Nitrate photo-assimilation in tomato leaves under short-term exposure to elevated carbon dioxide and low oxygen

P. S. SEARLES* & A. J. BLOOM

Department of Vegetable Crops, One Shields Avenue, University of California, Davis, CA 95616-8746, USA

ABSTRACT

The role of photorespiration in the foliar assimilation of nitrate (NO₃⁻) and carbon dioxide (CO₂) was investigated by measuring net CO₂ assimilation, net oxygen (O₂) evolution, and chlorophyll fluorescence in tomato leaves (Lycopersicon esculentum). The plants were grown under ambient CO₂ with ammonium nitrate (NH₄NO₃) as the nitrogen source, and then exposed to a CO₂ concentration of either 360 or 700 µmol mol⁻¹, an O₂ concentration of 21 or 2%, and either NO_3^- or NH_4^+ as the sole nitrogen source. The elevated CO₂ concentration stimulated net CO₂ assimilation under 21% O2 for both nitrogen treatments, but not under 2% O₂. Under ambient CO₂ and O₂ conditions (i.e. 360 µmol mol⁻¹ CO₂, 21% O₂), plants that received NO₃⁻ had 11-13% higher rates of net O₂ evolution and electron transport rate (estimated from chlorophyll fluorescence) than plants that received NH₄⁺. Differences in net O₂ evolution and electron transport rate due to the nitrogen source were not observed at the elevated CO₂ concentration for the 21% O₂ treatment or at either CO₂ level for the 2% O₂ treatment. The assimilatory quotient (AQ) from gas exchange, the ratio of net CO₂ assimilation to net O₂ evolution, indicated more NO₃⁻ assimilation under ambient CO₂ and O₂ conditions than under the other treatments. When the AQ was derived from gross O_2 evolution rates estimated from chlorophyll fluorescence, no differences could be detected between the nitrogen treatments. The results suggest that short-term exposure to elevated atmospheric CO₂ decreases NO₃⁻ assimilation in tomato, and that photorespiration may help to support NO_3^{-1} assimilation.

Key-words: Lycopersicon esculentum; assimilatory quotient; chlorophyll fluorescence; electron transport; oxygen exchange; photorespiration.

Abbreviations: AQ_F , ratio of net CO₂ assimilation to the gross rate of O₂ evolution estimated from chlorophyll fluorescence; AQ_G , ratio of net CO₂ assimilation to net O₂ evolution; ΔAQ , difference in AQ between NO₃⁻ and NH₄⁺ treatments; J_{O2} , gross rate of O₂ evolution estimated from

Correspondence: Arnold J. Bloom. Fax: +1 530 752 9659; e-mail: ajbloom@ucdavis.edu

*Present address: CRILAR (CONICET), Entre Rios y Menoza s/n, Anillaco (5301), La Rioja, Argentina. chlorophyll fluorescence; J_{PSII} , rate of linear electron transport through photosystem II; NPQ, non-photochemical quenching; q_P , photochemical quenching.

INTRODUCTION

Foliar assimilation of nitrate (NO₃⁻) and carbon dioxide (CO₂) interact through many complex pathways (Stitt & Krapp 1999; Paul & Foyer 2001). For example, the reduction of NO_3^- through nitrite (NO_2^-) to ammonia (NH_4^+) and its subsequent assimilation to glutamate via the glutamine synthetase/glutamate oxyglutarate aminotransferase cycle (GS/GOGAT) is an energy-demanding process requiring the transfer of 10 electrons compared to four electrons for the assimilation of CO₂ to carbohydrate (Turpin, Weger & Huppe 1997). Assimilation of NO₃⁻ and CO₂ may compete for reductant such as ferredoxin that is produced during photosynthetic electron transport (Bloom et al. 2002) because NO₂⁻ reduction and the GS/GOGAT cycle both reside within the chloroplast where CO₂ assimilation occurs. Additionally, the NH4⁺ used in leaf amino acid synthesis is derived both from the primary reduction of NO_3^{-1} to NH₄⁺ and from the NH₄⁺ released during photorespiration (Keys et al. 1978; Novitskaya et al. 2002).

When C₃ plants such as barley, pea, and wheat receive NO_3^- rather than NH_4^+ as the sole nitrogen source, the rate of photosynthetic electron transport often increases (Bloom et al. 1989; De la Torre, Delgado & Lara 1991; Bloom et al. 2002). Using net O_2 evolution as the measure of electron transport, these increases tend to be light-dependent with the greatest differences found at high rather than low light. In tobacco, chlorophyll fluorescence measurements have indicated that the assimilation of NO₃⁻ can account for some percentage of electron transport even under low light conditions (Morcuende et al. 1998). Based on calculations from foliar C: N ratios, Foyer, Ferrario-Méry, & Noctor (2001) suggested that NO₃⁻ assimilation typically represents about 10% of photosynthetic electron flow although actual measurements of net O₂ evolution can lead to higher estimates for the same species (De la Torre et al. 1991).

In addition to CO_2 and NO_3^- assimilation, photorespiration expends a substantial amount of photosynthetic energy in C_3 plants. As a consequence of the specificity of RuBP carboxylase/oxygenase (Rubisco) for both CO_2 and O_2 , elevated CO_2 or low O_2 concentrations reduce photorespiration and typically lessen the electron requirement per CO_2 assimilated (Stitt 1991). The substantial decrease in photorespiration under elevated CO_2 or low O_2 concentrations also removes the demand for photoreductant (Wingler *et al.* 2000). Thus, diminished rates of photorespiration may allow for more photosynthetic energy to be used in foliar NO_3^- assimilation (Matt *et al.* 2001).

