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Abstract

It is well known that a suggestive relation exists that links Schrödinger’s equation (SE) to the

information-optimizing principle based on Fisher’s information measure (FIM). We explore here

an approach that will allow one to infer the optimal FIM compatible with a given amount of prior

information without explicitly solving first the associated SE. This technique is based on the virial

theorem and it provides analytic solutions for the physically relevant FIM, that which is minimal

subject to the constraints posed by the prior information.

KEYWORDS: Information Theory, Fisher’s Information measure, Legendre transform, Virial the-

orem.
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I. INTRODUCTION

Although Fisher’s information measure (FIM) I dates from the 20’s, it has attracted intense

attention from physicists only since the mid-90’s [1–3]. Interest in FIM’s physical appli-

cations [3–9] has been growing exponentially since the appearance of Frieden and Soffer’s

seminal paper [5]. A very small, and certainly not exhaustive sample is that of Refs. [10–24].

The mathematical problem of extremizing I under given constraints has proved to be relevant

in connection with several scenarios related to quantum mechanics and statistical physics,

as the above cited references indicate. We intend to exhibit novel links between I and the

Schrödinger equation that, via the virial theorem, lead in natural fashion to a differential

equation for I. Such equation, that has an analytical solution, encodes the available prior

knowledge concerning the system at hand in terms of adequately selected expectation values.

Our solution adds to the rather large Fisher literature a general, explicit expression for that

particular FIM IMin that arises out of any constrained I−extremization problem.

To better understand why this is of importance one should recall that Fisher’s information

and Shannon’s entropy play complementary roles [4]. The former is convex, the later concave.

When one grows, the other diminishes, etc. The associated Shannon’s MaxEnt problem has

as its solution, always, an exponential form that contains those physical quantities whose

mean values are a priori known. The solution of the FIM minimization problem is instead a

Schrödinger like differential equation[6, 7, 9], whose solutions exhibit a panoply of different

mathematical forms. We provide here special definite forms for IMin, expressed in terms of

those mean values that are a priori known, filling thus a gap in the literature of the physics

of information. We review basic materials below and start with our presentation in Section

III-IV. We give illustrative examples in Section V and discuss particular issues in Section

VI. Our conclusions are given in Section VII.

II. REVIEW OF BASIC IDEAS

We briefly review here the formalism developed in Ref. [6] (see also [7]). Consider a system

that is specified by a physical parameter θ and let f(x, θ) describe the normalized probability

distribution function (PDF) for this parameter. If an observer were to make a measurement

of x and had to best infer θ from such measurement, calling the resulting estimate θ̃ = θ̃(x),
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one might well wonder how well θ could be determined. Estimation theory [4] asserts that

the best possible estimator θ̃(x), after a very large number of x-samples is examined, suffers a

mean-square error e2 from θ obeying the rule Ie2 = 1, where the Fisher information measure

(FIM) I, a functional of the PDF, reads

I =
∫

dx f(x, θ)

{

∂

∂θ
ln [f(x, θ)]

}2

. (1)

Any other estimator must have a larger mean-square error (all estimators must be unbiased,

i.e., satisfy 〈θ̃(x)〉 = θ). Thus, FIM has a lower bound. No matter what the parameter ξ of

the system might be, I has to obey

I e2ξ ≥ 1, (2)

the celebrated Cramer–Rao bound [4]. The particular instance of translational families

merits a word. They are mono-parametric distribution families of the form f(x, θ) = f(x−θ),

known up to the shift parameter θ. All family members exhibit identical shape. After

introducing the amplitudes ψ such that f(x) = ψ(x)2, FIM adopts the simpler aspect [5]

I =
∫

dx f(x)

{

∂

∂x
ln [f(x)]

}2

= 4
∫

dx [ψ′(x)]
2
; (dψ/dx = ψ′). (3)

Note that for the uniform distribution f(x) = constant one has I = 0. Focus attention now

a system that is specified by a set ofM physical parameters µk. We can write µk = 〈Ak〉 with

Ak = Ak(x). The set of µk-values constitutes the prior knowledge. It represents available

empirical information. Let the pertinent probability distribution function (PDF) be f(x).

