigen. Similarly, when an antibody recognizes another

antibody, the first one suppresses the second, and the second stimulates the first one. 

So, to resume, the bone marrow creates new antibodies that are incorporated into the immune system. The antibodies

generate interactions in the network, whose outcome is the Proliferation of those types of antibodies or their removal from

the system by their natural death. The Proliferation creates quasi-species that are mutations of the original clone antibodies,

which are inserted in the immune system (see Fig. 1 (b)). 

The Immune Network Theory was proposed by Jerne and adopted by Farmer and Varela [12] who stated its meta-

dynamics ruled by the differential Eq. (3) . 

dA i (t) 

dt 
= 

(
α

1 

N 

N ∑ 

j=1 

m i j a j (t) − α
1 

M 

M ∑ 

k =1 

m ik a k (t) + βm i − k i 

)
a i (t) (3) 

In this equation, the interaction (stimulation/suppression) among the antibodies is represented by the two first terms

in the brackets. The m ij and the m ik can be interpreted as an analogy of the grade of similarity or affinity between two

antibodies. The βm i depicts the affinity between the antibody i and the antigen. The k i is known as the death or dissipation

factor of the antibody cell. Finally, the a i represents the concentration that can be calculated using Eq. (4) . 

a i (t) = 1 / (1 + e 0 . 5 −A i (t) ) (4) 

This function receives the name of Squash Function, and its aim is to maintain the stability of the system concentration.

Thanks to the interaction between antigens–antibodies and antibody–antibody the system can be shaped as a network with

relations or connections. 

Many computational models have been developed since the Immune Network Theory was created. Those models received

the collective name of Artificial Immune Network, AIN from now on. Due to its properties and features, a wide range of

literature of application of AIN in different problems and areas can be found [6] . For example, some common uses are data

classification, pattern recognition, weather forecasting, problem optimization, among others. 

5.2. AIN model adaptation for Peak Shaving problem 

In the previous section, the basic concept of the AIN model was described to state the theoretical context. First of all,

some considerations should be taken into account in order to properly describe the AIN model for the Peak Shaving problem.

As it is well known, the Peak Shaving Problem consists in reducing the load and reaching a safe and stable level of energy.

There are some physical restrictions imposed by the power node, devices and the elements that form the electrical grid.

Additionally, those constraints change from one level of the grid to another. Then, a multilevel control system is preferred

rather than a complex one, conceived with the aim of controlling the whole grid as an entire entity. This approach is

compatible with the concept of “Microgrid” [8] and the principle of controlling small parts of the electrical grid rather than

the whole one. Fig. 2 shows a multi-level network being administrated by microgrids (MG) in the lowest levels and an

upper system controlling other aspects of the Main Grid (MMS). In our approach, we considered that a distributed control

system based on AIN could handle this problem appropriately, where each microgrid has an AIN-PS algorithm running and

managing it in an autonomous and independent manner. On the upper level, another optimization control system (possibly

another AIS with a different internal architecture) should be running. In this work, we are focus in the control system that

should be implemented by each MG. 
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Lowest Level

Upper Level

MG: Neighborhood 1

MG: Neighborhood 2

MG: Neighborhood 3

MMS: Main Management System

Fig. 2. Multi-level control system for Smart Grids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The AIN model uses a set of antibodies, maybe of different types, which interact with each other and with the antigens.

In our model, an antibody means a particular device that is currently On and consuming energy. In other words, the antibody

points out an access granted by the proposed algorithm to a device at a particular moment for a configurable period. A new

access requested by a device that needs to be turned on is represented by an antigen that appears in the AIN system. If the

request is accepted, then an antibody is cloned. 