The influence of elevated atmospheric CO₂ concentration on interactions between NO3⁻ and CO2 assimilation in wheat was recently examined in our laboratory (Bloom et al. 2002). Contrary to our expectation, short-term (i.e. hours) gas exchange measurements of shoots grown at ambient CO₂ levels indicated that exposure to elevated CO₂ decreased NO₃⁻ photo-assimilation. In longer-term experiments (i.e. days), wheat plants grown under elevated CO₂ had less foliar NO₃⁻ reductase and NO₂⁻ reductase activities, and less shoot protein than plants grown under ambient CO₂. Studies on Plantago major (Fonseca, Bowsher & Stulen 1997), Nicotiana tabacum (Geiger et al. 1999), Nicotiana plumbaginifolia (Ferrario-Mèry et al. 1997), and Spinacia oleracea (Kaiser et al. 2000) have also found that longer exposures (4 h to over 2 weeks) to elevated CO_2 can inhibit NO_3^- reductase activity in shoots.

In the following study, we conducted short-term experiments to examine the influence of both low oxygen and elevated atmospheric CO₂ concentrations on foliar NO₃⁻ photo-assimilation. Low oxygen conditions provide nonphotorespiring conditions, and allow for a more direct assessment of photosynthetic energy demand by NO₃⁻ and CO₂ assimilation, particularly at ambient CO₂ concentrations, in which photorespiration is otherwise high. Nitrate assimilation was assessed using chlorophyll fluorescence measurements as well as measurements of photosynthetic gas exchange and changes in the assimilatory quotient (net CO₂ assimilation/net O₂ evolution). The assimilatory quotient, AQ, has been used successfully to assess NO₃⁻ assimilation in a number of species (Bloom *et al.* 1989; Cen, Turpin & Layzell 2001; Bloom *et al.* 2002).

MATERIALS AND METHODS

Plant cultivation

Tomato (Lycopersicon esculentum cv. Ailsa Craig) seeds were surface sterilized for 10 min in a 25% bleach solution, washed thoroughly with water, and germinated on moist cheesecloth that was suspended over aerated nutrient solution in 3 L opaque plastic containers. Two sets of five seeds were germinated each week to provide plants of the same age and size for the gas exchange measurements. The 3 L containers were placed in a controlled environment cuvette (Conviron, Winnipeg, Canada) set at 25 °C day/18 °C night with a 16 h photoperiod and ambient CO₂ concentration. The photosynthetic flux density (PFD) was 500- $600 \ \mu mol \ m^{-2} \ s^{-1}$ at plant height. After 7 to 8 d, three to five seedlings were transferred to a larger, 19 L container. The aerated nutrient solution in both the 3 L and 19 L containers included 0.2 mM NH₄NO₃, 1 mM CaSO₄, 0.65 mM K₂HPO₄, 0.35 mM KH₂PO₄, 1 mM MgSO₄, 0.6 mM K₂SO₄, 0.01 g L⁻¹ FeDPTA (sodium ferric diethylenetriaminepentaacet), and micronutrients (Epstein 1972). The nutrient solution in the 19 L containers was replenished after 7 d with a nutrient solution that was one-half strength of the original solution. Experiments were conducted on 17- to 19-day-old-plants that had two fully expanded leaves.

Laboratory protocol and experimental design

In the afternoon, approximately 15 h before an experiment, a plant was transferred from the growth chamber to the laboratory. The root system of this intact plant was sealed into an acrylic plastic cuvette in the laboratory by fitting a split rubber stopper around the stem. The root cuvette was filled with aerated nutrient solution and attached to the continuous flow nutrient system described by Nicoulaud & Bloom (1998). The nutrient solution contained either 0.2 mM KNO3 or 0.2 mM NH4Cl as the nitrogen source along with 1 mM CaSO₄ and 0.5 µM K₂HPO₄. The following morning, the terminal leaflet and two distal leaflets of the most recently expanded leaf were sealed into a single leaf gas exchange cuvette that held the leaf perpendicular below a 1000 W metal halide lamp (Wide-Lite, San Marcos, TX, USA). Copper-constantan thermocouples were placed on the undersides of the terminal leaflet and one of the distal leaflets to monitor leaf temperature. The leaf was allowed to equilibrate for 2 h at a PFD of 300 μ mol m⁻² s⁻¹ and at the CO₂ and O₂ concentrations of a specific treatment. The PFD was then reduced to $100 \,\mu\text{mol}\,\text{m}^{-2}\,\text{s}^{-1}$ for 30 min. A leaf was therefore exposed to at least 2.5 h of a particular CO₂ and O₂ concentration before gas-exchange and chlorophyll fluorescence measurements were made. As a consequence, we focused on longer-term responses rather than the transients in NO_3^- assimilation that may occur after a change in conditions (Kaiser et al. 2000).

In addition to the two nitrogen treatments (0.2 mM KNO₃ or 0.2 mM NH₄Cl), a leaf was exposed to one of four atmospheric mixtures in the leaf cuvette: a CO₂ concentration of either 360 or 700 μ mol mol⁻¹ and an O₂ concentration of either 20 (2% O_2) or 210 mmol mol⁻¹ (21% O_2). For the gas exchange measurements, six to nine replicates for each of the eight treatment combinations (nitrogen form \times CO₂ \times O₂) were performed. Chlorophyll fluorescence was measured simultaneously with gas exchange, but there was slightly less replication (n = 5) for the leaves measured at 21% O₂ due to equipment availability. Only one leaf was measured each day. The measurements were conducted at five different PFD levels (100, 300, 500, 800 and 1200 μ mol m⁻² s⁻¹) from the lowest to the highest PFD to minimize the influence of the preceding PFD on subsequent chlorophyll fluorescence measurements. The leaf was at each PFD level for about 30 min to allow for an accurate net O₂ evolution measurement using the custom O₂ analyser described below.