Then,

〈Ak〉 =
∫

dx Ak(x) f(x), k = 1, . . . ,M. (4)

In this context it can be shown (see for example [6, 9]) that the physically relevant PDF

f(x) minimizes the FIM (3) subject to the prior conditions and the normalization condi-

tion. In the celebrated MaxEnt approach of Jaynes’ [25] one maximizes the entropy, that

behaves information-wise in opposite fashion to that of Fisher’s measure [5]. Normalization

entails
∫

dxf(x) = 1, and, consequently, our Fisher-based extremization problem adopts the

appearance

δ

(

I − α
∫

dx f(x)−
M
∑

k=1

λk

∫

dx Ak(x) f(x)

)

= 0 (5)

where we have introduced the (M +1) Lagrange multipliers λk (λ0 = α). In Ref. [6] on can

find the details that lead from (5) to a Schrödinger’s equation (SE) that yields the desired

PDF in terms of an amplitude ψ(x) referred to above before Eq. (3). This SE is of the form
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−
1

2

∂2

∂x2
ψ −

M
∑

k=1

λk
8
Ak ψ =

α

8
ψ, (6)

which can be formally interpreted as the (real) Schrödinger equation for a particle of unit

mass (h̄ = 1) moving in the effective, “information-related pseudo-potential” [6]

U = U(x) = −
1

8

M
∑

k=1

λk Ak(x), (7)

in which the normalization-Lagrange multiplier (α/8) plays the role of an energy eigenvalue.

The λk are fixed, of course, by recourse to the available prior information. Note that ψ(x)

is always real in the case of one-dimensional scenarios, or for the ground state of a real

potential in N dimensions [26]. In terms of the amplitudes ψ(x) we have

I =
∫

dx f

(

∂ ln f

∂x

)2

=
∫

dx ψ2
n

(

∂ lnψ2
n

∂x

)2

= 4
∫

dx

(

∂ψn

∂x

)2

=

= − 4
∫

ψn
∂2

∂x2
ψn dx = − 4

〈

∂2

∂x2

〉

=
∫

ψn

(

α +
M
∑

k=1

λk Ak

)

ψn dx,

i.e.,

I = α +
M
∑

k=1

λk 〈Ak〉 . (8)

a form that we will employ in our developments below. The connection between our vari-

ational solutions f and thermodynamics was established in Refs. [6] and [8] in the guise

of reciprocity relations that express the Legendre-transform structure of thermodynamics.

They constitute its essential formal ingredient [27] and were re-derived à la Fisher in [6] by

recasting (8) in a fashion that emphasizes the relevant independent variables

I(〈A1〉 , . . . , 〈AM〉) = α +
M
∑

k=1

λk 〈Ak〉 . (9)

The Legendre transform changes the relevant variables. In the case of I this is

α = I(〈A1〉 , . . . , 〈AM〉)−
M
∑

k=1

λk 〈Ak〉 = α(λ1, . . . , λM), (10)

so that we encounter the three reciprocity relations proved in [6]
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∂α

∂λi
= −〈Ai〉 ; λk =

∂I

∂ 〈Ak〉
;

∂I

∂λi
=

M
∑

k

λk
∂〈Ak〉

∂λi
, (11)

the last one being a generalized Fisher-Euler theorem.

III. PRESENT CORE-RESULTS

Our previous Fisher considerations lead to a scenario for which

H = −
1

2

∂2

∂x2
+ U(x) , U(x) = −

1

8

∑

k

λk Ak , En =
α

8
. (12)

Enters here, as essential new ingredient in the present considerations, the celebrated virial

theorem [28] that of course applies in this Schrödinger-scenario [29]. This theorem is inti-

mately related to the reciprocity relations of the preceding Section, as discussed in [30] and

states that
〈

−
∂2

∂x2

〉

=

〈

x
∂

∂x
U(x)

〉

. (13)