In this first approach, we focus our attention on ACs, but this algorithm could be applied to any device susceptible

to changing its state of consumption. For now, the only controlled apparatus that will be taken into account in the model

(antibodies) are ACs, due to the fact that they can be easily modified in their consumption regime without seriously affecting

the behavior from the client’s viewpoint (preserving Human Thermal Comfort – HTC). 4 Even more, we consider that the

energy consumption of an AC is equivalent to a single unit of energy in order to simplify the AIN Peak Shaving model (AIN-

PSM) complexity. An EnergyUnit is a representative unit of the consumption measurement, and can be current [A], power

[kW], or another unit. The general case (different consumptions) is also addressed later. In this context, some simplifications

to Eq. (3) were performed. 

dA i (t) 

dt 
= 

(
α

1 

N 

N ∑ 

j=1 

a j (t) + βm i − k i 

)
a i (t) (5)

In Eq. (5) , in comparison with Eq. (3) , the term that represents the suppression of antibodies was deleted because there is

only one type of antibody, so the difference between them is equal to zero. The term that depicts the antibodies stimulation

is the m ij value. It establishes the affinity/similarity between the antibody i and the antibody j , but in this case it becomes

one since we are talking about of the same type of antibody. The first term represents the energy consumption in the ESN,

the βm i still represents the presence of an access request, and the k i depicts the natural death of cells. Finally, a i ( t ) is related

to the specific consumption of the device i . 

In our case, we consider that the electrical grid can be shaped like a directed rooted tree with nodes and connections,

where a node supplies energy to a set of nodes or power devices. In order to fulfill the energy level restriction introduced

by the ESN (see Section 3 ), some modifications to Eq. (4) were necessary. 

a i (t) = 1 / (1 + e E SN LOAD (t) −E SN LIM (t) ) (6)

• ESN LOAD ( t ) is the energy load in the ESN at time t . 

• ESN LIM 

( t ) is the max amount of energy that a particular level or ESN can handle at time t . It is the limit constraint of the

energy source. 

In the AIN model, the squash equation has the aim of controlling and maintaining the antibody concentration level. In a

similar way, the proposed Eq. (6) is used to define the maximum energy level allowed by the source node. Fig. 3 (a) shows

shape of the modified Squash function. As a result of the exchange of the terms in the exponential function, the form of

the squash function was inverted. It was done because it is desirable to reduce the energy consumption as the current level

approaches to the ESN LIM 

value. Then, as long as the load stays below the power limit, the system provides access to any

request (left side of the figure), otherwise the access is denied (right side). Although it is a fact that the algorithm requires

the ESN LOAD to make decisions, it does not imply that this is a centralized approach. The measurement taken in the ESN and
4 ANSI/ASHRAE Standard 55 (Thermal Environmental Conditions for Human Occupancy). 
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Fig. 3. Squash representative shape for the ESN and the device behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

broadcasted to the nodes (controlled devices) is all the information each node requires to make an adequate decision and

regulate its own behavior without commands from a central control. 

Following the idea that the source node has a maximum level of energy it can provide, and the current consumption

( ESN LOAD ) is the sum of each antibody consumption in a particular moment and the summed consumption of all the non-

controlled devices, Eq. (5) has to be adapted once again. 

dA i (t) 

dt 
= 

(
a totalEnergy (t) − k i 

)
a i (t) (7) 

where 

a totalEnergy (t) = 1 / (1 + e totalE nergy (t) −E SN LIM ) (8) 

and 

totalEnergy (t) = NC C (t) + 

Q ∑ 

p=1 

AbConsumption p (t) (9) 

In Eq. (9) the totalEnergy ( t ) represents the total energy that is being provided by the ESN. In other words, it is the energy

that both antibodies ( AbConsumption p ) and all other non-controlled devices ( NCC ( t )) are consuming at time t . The variable

Q ( t ) is the total number of antibodies being currently in the system or the controlled devices in consuming mode. 

The simplification on Eq. (7) corresponds to the fact that the set of antibodies and other consumptions are translated to

only one load or antibody that consumes the entire energy. That is, it represents the consumption in the ESN. Under this

hypothesis, the summation operator and the normalized parameter 1/ N are eliminated. The α value is only used to increase

or reduce the effect/speed of the immune response (since it directly affects the derivative of the response). 