Gas exchange measurements

An open gas exchange system previously described by Bloom *et al.* (1989) monitored net CO_2 assimilation, net O_2

evolution, and transpiration using, respectively, a commercial non-dispersive infrared CO2 analyser (Model VIA-500R; Horiba, Irvine, CA, USA), a custom-designed O_2 analyser, and relative humidity sensors (Vaisala, Helsinki, Finland). The custom O₂ analyser contains two cells of calcia-stabilized zirconium oxide ceramic similar to those found in an Applied Electrochemistry model N-37 M (Pittsburgh, PA, USA). Platinum electrodes are located on the inside and outside of each cell at one end. When heated to 752 ± 0.01 °C in an electric furnace, these cells become selectively permeable to O₂, and a 106-nV Nernst potential per μ mol difference in O₂ concentration is generated between the two cells at a normal ambient O₂ background of 209 700 μ mol mol⁻¹ (or 20.97% O₂). As expected, the potential generated per oxygen concentration difference at $20\ 000\ \mu\text{mol}\ \text{mol}^{-1}$ (or 2% O₂) was about 10 times greater than at 209 700 μ mol mol⁻¹. In practice, this analyser can resolve O2 concentration differences to better than 2 µmol mol⁻¹ at 21 or 2% O₂ (Bloom *et al.* 1989).

Mass flow controllers (Tylan, Torrance, CA, USA) prepared the various gas mixtures. For the 21% O₂ experiments, 2% CO₂ in air from a compressed gas cylinder and CO₂-free air from a 100 L storage tank were mixed to obtain the 360 and 700 μ mol mol⁻¹ CO₂ concentrations. For the 2% O_2 experiments, the controllers mixed 2% CO_2 in nitrogen, pure oxygen, and pure nitrogen from three compressed gas cylinders. A pressure transducer (Validyne, North Ridge, CA, USA) monitored the gas flow through the leaf cuvette. The leaf cuvette was constructed from glass and Tefloncoated aluminium to minimize oxidative O_2 exchange. The gas flow in the gas exchange system was humidified in a water bubbler filled with glass beads and then partially dehumidified in a condenser cooled to 6 °C before reaching the leaf cuvette. The leaf vapour pressure deficit was maintained at approximately 10 mbar. Leaf and root solution temperatures were maintained at 25 and 20 °C, respectively.

The assimilatory quotient of gas exchange (AQ_G) , the ratio of net CO₂ assimilation to net O₂ evolution, was used as a measure of foliar NO₃⁻ assimilation. Transfer of electrons to nitrate and to nitrite during NO₃⁻ assimilation increases O₂ evolution from the light-dependent reactions of photosynthesis, while CO₂ assimilation remains similar or decreases. Thus, leaves that are photo-assimilating NO₃⁻ should exhibit a lower AQ, and differences in the AQ between NO₃⁻ and NH₄⁺ treatments (ΔAQ) should be correlated with NO₃⁻ assimilation.

Over half a century ago, Myers (1949) verified for algae that ΔAQ depended upon NO₃⁻ assimilation. We showed over a decade ago in a wild-type barley that ΔAQ reflected the difference between the NO₃⁻ absorbed and the NO₃⁻ accumulated (Bloom *et al.* 1989; Bloom, Sukrapanna & Warner 1992). Moreover, in barley mutants deficient in NO₃⁻ reductase, ΔAQs did not deviate from zero. More recently, Cen *et al.* (2001) documented that NO₃⁻ assimilation makes up about 74% of whole-plant reductant use in white lupin (*Lupinus alba*) and, thus, has a much greater effect upon ΔAQ than any other metabolic process. We have shown in wheat that ΔAQ correlates positively with nitrous oxide production (which depends on NO₃⁻ assimilation, Smart & Bloom 2001), leaf protein content, and nitrate reductase and nitrite reductase activities and that ΔAQ correlates negatively with accumulation of free NO₃⁻ (Bloom *et al.* 2002). In summary, all available data support that ΔAQ provides a real-time and continuous measure of NO₃⁻ assimilation.

Chlorophyll fluorescence measurements

A PAM 101 fluorometer (H. Walz GmbH, Effeltrich, Germany) equipped with a xenon-arc lamp to provide a saturating light pulse (10 000 μ mol m⁻² s⁻¹ for 1 s) assessed chlorophyll fluorescence of the terminal leaflet. Steadystate fluorescence (F_s) and maximum fluorescence (F_m') were recorded at each PFD level on a chart recorder. The quantum efficiency of linear electron transport through photosystem II (ϕ_{PSII}) was calculated as $(F_m' - F_s)/F_m'$ according to the method of Genty, Briantais, & Baker (1989). The rate of linear electron transport through PSII $(J_{\rm PSII})$ was then estimated as $(\phi_{\rm PSII} \cdot \alpha \cdot 0.5)$, where the coefficient of leaf absorptance of PFD (α) was assumed to be 0.85 and the factor 0.5 was used to account for the partitioning of energy between PSII and PSI. The assumption that $J_{PSII} = \phi_{PSII} \cdot 0.85 \cdot 0.5$ is standard (Maxwell & Johnson 2000).

The J_{PSII} is divided by 4, based on 4 e⁻ transported per O₂ evolved, to estimate the gross rate of O₂ evolution (J_{O2}) (Edwards & Baker 1993). To calculate photochemical (q_P) and non-photochemical (NPQ) quenching at each PFD level, the maximum quantum efficiency of PSII [$F_V/F_m = (F_m - F_o)/F_m$] was measured in the dark before the experiment began. The q_P and NPQ were calculated as $(F_m' - F_s)/(F_m' - F_o)$ and $(F_m - F_m')/F_m$, respectively.

