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Compensated Convexity Methods
for Approximations and Interpolations

of Sampled Functions in Euclidean Spaces:
Applications to Contour Lines, Sparse Data, and Inpainting\ast 
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Abstract. This paper is concerned with applications of the theory of approximation and interpolation based
on compensated convex transforms developed in [K. Zhang, E. Crooks, and A. Orlando, SIAM J.
Math. Anal., 48 (2016), pp. 4126--4154]. We apply our methods to (i) surface reconstruction starting
from the knowledge of finitely many level sets (or ``contour lines""); (ii) scattered data approximation;
(iii) image inpainting. For (i) and (ii) our methods give interpolations. For the case of finite sets
(scattered data), in particular, our approximations provide a natural triangulation and piecewise
affine interpolation. Prototype examples of explicitly calculated approximations and inpainting
results are presented for both finite and compact sets. We also show numerical experiments for
applications of our methods to high density salt \& pepper noise reduction in image processing,
for image inpainting, and for approximation and interpolations of continuous functions sampled on
finitely many level sets and on scattered points.
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1. Introduction. This paper is concerned with the application of the compensated-
convexity--based theory for approximation and interpolation of sampled functions that was
presented in our previous article [55] to surface reconstruction based on knowledge from finitely
many level sets, scattered data approximation, and image inpainting.

In general, approximation theory is concerned with the problem of finding in the set
of simple known functions one that is close in some sense to a more complicated otherwise
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unknown function. The variational theory is developed by specifying a priori the class of the
approximating functions and the criteria that allow selecting an element of such a class. In
the implementation of the theory, the approximating functions generally depend on unknown
parameters that control their form, so that the problem boils down to selecting the parameters
that allow meeting the chosen criteria. Such criteria are usually related to the error between
the approximating functions and what is known about the function to be approximated and
might contain some regularizing term that determines the regularity of the approximating
function and makes the whole problem well posed.

Different classes of approximating functions, such as, for instance, algebraic polynomials
[49], trigonometric polynomials [48, 49], radial basis functions [51, 11, 23], and continuous
piecewise polynomials [40], have been considered, and while their definition is usually moti-
vated by good approximating properties for a given field of application, on the other hand
the specific nature of a class of functions also represents a restriction that limits their general
application.

Total Variation--type models [42, 10], [17, Ch. 6] and geometric partial differential equa-
tions (PDEs) [13], [50, Ch. 1], [43, Ch. 8] have also been used as interpolation models. Their
use has been principally motivated by applications in the field of image processing and geo-
science. We mention in particular the applications to salt \& pepper noise reduction [14],
image inpainting (by using TV-inpainting models [9, 29], [17, Ch. 6], the Curvature Diffusion
Driven inpainting model [16], the geometric PDE-based inpainting model [8], or other PDE-
based models discussed in the monograph [45]), and image interpolation [6, 13, 28], among
others. For the applications to geoscience, and in particular to the construction of digital
elevation models, PDE-based interpolation models, such as the one considered in [2], where
the interpolant is sought as the absolutely minimizing Lipschitz extension (AMLE) [5, 34] of
the known values, have also been proposed and shown to be competitive against the classi-
cal interpolation methods such as the geodesic distance transformation method [46], the thin
plate model [20, 26], and the kriging method [47].

As for these latter methods, although there is a well-developed mathematical theory on
the existence and uniqueness of weak solutions of variational models [4, 7, 30], and of the
viscosity solution [5, 34] of the PDE-based interpolation model used in [13], the quantitative
effectiveness of such methods is mostly assessed on the basis of numerical experiments.

The new approximation and interpolation theory introduced in [55] is based, on the other
hand, on the theory of compensated convex transforms [52, 57, 56, 54] and can be applied
to general bounded real-valued functions sampled from either a compact set K \subset \BbbR n or the
complement K = \BbbR n \setminus \Omega of a bounded open set \Omega . The methods presented in [55] center on
the so-called average approximation that is recalled in Definition 1.1 below. Importantly, [55]
establishes error estimates for the approximation of bounded uniformly continuous functions,
or Lipschitz functions, and of C1,1-functions, and proves rigorously that the approximation
methods are stable with respect to the Hausdorff distance between samples.