All the adaptations, the analogies assumed, and the simplifications were done based on the features of the immune

systems, the problem specification and the control possibilities given by Smart Grids technologies. The algorithm has the

capability of managing the access of the devices, and it depends on the global state of the ESN related to the current

consumption of both the controlled and the non-controlled devices. 

However, in the present condition of the system, it only gives good results if the energy consumption of each device is

equivalent to a single unit of energy. In real cases, the consumption is related to the device features, and it varies in a wide

range. Furthermore, in some cases, the devices have the capability to autoregulate their consumption. In those situations,

the algorithm can have some problems upholding the constraint that the energy provided stays below a given threshold.

An example of this scenario is when the current consumption ( totalEnergy ( t )) is less than the Limit by a single unit, and

a device with energy consumption equal to two EnergyUnits requests access to the system. The behavior of the algorithm

will grant access to this device even though the ESN limit is overloaded, leading to an imminent crash. So, to deal with

this problem, the specific consumption of the device which is trying to get an access permission was introduced into the

concentration Eq. (7) , more precisely modifying the a i ( t ) multiplication term. 

a i (t) = 1 / (1 + e AbConsumption i (t) −A v ail abl eEnergy (t) ) (10) 

where 

A v ail iabl eEnergy (t) = ESN LIM 

(t) − totalEnergy (t) (11) 

Eq. (11) shows the current energy that the ESN could provide without achieving a critical or dangerous energy level. So,

in Eq. (10) the algorithm tries to evaluate what happens within the system if the particular device i with a non-unitary
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Table 1 

Set of cases used in the performance analysis of the AIN-PS Algorithm. 

Case Total E nergy Limit [%] #AC’s Consumption [EnergyUnit] Waiting T ime [min] Consuming T ime [min] 

1 
100 

75 100 1 3 3 

2 80 100 1 3 3 

3 
446 

75 100 3.7; 4.5; 5 3 3 

4 80 100 3.7; 4.5; 5 3 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consumption request access. Fig. 3 (b) is shown as an illustration of the behavior of this equation, and its shape is essentially

the same as the theoretical Squash in Fig. 3 (a). The important changes are the parameters that will be compared, the device

consumption and the energy available. The other aspects as regards the access actions (grant/deny) are the same. 

The presented AIN-PS algorithm has two dimensions: global and particular state. The first one corresponds to the vision

of the global consumption on the ESN taking into account all the devices connected and the current energy consumption.

With this first dimension, we ensure that globally the system controls the total energy provided by the ESN and the level

of energy remains below the stated limit. The second aspect is related to the particular device that tries to get access, and

in this dimension, the focus is put on the consumption of the device and whether this consumption is greater than the

currently available energy or not. 

The last part of the algorithm is the clonal process of the cells, that is how the access is managed. Some models of

artificial immune systems do not define this process, reducing the process to only copying one selected cell through a

determined criterion. In our case, we are particularly interested in this step, so the mechanism described in [4] was adopted.

nC i t = � C i t · (nC max − nC min ) + nC min � (12)

In Eq. (12) , the nC min and the nC max are the minimum and maximum cloning number of cells allowed to be cloned for

each selected antibody. The C i t is the current change of concentration calculated by each cell with the Eq. (7) . Depending

on the nC min value, the result could be negative, which represents the need of eliminating cells and the number of them

that must be suppressed in that time step. That is due to the natural behavior of the AIN, which has the property of

maintaining the concentration at a particular level. In our case, the minimum and maximum values were set to zero and

one, respectively, because this equation is the one that defines if the access will be granted or denied. We do not use

negative values in the cloning equation because we considered that if the system allowed access to a device, it must not be

revoked until the time of the access is over. A negative value would represent the need to revoke access. 

Until now, the full process to adapt the AIN to the Peak Shaving problem was presented, but a mechanism to measure

the efficiency of the algorithm is necessary. So, two metrics of performance were proposed: Tolerance MAX and Tolerance MEAN .

Both of them try to express in percentage the amount of energy that is above or below the ESN LIM 

. 