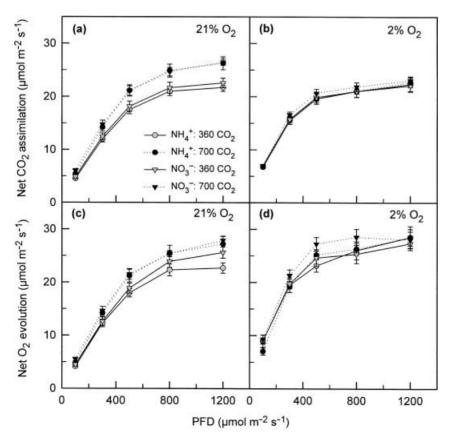
Using the simultaneous measurements of gas exchange and chlorophyll fluorescence, an AQ_F was determined using the ratio of net CO₂ assimilation to J_{O2} . This AQ is similar to that described earlier except that the O₂ evolution for AQ_F reflects a gross rate rather than a net rate.

Statistical analysis

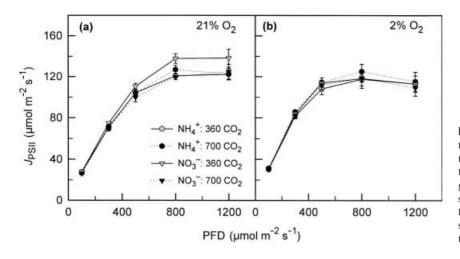
A repeated measures analysis of variance was performed using the mixed procedure in SAS (PROC MIXED; SAS Institute, Cary, NC, USA) to investigate the effects of nitrogen form (N), CO₂ treatment, O₂ treatment, and PFD on the gas exchange and fluorescence parameters. The PFD was considered to be a repeated factor since each leaf was measured at all five levels of PFD. Natural log or square root transformations were used where appropriate to normalize the data for a given dependent variable. Effects of the treatments and their interactions were considered significant when P = 0.05 and are presented in Table 1.

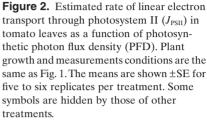
RESULTS

Net CO_2 assimilation at the higher PFD levels was greater under elevated CO_2 (700 µmol mol⁻¹) than ambient CO_2 (360 µmol mol⁻¹) for both N treatments under normal

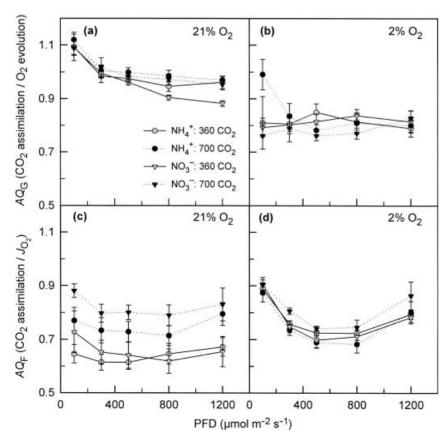

Table 1. Analyses of variance for gas exchange and chlorophyll fluorescence parameters of tomato leaves under two nitrogen sources (0.2 mM KNO₃, 0.2 mM NH₄Cl), two CO₂ concentrations (360 μ mol mol⁻¹, 700 μ mol mol⁻¹), two O₂ concentrations (2%, 21%), and at five different irradiance (PFD) levels

Source of variation	Net CO ₂ uptake	Net O ₂ evolution	$AQ_{\rm G} \left({\rm CO}_2 / {\rm O}_2 \right)$	$J_{\rm PSII}$	$AQ_{\rm F} \left({\rm CO}_2/J_{\rm O2}\right)$	NPQ	q_{P}
N							
O ₂		**	**		**		**
$N \times O_2$							
CO ₂	**	*			**	**	
$N \times CO_2$							
$O_2 \times CO_2$	*				**	*	
$N \times O_2 \times CO_2$			*				
PFD	**	**	**	**	**	**	**
$N \times PFD$							
$O_2 \times PFD$	**	**	**	**	**	**	**
$N \times O_2 \times PFD$							
$CO_2 \times PFD$	**	*	*				
$N \times CO_2 \times PFD$			**				
$O_2 \times CO_2 \times PFD$	*		**				
$N \times O_2 \times CO_2 \times PFD$						*	

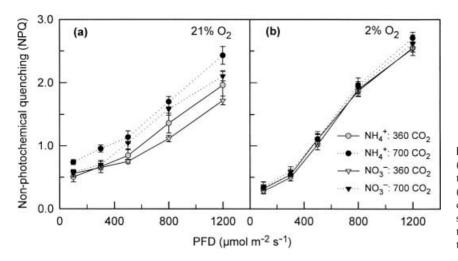

Statistically significant main effects and interactions are shown as: $*P \le 0.05$, $**P \le 0.01$.


atmospheric O₂ (21%) (Fig. 1a). In contrast, net CO₂ assimilation was not enhanced by elevated CO₂ under 2% O₂ (Fig. 1b). Relative to normal atmospheric O₂, 2% O₂ stimulated net CO₂ assimilation under ambient CO₂ at low PFD, but no difference was apparent at high PFD. All of the above responses contributed to the three-way $O_2 \times CO_2 \times PFD$ interaction ($P \le 0.05$) in Table 1.

At the higher PFD levels, net O_2 evolution was greater under elevated CO_2 than ambient CO_2 across both O_2 levels ($CO_2 \times PFD$; P = 0.05), although the difference was more pronounced at 21% O_2 than 2% O_2 (Fig. 1c & d). The greater net O_2 evolution under elevated CO_2 versus ambient CO_2 at 21% O_2 in part reflects the greater rate of net CO_2 assimilation under elevated CO_2 .