Here we apply the average approximation method developed in [55] to three important
problems: approximation and interpolation for level sets and scattered data, for which the
sample set K \subset \BbbR n is compact, and the inpainting problem in image processing, where the aim
is to reconstruct an image in a damaged region based on the image values in the undamaged
part and the sample set K = \BbbR n \setminus \Omega is the complement of a bounded open set \Omega representing
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the damaged area of the image. We will also present a series of prototype examples of explicitly
calculated approximations that build insight into the behavior of the average approximation
introduced in [55], as well as a selection of illustrative numerical experiments.

Before outlining the rest of the paper, we first recall the definitions of compensated convex
transforms [52] and average approximation [55]. Suppose f : \BbbR n \rightarrow \BbbR is bounded. The
quadratic lower and upper compensated convex transform [52] (lower and upper transforms
for short) are defined for each \lambda > 0 by

C l
\lambda (f)(x) = co[\lambda | \cdot | 2 + f ](x) - \lambda | x| 2,

resp., Cu
\lambda (f)(x) = \lambda | x| 2  - co[\lambda | \cdot | 2  - f ](x), x \in \BbbR n,

(1.1)

where | x| is the standard Euclidean norm of x \in \BbbR n and co[g] denotes the convex envelope
[33, 41] of a function g : \BbbR n \rightarrow \BbbR that is bounded below.

Let K \subset \BbbR n be a nonempty closed set. Given a function f : \BbbR n \rightarrow \BbbR , we denote by
fK : \BbbR n \supset K \rightarrow \BbbR the restriction of f to K, which can be thought of as a sampling of the
original function f , which we would like to approximate, on the convex hull of the set K.

Suppose that for some constant A0 > 0, | fK(x)| \leq A0 for all x \in K. Then given M > 0,
we define two bounded functions that extend fK to \BbbR n \setminus K, namely

(1.2)

f - M
K (x) = f(x)\chi K(x) - M\chi \BbbR n\setminus K =

\Biggl\{ 
fK(x), x \in K,

 - M, x \in \BbbR n \setminus K ,

fM
K (x) = f(x)\chi K(x) +M\chi \BbbR n\setminus K =

\Biggl\{ 
fK(x), x \in K,

M, x \in \BbbR n \setminus K ,

where \chi G denotes the characteristic function of a set G.

Definition 1.1. The average compensated convex approximation with scale \lambda > 0 and mod-
ule M > 0 of the sampled function fK : K \rightarrow \BbbR is defined by

(1.3) AM
\lambda (fK)(x) =

1

2

\Bigl( 
C l
\lambda (f

M
K )(x) + Cu

\lambda (f
 - M
K )(x)

\Bigr) 
, x \in \BbbR n .

In addition, we can also setM = +\infty in place of (1.2) and consider the following functions,
which are commonly used in convex analysis:

(1.4) f - \infty 
K (x) =

\biggl\{ 
f(x), x \in K,
 - \infty , x \in \BbbR n \setminus K,

f+\infty 
K (x) =

\biggl\{ 
f(x), x \in K,
+\infty , x \in \BbbR n \setminus K,

and define the corresponding average approximation approximation,

(1.5) A\infty 
\lambda (fK)(x) :=

1

2

\Bigl( 
C l
\lambda (f

+\infty 
K )(x) + Cu

\lambda (f
 - \infty 
K )(x)

\Bigr) 
, x \in \BbbR n .

By doing so, we can establish better approximation results than those obtained using f - M
K

and fM
K , but A\infty 

\lambda (fK) is not Hausdorff stable with respect to sample sets, in contrast to the
basic average approximation AM

\lambda (fK) (see [55, Thm. 4.12]).