The potential function U(x) belongs to L2 and thus admit of a series expansion in

x, x2, x3, etc. [29]. The Ak(x) themselves belong to L2 as well and can be series-expanded

in similar fashion. This enables us to base our future considerations on the assumption that

the a priori knowledge refers to moments xk of the independent variable, i.e.,

〈Ak〉 = 〈xk〉 , (14)

and that one possesses information on M moment-mean values 〈xk〉. Our “information”

potential U then reads

U(x) = −
1

8

∑

k

λk x
k . (15)

and Eq. (13) allows one to immediately obtain

〈

∂2

∂x2

〉

=
1

8

M
∑

k=1

k λk 〈Ak〉 ; (Ak = xk), (16)

and thus, via (16) and the above mentioned relation I = − 4 〈∂xx〉, a useful, virial-related

expression for Fisher’s information measure can be arrived at.
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I = −
M
∑

k=1

k

2
λk 〈xk〉, (17)

which is an explicit function of the M physical parameters 〈xk〉 and their respective Lagrange

multipliers λk. Eq. (17) encodes the information provided by the Virial theorem. Thus, we

have two different ways of expressing I, namely, (8) and (17). Interesting things happen

if we put them together. Since λk is given by (11) as [∂I/∂〈xk〉], inserting the reciprocity

relations (11) into (17) we are led to

∂I

∂〈xk〉
= λk −→ I = −

M
∑

k=1

k

2
〈xk〉

∂I

∂ 〈xk〉
. (18)

Eq. (18) constitutes an important result, since we have now at our disposal a differential

FIM-equation. Dealing with it should allow us to find I in terms of the 〈xk〉 without passing

first through a Schrödinger equation first, a commendable achievement. This is a linear par-

tial differential equation that an extremal I must necessarily comply with. This constitutes

one of the main present results. It is not clear (yet) whether from such an I−form we can

extract an amplitude ψ satisfying a Schrödinger equation. Our I could however be related

to an approximate solution to Schrödinger’s equation. For convenience we now recast our

key relations using dimensionless magnitudes

∀ 〈Ak〉 ≡ 〈xk〉 6= 0 , I =
I

[I]
=

I

[x]2
, 〈Xk〉 =

〈xk〉

[〈xk〉]
=

〈xk〉

[x]k
, (19)

where [I] and [〈xk〉] denote the dimension of I and 〈xk〉, respectively. Thus, the differential

equation that governs the FIM-behavior, i.e., (18), can be translated into

I = −
M
∑

k=1

k

2
〈Xk〉

∂I

∂ 〈Xk〉
, I = I(〈X1〉, · · · , 〈XM〉), (20)

which is a first order linear nonhomogeneous equation with M independent variables. All

first order, linear partial differential equations (PDEs) possess a solution that depends on an

arbitrary function, called the general solution of the PDE. In many physical situations this

solution if less important than other solutions called complete ones [32–34]. Such complete

solutions are particular PDE solutions containing as many arbitrary constants as intervening

independent variables. Let us look now for a special complete solution of our PDE (20),

6



whose usefulness will be illustrated via two physical examples below (the treatment of general

solutions is postponed to Section VI). We first set

I =
M
∑

k=1

Ik =
M
∑

k=1

exp [ g(〈Xk〉) ], (21)

and substituting (21) into (18) leads to

I = −
M
∑

k=1

k

2
〈Xk〉 g

′(〈Xk〉) Ik . (22)

The above relation entails

g′(〈Xk〉) = −
2

k 〈Xk〉
−→ g(〈Xk〉) = −

2

k
ln |〈Xk〉|+ ck , (23)

where ck is an integration constant. Finally, substituting (23) into (21) we arrive at

I =
M
∑

k=1

Ck exp
(

−
2

k
ln |〈Xk〉|

)

, Ck = eck > 0 , (24)

which can be recast as

I(〈X1〉, ..., 〈XM〉) =
M
∑

k=1

Ck |〈Xk〉|
−2/k , (25)

or, in function of the original input-quantities (19)

I(〈x1〉, ..., 〈xM〉) =
M
∑

k=1

Ck

∣

∣

∣〈xk〉
∣

∣

∣

−2/k
, (26)

an intriguing result. We enumerate below the main properties of this minimal I.

• FIM-domain

Obviously, it is

Dom[I] =
{

(〈x1〉, ..., 〈xM〉)/〈xk〉 ∈ ℜo

}

• FIM-monotonicity

Differentiating (26) we obtain

∂I

∂〈xk〉
= −

2

k 〈xk〉
Ik = −

2

k 〈xk〉
Ck

∣

∣

∣〈xk〉
∣

∣

∣

−2/k
. (27)
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Therefore, if 〈xk〉 > 0 , I is a monotonically decreasing function in the 〈xk〉-direction.