Figure 1. Net CO₂ assimilation and net O₂ evolution in tomato leaves as a function of photosynthetic photon flux density (PFD). Plants were grown in controlled environmental chambers under ambient CO₂ (360 μ mol mol⁻¹) and O₂ (21%) conditions, and then measured at 360 (light symbols) or 700 (dark symbols) μ mol mol⁻¹ CO₂ and under 2% (panels b & d) or 21% (panels a & c) O₂. Either NH₄⁺ (circles) or NO₃⁻ (triangles) was the sole nitrogen source during measurements. The means are shown ±SE for six to nine replicates per treatment. Some symbols are hidden by those of other treatments.

Net O_2 evolution and J_{PSII} estimated from chlorophyll fluorescence were both used to assess electron transport rate. Nitrogen form by itself (i.e. at all PFD levels and under all CO₂ and O₂ treatments) did not have a statistically significant effect on either net O₂ evolution or J_{PSII} (Table 1). Net O₂ evolution at the highest PFD level under ambient CO₂ and 21% O₂, however, was slightly higher (11%) for the NO₃⁻ than the NH₄⁺ treatment (Fig. 1c). Similarly, J_{PSII} at the two highest light levels under ambient CO₂ and 21% O₂ was slightly higher (11–13%) for the NO₃⁻ than the NH₄⁺ treatment (Fig. 2a). Under ambient CO₂ and 2% O₂, neither net O_2 evolution (Fig. 1d) nor J_{PSII} (Fig. 2b) differed significantly between the N treatments.


The assimilatory quotients of gas exchange (AQ_G) were calculated at each PFD level using simultaneous measurements of CO₂ and O₂ exchange to assess NO₃⁻ assimilation. The AQ_G is the ratio of net CO₂ assimilation to net O₂ evolution, and differences in AQ_G under the two nitrogen sources should reflect the amount of NO₃⁻ assimilation. Under high PFD and ambient atmospheric conditions (21% O₂, 360 µmol mol⁻¹ CO₂), the AQ_G was lower in the NO₃⁻ than the NH₄⁺ treatment (Fig. 3a). No response to the

thetic photon flux density (PFD). The AQ is calculated as the ratio of net CO₂ assimilation to either net O₂ evolution from gas exchange (AQ_G) or estimated gross O₂ evolution (J_{O2}) from chlorophyll fluorescence (AQ_F). Plant growth and measurement conditions are the same as Fig. 1. The means are shown ±SE for five to nine replicates per treatment. Some symbols are hidden by those of other treatments.

Figure 3. The assimilatory quotient (AQ)

in tomato leaves as a function of photosyn-

Figure 4. Non-photochemical quenching (NPQ) of chlorophyll fluorescence as a function of photosynthetic photon flux density (PFD). Plant growth and measurement conditions are the same as Fig. 1. The means are shown \pm SE for five to nine replicates per treatment. Some symbols are hidden by those of other treatments.

N treatments was apparent under elevated CO₂ at 21% O₂. This indicates greater NO₃⁻ assimilation under ambient CO₂ than under elevated CO₂ at high PFD. Under 2% O₂, the AQ_G was not affected by N form (Fig. 3b). These results are highlighted in Table 1 by the N × O₂ × CO₂ ($P \le 0.05$) and the N × CO₂ × PFD ($P \le 0.01$) interactions. In addition to these interactions, the AQ_G was significantly greater under 21% O₂ than 2% O₂ ($P \le 0.01$).

An assimilatory quotient (AQ_F) was also calculated as the ratio of net CO₂ assimilation to the estimated gross rate of O₂ evolution (J_{O2}) from chlorophyll fluorescence. In contrast to AQ_G , no differences in AQ_F were apparent due to the N treatments (see Discussion). The AQ_F was influenced by CO₂ and O₂ concentration (CO₂ × O₂; $P \le 0.01$). The AQ_F values at 21% O₂ were consistently lower under ambient CO₂ than under elevated CO₂, whereas the AQ_F values at 2% O₂ were fairly similar to elevated CO₂ at 21% O₂ (Figs 3c & d). This indicates a greater number of electrons per CO₂ fixed under ambient CO₂ and 21% O₂ than under diminished (elevated CO₂, 21% O₂) or non-photorespiring conditions (2% O₂).

The results for non-photochemical quenching (NPQ) included a complex four-way $N \times O_2 \times CO_2 \times PFD$ interaction (Table 1, $P \leq 0.05$). The NO_3^- treatment had lower values of NPQ than the NH_4^+ treatment at 21% O_2 with the response varying by the level of CO_2 and PFD (Fig. 4a). Lower NPQ in the NO_3^- treatment was apparent only at high PFD under ambient CO_2 , whereas NPQ was lower at all PFD levels under elevated CO_2 . No differences in NPQ occurred at 2% O_2 . Photochemical quenching (q_P) was not affected by the N treatments (Table 1; data not shown).

DISCUSSION

Photorespiration expends a considerable amount of reductant and ATP from photosynthetic electron transport to reassimilate NH_4^+ and to refix CO_2 (Leegood *et al.* 1995; Wingler *et al.* 2000). Similarly, photo-assimilation of $NO_3^$ to NH_4^+ oxidizes NAD(P)H and reduced ferredoxin. Thus, if a leaf has limited amounts of these reductants, one might expect the highest rates of NO₃⁻ photo-assimilation to occur under high light and non-photorespiring conditions. As expected, we observed NO₃⁻ photo-assimilation in tomato at high, but not at low PFD, based on differences in AQ_G between NO₃⁻ and NH₄⁺ treatments (ΔAQ). However, NO₃⁻ assimilation was apparent only under ambient CO₂ (360 µmol mol⁻¹) and O₂ (21%) conditions, which promote photorespiration, and not under conditions where photorespiration was diminished (700 µmol mol⁻¹ CO₂, 21% O₂) or negligible (2% O₂). These results are consistent with those of our short-term gas exchange experiments with wheat in which elevated CO₂ concentrations inhibited the photo-assimilation of NO₃⁻ at 21% O₂ (Bloom *et al.* 2002).