APPROXIMATIONS AND INTERPOLATIONS 2371

The plan of the rest of the paper is as follows. Section 2 introduces notation and recalls
key definitions and results from our article [55], including error estimates for the average
approximation AM

\lambda (fK) of bounded and uniformly continuous, Lipschitz, and C1,1 functions.
In section 3, we consider level set interpolation and approximation, for which f is continuous
and K consists of finitely many compact level sets. We give conditions so that AM

\lambda (fK) is
an interpolation between level sets and also establish a maximum principle. Section 4 treats
the case of scattered data, when K is finite. In this case, we show that when \lambda > 0 is
sufficiently large and when M >> \lambda , AM

\lambda (fK) is a piecewise affine interpolation of fK in the
convex hull of K. Moreover, if K is regular in the sense of the Delaunay triangulation, we
show that AM

\lambda (fK) agrees with the piecewise interpolation given by the Delaunay method.
In the irregular case that the Delaunay sphere Sr contains more than n + 1 points in \BbbR n,
AM

\lambda (fK) is the average of the maximum and minimum piecewise affine interpolation over the
convex hull of K \cap Sr. Section 5 presents error estimates for our average approximation in the
context of the inpainting problem and compares and contrasts these estimates with the error
analysis in [15]. We also give a simple one-dimensional example to illustrate the effect of the
upper and lower compensated convex transforms Cu

\lambda (f), C
l
\lambda (f) and the average approximation

AM
\lambda (fK) on a jump function, to provide insight into how jump discontinuities behave under

our approach.
Section 6 contains explicitly calculated prototype examples in \BbbR 2, including both examples

where the sample set K is finite, and also examples where K is not finite. We present
graphs of our calculated average approximation for two irregular Delaunay cells, for four
and for eight points on the unit circle. We also present prototype examples of contour line
approximations, as well as prototypes for inpainting of functions that show that singularities
such as ridges and jumps can be preserved subject to compensated convex approximations
to the original function when the singular parts are close to each other. Section 7 discusses
several numerical experiments for level set and point cloud reconstructions of functions and
images, for image inpainting, and for restoration of images with heavy salt \& pepper noise.
Though such experiments are carried out only on a proof-of-concept level, we briefly report
on the comparison of our method with some state-of-art methods. In section 8 we conclude
the paper with proofs of our main theorems stated in sections 3, 4, and 5.

2. Notation and preliminaries. Throughout the paper, we adopt the following notation
and recall those results from [55] that will be used here for our proofs, to make the development
as self-contained as possible. For the necessary background in convex analysis, we refer to the
monographs [41, 33].

For a given set E \subset \BbbR n, with \BbbR n an n-dimensional Euclidean space, \=E, \partial E, \r E, Ec, and
co[E] stand for the closure, the boundary, the interior, the complement, and the convex hull
of E, i.e., the smallest convex set which contains E, respectively. For a convex set E \subset \BbbR n, we
define the dimension of E, dim(E), as the dimension of the intersection of all affine manifolds
that contain E, where by affine manifold we mean a translated subspace, i.e., a set N of the
form N = x + S with x \in \BbbR n and S a subspace of \BbbR n. We then define dim(N) = dim(S).
We use the term convex body to denote a compact convex set with nonempty interior. The
convex hull of a finite set of points is called a polytope and with the notation \#(E) we denote
the cardinality of the finite set E. If E = \{ x1, . . . , xk+1\} and dim(E) = k, then co[E] is called
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a k-dimensional simplex and the points x1, . . . , xk+1 are called vertices. A zero-dimensional
simplex is a point; a one-dimensional simplex is a line segment; a two-dimensional simplex is
a triangle; a three-dimensional simplex is a tetrahedron. The condition that dim(E) = k is
equivalent to require that the vectors x2  - x1, . . . , xk+1  - x1 are linearly independent.