Also, for 〈xk〉 > 0 , from the reciprocity relations (11) we have,

λk = −
2

k
Ck 〈x

k〉−(2+k)/k < 0. (28)

• FIM-convexity

This is a necessary property, since the entropy is concave. By differentiation of the

expression (27) one obtains

∂2I

∂〈xn〉∂〈xk〉
=

(

1 +
k

2

)

4

k2
Ck

∣

∣

∣〈xk〉
∣

∣

∣

−2(1+k)/k
δkn, (29)

from which we can assert that the Fisher measure is a convex function. It is then

guaranteed that the inverse of ∂k∂jᾱ exists.

IV. THE REFERENCE QUANTITIES Ck

FIM is an estimation measure known to obey the Cramer Rao-bound (2) [4]. The best

estimator exhibits a CR relation as close to unity as possible. Thus, the reference quantities

Ck should be chosen in a manner that respects this condition. Here we are interested in

simple situations that illustrate the concomitant procedure. More involved situations will

be treated elsewhere.

Since the reference quantities Ck contain important information concerning the reference sys-

tem with respect the which prior conditions are experimentally determined, it is convenient

to start by choosing an appropriate reference one.

Minimum of the information potential

We consider it reasonable to incorporate at the outset, within the I−form, information

concerning the minimum of the information potential U(x). Assume that this information-

potential

U(x) = −
1

8

M
∑

x=1

λkx
k,

achieves its absolute minimum at the “critical point” x = ξ,

U
′

(ξ) = 0 , Umin = U(ξ). (30)
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Effecting the FIM-translational transform u = x− ξ leads us to

I = −
M
∑

k=1

k

2
λk 〈xk〉 = −

M
∑

k=1

k

2
λ∗k 〈uk〉′, (31)

with (see the Appendix)

λ∗k = −
8

k!
U (k)(ξ) , 〈uk〉′ = 〈(x− ξ)k〉 (32)

where U (k)(ξ) is the kth derivative of U(x) evaluated at x = ξ and 〈 〉′ indicates that the

pertinent mean value (x−moment) is evaluated for translation-transformed eigenfunctions.

The corresponding FIM-explicit functional expression is built up with the N−non-vanishing

momenta (N < M) (〈uk〉′ 6= 0) and is given by

I =
N
∑

k=2

Ck

∣

∣

∣〈uk〉′
∣

∣

∣

−2/k
=

N
∑

k=2

Ck

∣

∣

∣〈(x− ξ)k〉
∣

∣

∣

−2/k
, (33)

where we kept in mind that λ∗1 = −8U ′(ξ) = 0. A glance at the above expression suggests

that we re-arrange things in the fashion

I = C2

∣

∣

∣〈(x− ξ)2〉
∣

∣

∣

−1
+

N
∑

k=3

Ck

∣

∣

∣〈(x− ξ)k〉
∣

∣

∣

−2/k
. (34)

Taking now into account that











〈 x− ξ 〉 = 0

〈(x− ξ)2〉 = 〈x2〉 − 2ξ〈x〉+ ξ2
−→











〈 x 〉 = ξ

〈(x− ξ)2〉 = 〈x2〉 − 〈x〉2 = σ2
(35)

we get

I =
C2

σ2
+

N
∑

k=3

Ck

∣

∣

∣〈(x− ξ)k〉
∣

∣

∣

−2/k
, (36)

from which we obtain

I σ2 = C2 + σ2
N
∑

k=3

Ck

∣

∣

∣〈(x− ξ)k〉
∣

∣

∣

−2/k
≥ 1 . (37)

Therefore, I preserves the well-known Cramer-Rao I−bound [5] I σ2 ≥ 1. The above seems

to indicate that if no moment k ≥ 3 is a priori known, the lower bound can be reached for

C2 = 1. For k ≥ 3 additional considerations apply that will be discussed elsewhere.
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V. TWO PHYSICAL EXAMPLES

So as to illustrate the above considerations we are going to consider two simple and instruc-

tive examples. We take the mass m = 1 and h̄ = 1.

Harmonic oscillator (HO)

The prior information is given by

〈x2〉 =
1

2ω
, M = 1 , k = 2 . (38)

The minimum of the potential function obtains at the origin ξ = 0,

U(x) = −
1

8
λ2 x

2 −→ U ′(ξ) = −
1

4
λ2 ξ = 0 −→ ξ = 0.