T olerance MAX = 

max (ESN LOAD ) − ESN LIM 

ESN LIM 

(13)

T olerance MEAN = 1 /T ∗
T ∑ 

t=1 

ESN LOAD (t) − ESN LIM 

(t) 

ESN LIM 

(t) 
(14)

Eq. (13) calculates the max energy or peak load over the ESN LIM 

. In our algorithm, this metric is important because

this value must be zero or the most closely possible to the ESN LIM 

value. Taking into account the constraints stated in

Section 3 and depending on the available electric energy, in some cases the energy limit might be exceeded. On the other

hand, Eq. (14) calculates the average of the difference between the ESN LOAD and the ESN LIM 

in the period, providing a more

global efficiency measure. 

6. Results 

In this section, the experimental results and analysis of four theoretical cases and one real data case (provided by the

electricity distribution company EDETsa) with synthetic results are presented, validating the performance of the proposed

algorithm described in the previous section. 

6.1. Experiments with theoretical data 

Table 1 summarizes the features that describe each experiment. The presented cases correspond to four hypothetical

scenarios. The devices considered by the system are only the controlled ACs, so it means that the Base Load was ignored.

Those ACs have two states: consuming or waiting . In the first two cases the devices consume one unit of energy when

they are in the consuming state (HighMode), while in the other cases, the consumption of the devices varies from 3.7 to 5

[EnergyUnit]. In all cases when the devices are in LowMode , their consumption is equal to zero. Moreover, after the start-up

period the ACs are set to never achieve the temperature set point and continue running until the simulation stop. 
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Fig. 4. AIN-PS system output experiment for case 1. (For interpretation of the references to color in this figure, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 (a) shows in dotted line the sum of the ACs consumption without the AIN-PS algorithm control; the horizontal

line marks the energy limit which was set to 75% (in this scenario equivalent to 75 units of energy); and finally, the solid

line curve represents the ESN load generated by the controlled ACs with the proposed algorithm. In this test, the controlled

consumption gets slightly above the limit line, because of the very strict time constraints set upon the algorithm. In other

words, since we have 100 ACs requesting to consume and only 75 are allowed, the only way this can be achieved is with a

perfect synchronization between devices. One of the most important constraints is that, after a certain configurable period,

the AC will start even if the algorithm has not allowed it. This is done to ensure the HTC. There is an apparent inverse

relationship between the amount of energy available and the number of ACs that are consuming energy in a time instance. 

In order to analyze the system behavior, we have to look at the two graphics displayed in Fig. 4 (b). On the upper one,

we can see the waiting time of each device in a whole hour of analysis. The vertical bars represent the total Waiting time

of a particular device. The horizontal line set in 15 [min] is related to the constraint the max waiting time that any device

must respect in a centralized system to reduce exactly a 25% of the peak load using a fixed schedule. In this case, with the

proposed distributed algorithm, this aim could not be fulfilled because some ACs did not get access to the system in many

times compared with other ACs, e.g. one device just remained in low consumption state for five minutes in the whole hour.

The graphic below shows the distribution of both states (HighMode in white, LowMode in black) by all the devices. The

outcomes of the algorithm show a clear distribution of the access permissions. 

In the second case, all the features remain unchanged, except for the Limit which was set to 80 [EnergyUnit]. As can be

seen, the restriction of energy available is softer than the previous case resulting in a more efficient management of the

access granting process. In this case, the consumption still gets slightly above the limit, without the peaks observed in the

previous case. 

Comparing Figs. 4 (b) and 5 (b), a difference becomes noticeable between the two time bars diagrams. Most of the ACs

were in consuming mode for less than 15 [min] (since the bar is below the red line), while a few had to wait for over 20 min

(bar ending way above the red line). This corresponds to the fact that being a distributed algorithm without transversal

communication (which increases the complexity of the communications and hence was avoided in the design stage), it is

impossible to coordinate for a more fair total time distribution. 

These two previous cases validate the behavior of the AIN-PS algorithm in controlled conditions and realistic features

changing only the value of the limit. In the following two examples, we drop the hypothesis of unitary consumption of the

ACs and proceed to consider devices with more than one level of consumption. 