The open ball centered at x \in \BbbR n and of radius r > 0 is denoted by B(x; r) = \{ y \in \BbbR n :
| y  - x| < r\} where | \cdot | stands for the Euclidean norm in \BbbR n; thus | x  - y| is the distance
between the points x, y \in \BbbR n. The diameter of the set E \subset \BbbR n, diam(E), is then defined as
diam(E) = supx,y\in E | x - y| .

In this paper, we will assume, unless otherwise specified, that K \subset \BbbR n is either a compact
set or the complement of a bounded open set, that is, K = \Omega c where \Omega \subset \BbbR n is a bounded
open set. A function g : co[K] \subset \BbbR n \rightarrow \BbbR is said to be an interpolation of fK if g = f in
K, while for \lambda > 0, a family of functions g\lambda : co[K] \subset \BbbR n \rightarrow \BbbR is said to approximate f if
lim\lambda \rightarrow +\infty g\lambda = f uniformly in K.

The error estimates obtained in [55] are expressed in terms of the modulus of continuity
of the underlying function f to be approximated and of the convex density radius of K. For
the convenience of the reader, these definitions are recalled here. The modulus of continuity
of a bounded and uniformly continuous function f is defined as follows [19, 32].

Definition 2.1. Let f : \BbbR n \rightarrow \BbbR be a bounded and uniformly continuous function in \BbbR n.
Then,

(2.1) \omega f : t \in [0, \infty )\rightarrow \omega f (t) = sup
\Bigl\{ 
| f(x) - f(y)| : x, y \in \BbbR n and | x - y| \leq t

\Bigr\} 
is called the modulus of continuity of f .

We also recall that the modulus of continuity of f has the following properties [32, pp. 19--
21].

Proposition 2.2. Let f : \BbbR n \rightarrow \BbbR be a bounded and uniformly continuous function in \BbbR n.
Then the modulus of continuity \omega f of f satisfies the following properties:

(2.2)

(i) \omega f (t)\rightarrow \omega f (0) = 0 as t\rightarrow 0;

(ii) \omega f is a nonnegative and nondecreasing continuous function on [0,\infty );

(iii) \omega f is subadditive: \omega f (t1 + t2) \leq \omega f (t1) + \omega f (t2) for all t1, t2 \geq 0 .

Any function \omega defined on [0, \infty ) and satisfying (2.2)(i), (ii), (iii) is called a modulus of
continuity. A modulus of continuity \omega can be bounded from above by an affine function (see
[19, Lemma 6.1]); that is, there exist constants a > 0 and b \geq 0 such that

(2.3) \omega (t) \leq at+ b (for all t \geq 0).

As a result, given \omega f , one can define the least concave majorant of \omega f , which we denote by \omega ,
which is also a modulus of continuity with the property (see [19])

(2.4)
1

2
\omega (t) \leq \omega f (t) \leq \omega (t) for all t \in [0, \infty ) .
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The convex density radius of a point x \in co[K] with respect to the set K and the convex
density radius of K in co[K] are the geometrical quantities that describe the set K with
respect to its convex hull and are such properties which enter the error estimates for our
approximation operators. We next recall their definition from [55].

Definition 2.3. Suppose K \subset \BbbR n is a nonempty and closed set, and denote by dist(x; K)
the Euclidean distance of x to K. For x \in co[K], consider the balls B(x; r) such that x \in 
co[ \=B(x; r) \cap K]. The convex density radius of x with respect to K is defined as

(2.5) rc(x) = inf\{ r \geq 0 such that x \in co[ \=B(x; r) \cap K]\} ,

whereas the convex density radius of K in co[K] is defined by

(2.6) rc(K) = sup\{ rc(x), x \in co[K]\} .