Under ambient CO_2 and O_2 conditions, the net O_2 evolution due to NO₃⁻ assimilation at the highest PFD level was about 10% based on the AQ values from gas exchange $(AQ_{\rm G})$. Nitrate assimilation was not clearly reflected in the AQ values calculated from net CO₂ assimilation and gross O_2 evolution from chlorophyll fluorescence (AQ_F) (Table 1). Whereas net CO_2 and O_2 exchange were measured in parallel over the same leaf area, chlorophyll fluorescence was measured in the centre of only one of the three tomato leaflets. This and other factors such as slight differences in irradiance over the surface of the leaflets may complicate comparisons of chlorophyll fluorescence measured on a small area of the leaf with the whole-leaf gas exchange measurements (Haupt-Herting & Fock 2000; Ruuska et al. 2000). Simultaneous measurements of gas exchange and chlorophyll fluorescence in our laboratory on maize leaves (Zea mays) show better agreement between $AQ_{\rm G}$ and $AQ_{\rm F}$ (Asaph Cousins & Arnold Bloom, unpublished results). It is unlikely that estimates of NO_3^- assimilation were biased due to the use of net O₂ exchange rather than gross O₂ evolution through photosystem II since both measures of O₂ evolution were 11–13% higher under the NO_3^- than the NH_4^+ treatment under ambient CO_2 and O_2 concentrations.

Values of AQ from gas exchange measurements of leaves and entire shoots (AQ_G) commonly range between 0.8 and 1.2 (e.g. Kaplan & Bjorkman 1980; Cen *et al.* 2001; Smart & Bloom 2001; Bloom *et al.* 2002). Theoretically, AQ_G can reach as high as 1.33 if a large proportion of the carbon assimilated enters into organic acids, free amino acids, or nucleic acids, whereas AQ_G drops below 1.0 if the shoots are assimilating NO₃⁻ or if a large proportion of the carbon assimilated enters protein, lipids, or lignin (Kaplan & Bjorkman 1980; Cen *et al.* 2001). Our AQ_G values for tomato were 0.88–1.12 under 21% O₂ and slightly lower, 0.76–0.99, under 2% O₂. Previous studies have also reported that AQ_G declines under 2% O₂ (Fock, Hilgenberg & Egle 1972; Kaplan & Bjorkman 1980).

For many of our treatments, AQ_G and AQ_F declined as PFD increased from 100 to 300 μ mol m⁻² s⁻¹ (Fig. 3). This might reflect a shift in the balance between respiratory O₂ consumption and CO₂ production as light levels increased from just above the compensation point (Hoefnagel, Atkin & Wiskich 1998). Another possibility is that plants might allocate a greater proportion of their carbon to nucleic or amino acids when operating near the light compensation point and might generate relatively more lignin or lipids under increasing light levels. Clearly, changes in AQ that are independent of nitrogen source deserve further examination.

In C₃ plants, a doubling of CO₂ concentration typically increases carbon fixation by 25% or more in short-term studies under 21% O₂ (Stitt 1991; Curtis 1996). Net CO₂ assimilation in our study increased by about 20% at the higher PFD levels when CO₂ was doubled under 21% O₂ (Fig. 1a). No stimulation of net CO₂ assimilation occurred under 2% O₂ at high PFD (Fig. 1b) possibly due to a limitation on the rate of photosynthesis by end product formation, primarily starch and sucrose synthesis. End product limitation appears to be common in tomato (Sage & Sharkey 1987; Micallef *et al.* 1995) and occurs under low O₂, high CO₂, and high PFD conditions that favour high rates of triose phosphate production by the chloroplast (Häusler, Schlieben & Flügge 2000).

There are several factors that might help to explain why NO_3^- assimilation was only apparent under ambient CO_2 and O_2 conditions:

- 1 The re-assimilation of NH₃ produced by the photorespiratory nitrogen cycle is essential for maintaining nitrogen status (for a review, see Wingler *et al.* 2000). If the recycling of NH₃ is inefficient and leaf emissions of NH₃ are high as a consequence, then an acceleration of primary NO₃⁻ assimilation would be needed to balance or even overcompensate for this loss. Leaf NH₃ emissions, however, are considered to be negligible relative to photorespiratory NH₃ production (Mattsson *et al.* 1997; Schjoerring *et al.* 2000). Thus, it is unlikely that an acceleration of NO₃⁻ assimilation occurred to account for NH₃ loss.
- 2 A lowering of photorespiratory capacity in barley mutants deficient in glycine decarboxylase leads to an enhanced reduction state and over-energization of chloroplasts (Igamberdiev *et al.* 2001). In contrast, photorespiration in wild-type plants serves as an important redox

transfer mechanism that increases the cytosolic NADH/ NAD ratio via the export of malate from the chloroplast as described by Backhausen, Kitzmann & Scheibe (1994). Because the first step of NO_3^- assimilation (i.e. the reduction of NO_3^- to NO_2^-) occurs in the cytosol and uses NADH from the malate shuttle, this may explain why we observed NO_3^- assimilation to be greater when photorespiration was highest, that is, under ambient CO_2 and 21% O_2 .

- **3** In addition to the malate shuttle, reductant for the NO₃⁻ to NO₂⁻ reaction can be provided by the conversion of triose phosphate to organic acids in the cytosol (Noctor & Foyer 1998). Triose phosphate is also an intermediate in the formation of sucrose and starch. Given the apparent end product limitation in our study on the rate of photosynthesis by starch and sugar formation under diminished photorespiratory conditions, one might expect that more triose phosphate would have been diverted from sucrose production to the production of organic acids and NADH for NO₃⁻ assimilation under 2% O₂. However, this did not seem to occur based on the lack of apparent NO₃⁻ assimilation under 2% O₂ in our study.
- 4 Nitrate photo-assimilation may be a means of photoprotection from high irradiance (Zhu *et al.* 2000). In our study, non-photochemical quenching (NPQ) at high irradiance was indeed lower when plants received $NO_3^$ rather than NH_4^+ under ambient CO_2 and O_2 conditions. However, NPQ was also lower at elevated CO_2 and 21% O_2 .