The pertinent FIM can be obtained using (33) with u = x− ξ = x,

I = I(〈x2〉) = C2 〈x2〉−1 ,

and, the CR bound is saturated when C2 = 1,

I 〈x2〉 = C2 = 1 =⇒ I = 〈x2〉−1 . (39)

The corresponding Lagrange multiplier can be obtained by recourse to the reciprocity rela-

tions (11) and (39),

λ2 =
∂I

∂〈x2〉
= − 〈x2〉−2 . (40)

The prior-knowledge (38) is encoded into the FIM (39), and the Lagrange multiplier λ2 (40),

I = 〈x2〉 −1 = 2ω ; λ2 = − 〈x2〉 −2 = − 4ω2 . (41)

and the α−value can be obtained from (10),

α = I − λ2 〈x2〉 = 4 ω, (42)

as we expect.
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Harmonic oscillator in a uniform field

We consider a charged unit-mass particle moving in the HO potential. The electrical charge

is q and there is a uniform electric field ǫ, in the x−direction. Our prior knowledge is given

by [29]

〈x〉 =
q ǫ

ω2
, 〈x2〉 =

1

2ω
+
(

q ǫ

ω2

)2

. (43)

We look first for the ξ-point at which U(x) is minimal.

U(x) = −
1

8

(

λ1 x+ λ2 x
2
)

U ′(ξ) = −
1

8
(λ1 + 2λ2 ξ) = 0 −→ ξ = −

λ1
2 λ2

. (44)

The translational transform u = x− ξ implies that

〈u〉′ = 〈x− ξ〉 = 〈x〉 − ξ , 〈u2〉′ = 〈(x− ξ)2〉 = 〈x2〉 − 2ξ〈x〉+ ξ2 . (45)

The translation transformed FIM is now given by

I = C2 〈u2〉
′
−1. (46)

and, the CR bound is saturated when C2 = 1,

I 〈u2〉′ = C2 = 1 =⇒ I = 〈u2〉
′
−1 . (47)

The reciprocity relations lead us to

λ1 =
∂ I

∂〈x〉
=

∂ I

∂〈u2〉′
∂〈u2〉′

∂〈x〉
= − 〈u2〉

′
−2 (−2 ξ) (48)

λ2 =
∂ I

∂〈x2〉
=

∂ I

∂〈u2〉′
∂〈u2〉′

∂〈x2〉
= − 〈u2〉

′
−2 . (49)

From the prior knowledge (43) and using (45) we have

〈x〉 = ξ =
q ǫ

ω2
, (50)

〈u2〉′ = 〈x2〉 − ξ2 =
1

2ω
+
(

q ǫ

ω2

)2

−
(

q ǫ

ω2

)2

=
1

2ω
, (51)
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then, inserting (50) and (51) into (47) - (49) we get

I = 〈u2〉
′
−1 =

(

1

2ω

)−1

= 2ω, (52)

λ1 = 2 ξ 〈u2〉
′
−2 = 2

q ǫ

ω2
(2 ω)2 = 8 q ǫ (53)

λ2 = −〈u2〉
′
−2 = − (2 ω)2 = − 4 ω2 (54)

The corresponding translational transform ᾱ−value can be obtained substituting (52)-(54)

into (10),

ᾱ = I − λ1〈x〉 − λ2〈x
2〉 = 2ω − 8qǫ

qǫ

ω2
+ 4ω2

(

1

2ω
+
(

q ǫ

ω2

)2
)

= 4ω , (55)

and the corresponding α−value is given by (see Appendix),

α = ᾱ + 8 U(ξ) = 4ω − 4
q2ǫ2

ω2
, (56)

as we expect.

VI. GENERAL SOLUTION OF THE DIFFERENTIAL FIM-EQUATION

We discuss here this issue for the sake of completeness. Our FIM−equation is a first

order linear nonhomogeneous differential equation. We are following [32–34] in looking for

the general solution. For a first-order PDE, the method of characteristics allows one to

encounter useful curves (called characteristic curves or just characteristics) along which the

PDE becomes an ordinary differential equation (ODE). Once the ODE is found, it can be

solved along the characteristic curves and transformed into a solution for the original PDE.