Here it is also useful to introduce the following, more geometric quantities. Let Q \subset \BbbR n

be a bounded set, and given x \in Q and \nu \in \BbbR n with | \nu | = 1, define the quantity

d\nu (x) = d+\nu (x) + d - \nu (x) ,

where

d+\nu (x) = sup
\Bigl\{ 
t > 0 : x+s\nu \in Q for 0 \leq s \leq t

\Bigr\} 
and d - \nu (x) = sup

\Bigl\{ 
t > 0 : x - s\nu \in Q for 0 \leq s \leq t

\Bigr\} 
.

It is then easy to see that d\nu (x) is the length of the line segment with direction \nu passing
through x and intersecting \partial Q at two points on each side. We also define

(2.7) d(x) = inf
\Bigl\{ 
d\nu (x), \nu \in \BbbR n, | \nu | = 1

\Bigr\} 
and the thickness of the set Q \subset \BbbR n as

(2.8) DQ = sup
\Bigl\{ 
d(x), x \in Q

\Bigr\} 
.

Remark 2.4.
(a) Given a nonempty bounded open set Q = \Omega \subset \BbbR n, by comparing the definitions (2.5)

of rc(x) and (2.8) of d(x), it is straightforward to verify that

(2.9) rc(x) \leq d(x)

for x \in \Omega .
(b) If the interior \r Q = \varnothing , such as in the case of a discrete set, then its thickness DQ is

zero.

We recall next the error estimates for our average approximation operators developed
in [55] and refer the reader to [55] for proofs and details. For the case of K compact and
M = +\infty , we have the following.
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Theorem 2.5 (see [55, Theorem 3.6]). Suppose f : \BbbR n \rightarrow \BbbR is bounded and uniformly
continuous, satisfying | f(x)| \leq A0 for some constant A0 > 0 and all x \in \BbbR n, and let K \subset \BbbR n be
a nonempty compact set. Denote by \omega the least concave majorant of the modulus of continuity
of f . Let a \geq 0, b \geq 0 be such that \omega (t) \leq at+ b for t \geq 0. Then for all \lambda > 0 and x \in co[K],

(2.10) | A\infty 
\lambda (fK)(x) - f(x)| \leq \omega 

\Biggl( 
rc(x) +

a

\lambda 
+

\sqrt{} 
2b

\lambda 

\Biggr) 
,

where rc(x) \geq 0 is the convex density radius of x with respect to K. If we further assume
that f is a globally Lipschitz function with Lipschitz constant L > 0, then for all \lambda > 0 and
x \in co[K],

(2.11) | A\infty 
\lambda (fK)(x) - f(x)| \leq Lrc(x) +

L2

\lambda 
.

Section 4 will discuss an application of Theorem 2.5 to the case of scattered data approx-
imation. We will apply Theorem 2.5 also to the case of salt \& pepper noise removal, where
K is the compact set given by the part of the image which is noise free. Section 7 contains a
numerical experiment showing such an application.

A statement similar to Theorem 2.5 is obtained with M finite in the case that K = \Omega c,
where \Omega \subset \BbbR n is a nonempty bounded open set. In this case, clearly co[K] = \BbbR n and the
error estimate of the average approximation AM

\lambda (fK) is as follows.

Theorem 2.6 (see [55, Theorem 3.7]). Suppose f : \BbbR n \rightarrow \BbbR is bounded and uniformly
continuous, satisfying | f(x)| \leq A0 for some constant A0 > 0 and all x \in \BbbR n. Let \Omega \subset \BbbR n be a
bounded open set, d\Omega the diameter of \Omega , and K = \Omega c. Denote by \omega the least concave majorant
of the modulus of continuity of f , and let a \geq 0, b \geq 0 be such that \omega (t) \leq at + b for t \geq 0.
Then for \lambda > 0, M > A0 + \lambda d2\Omega , and all x \in \BbbR n,

(2.12) | AM
\lambda (fK)(x) - f(x)| \leq \omega 

\Biggl( 
rc(x) +

a

\lambda 
+

\sqrt{} 
2b

\lambda 

\Biggr) 
,

where rc(x) \geq 0 is the convex density radius of x with respect to K. If we further assume that
f is a globally Lipschitz function with Lipschitz constant L > 0, then for \lambda > 0, M > A0+\lambda d2\Omega ,
and all x \in \BbbR n, we have

(2.13) | AM
\lambda (fK)(x) - f(x)| \leq Lrc(x) +

L2

\lambda 
.