Of these possibilities, increased cytosolic NADH due to photorespiration (hypothesis B) appears to best explain the higher rates of NO_3^- assimilation under ambient CO_2 and O_2 conditions. As indicated above, inefficiencies in photorespiratory NH₃ recycling, conversion of triose phosphate to organic acids and NADH, and nitrate assimilation as a means of photoprotection seem unlikely to explain the results based on previous studies or the results presented in this study.

In addition to tomato, NO₃⁻ assimilation has previously been shown to decrease under elevated CO₂ in wheat (Bloom et al. 2002). Gas exchange measurements, NO₃⁻ reductase activity, shoot protein, and shoot biomass of wheat plants grown under either ambient or elevated CO₂ and either NH4⁺ or NO3⁻ as a nitrogen source all indicated an inhibition of NO₃⁻ assimilation under elevated CO₂. In another recent study on wheat, Novitskaya et al. (2002) found no consistent trends in leaf amino acid levels with short-term exposure to various CO₂ concentrations, but suggested that NO3⁻ assimilation might increase under negligible photorespiration $(2\% O_2)$ based on trends in leaf malate levels. Surprisingly, net CO2 assimilation in this second study did not increase under elevated CO₂ even though the plants were grown at ambient CO₂ levels. Distinct approaches as well as differences in conditions, such as plant age and nutrient levels that can influence NO3⁻ assimilation (Geiger et al. 1998; Geiger et al. 1999), may help to explain some of the discrepancies among these studies on wheat.

In conclusion, conditions that diminish photorespiration, either elevated CO_2 or low O_2 limited leaf NO_3^- photoassimilation in short-term experiments on tomato. Consequently, complex interactions between photorespiratory metabolism and NO_3^- assimilation may be more important than previously recognized in plant leaves.

ACKNOWLEDGMENTS

We thank Carrie Louie and Alan Tan for their technical assistance; Robert Pearcy for use of his chlorophyll fluorometer; and Asaph Cousins, Werner Kaiser, Shimon Rachmilevitch, and David Smart for their critical review of the manuscript. This work was supported by the National Science Foundation under Grant IBN-99–74927.

REFERENCES

- Backhausen J.E., Kitzmann C. & Sheibe R. (1994) Competition between electron acceptors in photosynthesis: regulation of the malate valve during CO₂ fixation and nitrite reduction. *Photo*synthesis Research **42**, 75–86.
- Bloom A.J., Caldwell R.M., Finazzo J., Warner R.L. & Weissbart J. (1989) Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. *Plant Physiology* **91**, 352–356.
- Bloom A.J., Smart D.R., Nguyen D.T. & Searles P.S. (2002) Nitrogen assimilation and growth of wheat under elevated carbon dioxide. *Proceedings of the National Academy of Sciences of the* USA 99, 1730–1735.
- Bloom A.J., Sukrapanna S.S. & Warner R.L. (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. *Plant Physiology* **99**, 1294–1301.
- Cen Y.-P., Turpin D.H. & Layzell D.B. (2001) Whole-plant gas exchange and reductive biosynthesis in white lupin. *Plant Physiology* **126**, 1555–1565.
- Curtis P.S. (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. *Plant, Cell and Environment* **19**, 127–137.
- De la Torre A., Delgado B. & Lara C. (1991) Nitrate-dependent oxygen evolution in intact leaves. *Plant Physiology* 96, 898–901.
- Edwards G.E. & Baker N.R. (1993) Can CO₂ assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? *Photosynthesis Research* **37**, 89–102.
- Epstein E. (1972) Mineral Nutrition of Plants: Principles and Perspectives. John Wiley & Sons Inc, New York, USA.
- Ferrario-Mèry S., Thibaud M.C., Betsche T., Valadier M.H. & Foyer C.H. (1997) Modulation of carbon and nitrogen metabolism, and of nitrate reductase, in untransformed and transformed *Nicotiana plumbaginifolia* during CO₂ enrichment of plants grown in pots and in hydroponic culture. *Planta* 202, 510– 521.
- Fock H., Hilgenberg W. & Egle K. (1972) Kohlendioxid- und sauerstoff-gaswechsel belichteter blatter und die CO₂/O₂-quotienten bei normalen und niedrigen O₂-partialdrucken. *Planta* **106**, 355–361.
- Fonseca F., Bowsher C.G. & Stulen I. (1997) Impact of elevated atmospheric CO₂ on nitrate reductase transcription and activity in leaves and roots of *Plantago major*. *Physiologia Plantarum* **100**, 940–948.
- Foyer C.H., Ferrario-Mery S. & Noctor G. (2001) Interactions between carbon and nitrogen metabolism. In *Plant Nitrogen*

(eds P.J. Lea & J.-F. Morot-Gaudry), pp. 237–254. Springer-Verlag, Berlin, Germany.