In case three and four, the limit is once again set to 75% and 80%, respectively, of the total energy consumed by the 100

ACs, the Base Load is not considered, the time restrictions are the same as the previous cases, one hour of analysis, but the

ACs consumption are evenly distributed between 3.7, 4.5 and 5 [EnergyUnits]. 

As the results are similar to cases one and two, only the graphics related to the limit set to 75% are showed in Fig. 6 (a)

and (b). In the first one, the total consumption depicted with the solid line overpasses the energy limit, but it is still close

to it, as it is expected. 

Table 2 presents the Max, Average and Min consumption Tolerance, following the Eqs. (13) and ( 14 ), as well as μ, σ
and max value for each case. In this table we can see that the Tolerance MAX varies from 0.0679 (6.7%) to 0.0989 (9.8%), the

Tolerance mean between −0 . 0062 and 0.0079, and the Tolerance MIN between −0 . 078 and 0.074. The negative sign means that

the value is below the limit. 

Statistical analysis of the results was carried out regarding 100 instances of each case over one hour periods. In this

process, the initial 25 minutes were discarded to avoid the influence of the warm up time of the AIN-PS algorithm or any
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Fig. 5. AIN-PS system output experiment for case 2. (For interpretation of the references to color in this figure, the reader is referred to the web version 

of this article.) 

Fig. 6. AIN-PS algorithm output for ACs with non-unitary consumption. 

Table 2 

AIN-PS algorithm – statistical results. 

Case Max tolerance Average tolerance Min tolerance μ [ min ] σ [ min ] Max value [ min ] 

1 0.0875 0.0022 −0.0760 14.9007 0.5374 22.00 

2 0.0679 −0.0062 −0.0764 12.2953 0.6870 24.00 

3 0.0989 0.0079 −0.0781 14.6445 0.9241 23.00 

4 0.0780 −0.0 0 03 −0.0740 12.0148 0.8703 23.00 

 

 

 

 

 

 

 

 

 

start-up effect. The μ value goes from 12.01 to 14.9, σ varies between 0.53 and 0.92 and the max value from 22 to 24.

These results related to the total waiting time were fitted to a Gaussian distribution to analyze the dispersion of the system

behavior. 

In order to get a more graphical or intuitive presentation of the results for the four presented cases, we introduce Figs. 7

and 8 . Both pictures show the results are statistically similar with a minimum difference in the dispersion. Even more, the

histograms show a very close distribution between comparable cases (1 with 3 and 2 with 4). However, it is true that the

access given to the devices is not equitably distributed. This behavior brings about cases where a device was only in waiting

mode for almost three to five [min] in the whole hour, while others were in Low mode for about 20 and 25 [min]. This

situation cannot be shown in these two figures because it only displays the average waiting time and its dispersion. 

We can see in Fig. 9 a detail of the particular or typical time distribution. By sorting the max waiting time of each device

of the 100 runs, we obtained Fig. 9 (a) and (b). In both graphics, three plateaus are observed in 5, 10 and 20 [min]. In light
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Fig. 7. Waiting time histogram and fitted Gaussian distribution for AIN-PS algorithm output with unitary consumption. 

Fig. 8. Waiting time histogram and fixed Gaussian distribution for AIN-PS algorithm output with variable consumption. 

Fig. 9. Waiting time sorted for each AC in 100 experiments with limits 75% and 80%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of this situation, it is clear that the system needs some mechanisms or modifications with the aim of providing a more

equitable access distribution among the devices, avoiding scenarios where a particular device remains for a long period in

waiting mode, while the average device waits a lot less. 