The characteristic system of Eq. (20) is

−
d〈Xi〉

(i/2)〈Xi〉
= −

d〈Xj〉

(j/2)〈Xj〉
=
dI

I
, i, j = 1, · · · ,M, (57)

leads (for 〈X1〉 6= 0) to

d〈Xk〉

(k/2)〈Xk〉
=

d〈X1〉

(1/2)〈X1〉
−→

2

k
ln |〈Xk〉|+ ck = 2 ln |〈X1〉|+ c1

ln
[

eck |〈Xk〉|
2/k
]

= ln
[

ec1 |〈X1〉|
2
]

eck |〈Xk〉|
2/k = ec1 |〈X1〉|

2
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↓

bk−1 ≡ eck−c1 = |〈X1〉|
2|〈Xk〉|

−2/k (58)

dI

I
= −

d〈X1〉

(1/2)〈X1〉
−→ ln |I| + cI = − 2 ln |〈X1〉|+ c1

ln [ecI |I|] = ln
[

ec1 |〈X1〉|
−2
]

ecI |I| = ec1 |〈X1〉|
−2

↓

bM ≡ ec1−cI = |〈X1〉|
2 |I| . (59)

We have now constructed an integral basis for the characteristic system (57)

b1 = u1(〈X1〉, ..., 〈XM〉, I) , . . . , bM = uM(〈X1〉, ..., 〈XM〉, I) , (60)

and the general solution of equation (20) defined as

Φ(u1, u2, . . . , uM) = 0, (61)

is given by

Φ
(

|〈X1〉|
2|〈X2〉|

−1, · · · , |〈X1〉|
2|〈Xk〉|

−2/k , · · · , |〈X1〉|
2|〈XM〉|−2/M , |〈X1〉|

2 |I|
)

= 0,

where Φ is an arbitrary function of the M variables. Solving this equation for I yields a

solution of the explicit form

I = |〈X1〉|
−2 Ψ

(

|〈X1〉|
2|〈X2〉|

−1, · · · , |〈X1〉|
2|〈Xk〉|

−2/k , · · · , |〈X1〉|
2|〈XM〉|−2/M

)

,(62)

where Ψ is an arbitrary function of (M − 1) variables.

Cauchy problem and the existence and uniqueness of the solution to our PDE

One of the fundamental aspects so as to have a useful PDE for modeling physical systems

revolves around the existence and uniqueness of the solutions to the Cauchy problem. Here

we show that such requirements are satisfied by our pertinent solutions. We start by casting

(20) in the normal form

∂I

∂〈X1〉
= F

(

〈X1〉, · · · , 〈XM〉, I,
∂I

∂〈X2〉
, · · · ,

∂I

∂〈XM 〉

)

(63)
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where

FI = F

(

〈X1〉, · · · , 〈XM〉, I,
∂I

∂〈X2〉
, · · · ,

∂I

∂〈XM 〉

)

= −
2

〈X1〉

[

I +
M
∑

k=2

k

2
〈Xk〉

∂I

∂ 〈Xk〉

]

, (64)

and we see that F is a real function of class C2 in a neighborhood of

〈X1〉 = a , 〈Xk〉 = ξk−1 , I(ξ1, ..., ξM−1) = c ,
∂I

∂〈Xk〉

∣

∣

∣

∣

∣

ξ1,...,ξM−1

= dk−1 , k = 2, · · · ,M

Then, if ψ(〈X2〉, ..., 〈XM〉) is also a function of class C2 such that

ψ(ξ1, ..., ξM−1) = c ,
∂ψ

∂〈Xk〉

∣

∣

∣

∣

∣

ξ1,...,ξM−1

= dk−1 , k = 2, ...,M. (65)

exists a solution I of (63) in a neighborhood of 〈X1〉 = a and 〈Xk〉 = ξk−1 that satisfies

I(a, 〈X2〉, · · · , 〈XM〉) = ψ(〈X2〉, · · · , 〈XM〉) (66)

and is of class C2.