- Geiger M., Haake V., Ludewig F., Sonnewald U. & Stitt M. (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. *Plant, Cell and Environment* 22, 1177–1199.
- Geiger M., Walch-Liu P., Engels C., Harnecker J., Schulze E.D., Ludewig F., Sonnewald U., Scheible W.R. & Stitt M. (1998) Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids in young tobacco plants. *Plant, Cell and Environment* 21, 253–268.
- Genty B., Briantais J.-M. & Baker N.R. (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. *Biochimica et Biophysica Acta* **990**, 87–92.
- Haupt-Herting S. & Fock H.P. (2000) Exchange of oxygen and its role in energy dissipation during drought stress in tomato plants. *Physiologia Plantarum* **110**, 489–495.
- Häusler R.E., Schlieben N.H. & Flügge U.-I. (2000) Control of carbon partitioning and photosynthesis by the triose phosphate/ phosphate translocator in transgenic tobacco plants (*Nicotiana tabacum* L.). II. Assessment of control coefficients of the triose phosphate/phosphate translocator. *Planta* **210**, 383–390.
- Hoefnagel M.H.N., Atkin O.K. & Wiskich J.T. (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. *Biochimica et Biophysica Acta* 1366, 235–255.
- Igamberdiev A.U., Bykova N.V., Lea P.J. & Gardestrom P. (2001) The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase. *Physiologia Plantarum* **111**, 427–438.
- Kaiser W.M., Kandlbinder A., Stoimenova M. & Glaab J. (2000) Discrepancy between nitrate reduction rates in intact leaves and nitrate reductase activity in leaf extracts: what limits nitrate reduction *in situ*? *Planta* **210**, 801–807.
- Kaplan A. & Bjorkman O. (1980) Ratio of CO₂ uptake to O₂ evolution during photosynthesis in higher plants. *Zeitscrift für Planzenphysiology* **96**, 185–188.
- Keys A.J., Bird I.F., Cornelius M.J., Lea P.J., Miflin B.J. & Wallsgrove R.M. (1978) Photorespiratory nitrogen cycle. *Nature* 275, 741–743.
- Leegood R.C., Lea P.J., Adcock M.D. & Häusler R.E. (1995) The regulation and control of photorespiration. *Journal of Experimental Botany* 46, 1367–1414.
- Matt P., Geiger M., Walch-Liu P., Engels C., Krapp A. & Stitt M. (2001) Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. *Plant, Cell and Environment* 24, 1119–1137.
- Mattsson M., Häusler R.E., Leegood R.C., Lea P.J. & Schjoerring J.K. (1997) Leaf-atmosphere NH₃ exchange in barley mutants with reduced activities of glutamine synthetase. *Plant Physiol*ogy **114**, 1307–1312.
- Maxwell K. & Johnson G.N. (2000) Chlorophyll fluorescence: a practical guide. *Journal of Experimental Botany* 51, 659–668.
- Micallef B.J., Haskins K.A., Vanderveer P.J., Roh K.-S., Shewmaker C.K. & Sharkey T.D. (1995) Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. *Planta* **196**, 327–334.
- Morcuende R., Krapp A., Hurry V. & Stitt M. (1998) Sucrosefeeding leads to increased rates of nitrate assimilation, increased rates of alpha-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tobacco leaves. *Planta* 206, 394–409.

- Myers J. (1949) The pattern of photosynthesis in *Chlorella*. In *Photosynthesis in Plants* (eds J. Franck & W.E. Loomis), pp. 349–364. Iowa State College Press, Ames, IA, USA.
- Nicoulaud B.A.L. & Bloom A.J. (1998) Ammonium does not induce ammonium absorption in tomatoes. *Journal of the American Society for Horticultural Science* **123**, 787–790.
- Noctor G. & Foyer C.H. (1998) A re-evaluation of the ATP: NADPH budget during C₃ photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? *Journal of Experimental Botany* **49**, 1895–1908.
- Novitskaya L., Trevanion S.J., Driscoll S., Foyer C.H. & Noctor G. (2002) How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis. *Plant, Cell and Environment* 25, 821–835.
- Paul M.J. & Foyer C.H. (2001) Sink regulation of photosynthesis. Journal of Experimental Botany 52, 1383–1400.
- Ruuska S.A., Badger M.R., Andrews J.T. & von Caemmerer S. (2000) Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. *Journal of Experimental Botany* 51, 357–368.
- Sage R.F. & Sharkey T.D. (1987) The effect of temperature on the occurrence of O_2 and CO_2 insensitive photosynthesis in field grown plants. *Plant Physiology* **84**, 658–664.
- Schjoerring J., Husted S., Mäck G., Nielson K.H., Finneman J. & Mattsson M. (2000) Physiological regulation of plant-atmosphere exchange. *Plant and Soil* 221, 95–102.

- Smart D.R. & Bloom A.J. (2001) Wheat leaves emit nitrous oxide during nitrate assimilation. *Proceedings of the National Acad*emy of Sciences of the USA 98, 7875–7878.
- Stitt M. (1991) Rising CO₂ levels and their potential significance for carbon flow in photosynthetic cells. *Plant, Cell and Environment* 14, 741–762.
- Stitt M. & Krapp A. (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. *Plant, Cell and Environment* 22, 583– 621.
- Turpin D.H., Weger H.G. & Huppe H.C. (1997) Interactions between photosynthesis, respiration and nitrogen assimilation. In *Plant Metabolism* (eds D.T. Dennis, D.H. Turpin, D.D. Lefebve & D.B. Layzell), pp. 509–524. Addison-Wesley-Longman Ltd., Harlow, UK.
- Wingler A., Lea P.J., Quick W.P. & Leegood R.C. (2000) Photorespiration: metabolic pathways and their role in stress protection. *Philosophical Transactions of the Royal Society of London B* 355, 1517–1529.
- Zhu Z., Gerendás J., Bendixen R., Schinner K., Tabrizi H., Sattelmacher B. & Hansen U.-P. (2000) Different tolerance to light stress in NO₃⁻- and NH₄⁺-grown Phaseolus vulgaris L. Plant Biology 2, 558–570.

Received 18 February 2003; received in revised form 3 March 2003; accepted for publication 10 March 2003