6.2. Real case data experiment 

In this section, we present a case based on a year of historical data of a particular transformer. This information was

provided by he electrical Distribution company of Tucumán. The aim of these experiments is to show the AIN-PS System

behavior in one day taken from real data (one Distribution SubStation Transformer’s phase). The ESN device is a medium to

low power transformer from 13.2 [kV] to 220 [V]. The power provided is 500 [kVA], so the nominal output is 710 [A]. The

monthly average consumption is about 111.813 [kVA] and provides energy to 189 clients, which means (assuming all the 3

phases are adequately balanced) around 63 services connected to each phase. All the services attached to this transformer

are either residential or household consumption, and a few small business, which means that AC commonly used are small

split or windows type. Fig. 10 shows the typical power consumption of the selected transformer phase (left) and the DSM

strategy applied by the proposed algorithm (right). 

Fig. 10 (a) was built considering a year of data of a particular transformer in Tucumán. The Base Consumption curve was

calculated as the average daily consumption of the ten lowest curves in the year (that is, for the selected transformer

we take daily average consumption, selected the ten lowest values, and with that we took the ten lowest curves). The

Max Consumption is the curve that corresponds to the day with the highest energy load in the year, for that particular
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Fig. 10. AIN-PS system applied to one phase of a 13.2 [kV] transformer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transformer. Finally, the AC consumption is the estimated load curve calculated as the difference between the Base Load and

the Max Consumption. Using the average Base Load, we can estimate that the AC Consumption curve was generated only

by AC devices. As can be appreciated, the Base Curve at the highest peak is about 107.09 [A], and the max consumption is

almost 539.80 [A] which means that AC consumption is about 4.04 times greater than the normal consumption. Assuming

all of this consumption corresponds to the most commonly used AC device in Tucumán, 3,500 frigories split and consumes

4.45 [A], we can further estimate that there are 97 ACs running simultaneously at that moment (an average of 1.5 AC per

client). In this case, the EnergyUnit is given in Amperes. 

On the other hand, Fig. 10 (b) shows the response of the AIN-PS Algorithm to this scenario. The horizontal line is the

ESN LIM 

set to 450 [A] (corresponding to 83.3% of the highest load). The solid curve represents the regular consumption in

the ESN, and the dotted line is the curve where the system is in control. The output behavior is similar to the one presented

in Section 6.1 , where the controlled consumption slightly overpasses the limit. We can also notice that in the first half of the

day, during the morning, the consumption is the same as the original, what implies that all the devices freely consuming

energy. 

This shows that the utility company can protect its equipment and decrease the consumption to a desired level during

peak consumption hours, with a minimal intervention to the users and certainly while every single customer enjoys full

service in the rest of the house. 

7. Conclusions and future work 

In this work we presented an AIN-PS Algorithm designed to provide a Distributed Demand-Side Management based

algorithm for the Peak Load problem. The algorithm was adapted to the peak load problem in Tucumán – Argentina during

hot seasons, due to the use of thousands of Air Conditioners (AC). This algorithm uses the distributed, adaptive and auto-

regulated capacity of the AIN techniques to regulate, in a distributed and autonomous way, the electric energy demand. 

A mathematical formulation of the peak load problem generated by ACs was also stated, incorporating the constraints

related to the Energy Supply Node (ESN) and the way ACs work. The mathematical description and modifications introduced

in the algorithm as well as the influence of the different paramaters were also described in detail. 

The algorithm performance was tested in four simulated cases and in one with real data provided by the Electric Dis-

tribution Company E.D.E.T.s.a. It showed good performance in all five cases, maintaining the load slightly above the ESN

pre-established consumption limit. We understand that this effect is due to the strict problem restriction related to the HTC

of the users, and the energy available. 

The presented algorithm shows good results, but has to be improved to make the distribution of the consuming permis-

sions more equitable, so that all the customers get similar consuming and waiting times. 

It is important to notice that the only external information required by the system are changes in the consumption limit,

since all other information is strictly local in nature. This means that the system requires minimal infrastructure and flow

of data, as compared to centralized systems. It also means that it is very resilient to communication failures, since it can

function in standalone mode for as long as the limit remains valid. Finally, one important feature is that the energy can be

saved or redirected to other zones, by simply setting the limit to lower values. 

For future works, we propose the development of hierarchical or composed Artificial Immune Systems to support the

multi-level control for Smart Grids. Besides, an analysis focused on the HTC will be conducted. 
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