Regarding Cauchy-uniqueness, it is known that if F satisfies the Lipschitz condition [35],

|F
I

′ − FI | ≤ K1

M
∑

k=2

∣

∣

∣

∣

∣

∂I
′

∂〈Xk〉
−

∂I

∂〈Xk〉

∣

∣

∣

∣

∣

+K2

∣

∣

∣I
′

− I
∣

∣

∣ K1, K2 = const. (67)

F
I

′ = F

(

〈X1〉, · · · , 〈XM〉, I
′

,
∂I

′

∂〈X2〉
, · · · ,

∂I
′

∂〈XM 〉

)

then, the solution of the initial value problem for (63) is unique. Note that in our case the

above condition is verified always since the Legendre structure the theory guarantee that

FI =
∂I

∂〈X1〉
∝

∂I

∂〈x〉
= λ1 <∞. (68)

VII. CONCLUSIONS

It was known for some time [6] that, for one-dimensional scenarios, a minimal Fisher’s infor-

mation measure I is associated to a Schrödinger’s equation in which the role of the potential

is played by a weighted sum of the a priori known expectation values of M quantities 〈xk〉.

The weights are the corresponding Lagrange multipliers λk. Legendre reciprocity relations

linking I, the λk and the 〈xk〉 apply.
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We have here demonstrated that insertion of virial theorem-tenets into this Legendre struc-

ture leads to a differential equation for I. The equation is analytically solvable and its

solution provides us with explicit new expressions for I in terms of the input-information

contained in the M expectation values 〈xk〉. In other words, we can directly codify the in-

formation provided by such set of expectation values in an I−form without previous appeal

to a Schrödinger equation. Additionally, this (partial) differential equation (PDE) may be

viewed as a new constraint that the solutions ψn of Schrödinger’s equation (SE) must satisfy.

In this regard, our PDE may lead to useful criteria for checking approximate treatments of

SE. If φn is an approximate SE-solution, the fact that the functional I[φn] verifies the PDE

would constitute an indicator of the quality of the approximate solution φn.

An application to simple examples has illustrated these considerations. Of course, as is the

case in the MaxEnt environment, the usefulness of (26) depends on how adequate is our

input information for describing the situation at hand. Maximal entropy or minimum FIM

are just the best ways to exploit that knowledge.

Appendix: Translation transform of FIM

The potential function

U(x) = −
1

8

M
∑

k=1

λkx
k.

can be Taylor-expanded about x = ξ

U(x) =
M
∑

k=0

U (k)(ξ)

k !
(x− ξ)k

The translational transform u = x− ξ leads to

Ū(u) = U(u+ ξ) =
M
∑

k=0

U (k)(ξ)

k !
uk, (69)

which can be recast as

Ū(u) = −
1

8

M
∑

k=0

λ∗ku
k , (70)
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with

λ∗k ≡ − 8
U (k)(ξ)

k !
= −

8

k!

M
∑

j=1

j(j − 1)(j − 2) · · · (j − k + 1) λj ξ
j−k . (71)

The FIM-translational transform u = x−ξ is obtained from (8) in the fashion (〈 〉′ indicates

that the moment is calculated for translation-transform eigenfunctions)

I = − 4
∫

ψ
∂2

∂x2
ψ dx = − 4

∫

ψ̄
∂2

∂u2
ψ̄ du = − 4

〈

∂2

∂u2

〉

′

, (72)

where ψ̄ = ψ̄(u) is the translation transform of ψ(x). Now, using the translation transform

of (6) one easily finds

I =
∫

ψ̄n

(

α +
M
∑

k=0

λ∗k u
k

)

ψ̄n du , (73)

and one realizes that

I = α +
M
∑

k=0

λ∗k〈u
k〉′ = ᾱ +

M
∑

k=1

λ∗k〈u
k〉′ , (74)

where

ᾱ = α+ λ∗0 = α− 8U(ξ). (75)

Also, the virial theorem (13) leads to

I = 4

〈

∂2

∂u2

〉

′

= − 4

〈

u
∂

∂u
Ū(u)

〉

′

= −
M
∑

k=1

k

2
λ∗k 〈uk〉′ (76)

The translation-transformed moments 〈uk〉′ are related to the original moments as

〈uk〉′ =
∫

uk ψ̄2(u) du =
∫

uk ψ2(u+ ξ) du =
∫

(x− ξ)k ψ2(x) dx = 〈(x− ξ)k〉

By recourse to the Newton-binomial we write

∫

(x− ξ)k ψ2(x) dx =
k
∑

j=1

(−1)j







k

j





 ξj
∫

xk−j ψ2(x) dx, (77)
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and then we finally have

〈uk〉′ = 〈(x− ξ)k〉 =
k
∑

j=1

(−1)j







k

j





 ξj 〈xk−j〉. (78)
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