Under an additional restriction on f and on K, it is possible to extend the results of The-
orem 2.6 to the case when K is a compact set and thus to obtain error estimates independent
of M . More precisely, the following result refers to the case where we are given the values of
the function f on the union of a compact set and the complement of a bounded open set. This
extension allows the application of Theorem 2.6 to the problem of inpainting, for instance.

Corollary 2.7 (see [55, Corollary 3.9]). Suppose f : \BbbR n \rightarrow \BbbR is bounded and uniformly
continuous satisfying | f(x)| \leq A0 for some constant A0 > 0 and all x \in \BbbR n. Assume that



APPROXIMATIONS AND INTERPOLATIONS 2375

f(x) = c0 for | x| \geq r > 0, where c0 \in \BbbR and r > 0 are constants. Let K \subset \BbbR n be a nonempty
compact set satisfying K \subset \=B(0; r). For R > r, define KR := K \cup Bc(0; R). Denote by \omega 
the least concave majorant of the modulus of continuity of f . Let a \geq 0, b \geq 0 be such that
\omega (t) \leq at+ b for t \geq 0. Then for all \lambda > 0, M > A0 + \lambda (R+ r)2, and all x \in co[K],

(2.14) | AM
\lambda (fKR

)(x) - f(x)| \leq \omega 

\Biggl( 
rc(x) +

a

\lambda 
+

\sqrt{} 
2b

\lambda 

\Biggr) 
,

where rc(x) \geq 0 is the convex density radius of x with respect to K. If we further assume
that f is a globally Lipschitz function with Lipschitz constant L > 0, then for \lambda > 0, M >
A0 + \lambda (R+ r)2, and all x \in co[K], we have

(2.15) | AM
\lambda (fKR

)(x) - f(x)| \leq Lrc(x) +
L2

\lambda 
.

If we further assume that f is a C1,1 function such that | Df(x)  - Df(y)| \leq L| x  - y| for all
x, y \in \BbbR n and L > 0 is a constant, then for \lambda > L, M > A0 + \lambda (R + r)2, and all x \in co[K],
we have

(2.16) | AM
\lambda (fKR

)(x) - f(x)| \leq L

4

\biggl( 
\lambda + L/2

\lambda  - L/2
+ 1

\biggr) 
r2c (x) .

Furthermore, in case (iii), AM
\lambda (fKR

) is an interpolation of fK in \BbbR n.

The conditions of Corollary 2.7 can be realized, for instance, in the case when we can
define f to be zero outside a large ball containing K.

Theorem 2.6 and Corollary 2.7 will be applied to the case of (i) surface reconstructions
from a finitely many level sets representation and (ii) inpainting of damaged images, where
\Omega is the domain to be inpainted and K = \Omega c. We will discuss such applications in section
3 and section 5, respectively, whereas section 7 contains some numerical experiments of both
applications.

We conclude this section by giving the following property, which will be useful in section
4, which deals with scattered data approximations.

Proposition 2.8 (the restriction property). Let m \geq 1, n \geq 1. Suppose f : \BbbR n \rightarrow \BbbR is
bounded, satisfying | f(x)| \leq M for some M > 0 and for all x \in \BbbR n. Let g\pm M : \BbbR n \times \BbbR m \rightarrow \BbbR 
be defined, respectively, as follows:

gM (x, y) =

\Biggl\{ 
f(x), x \in \BbbR n, y = 0 \in \BbbR m,

M, x \in \BbbR n, y \in \BbbR m, y \not = 0,

g - M (x, y) =

\Biggl\{ 
f(x), x \in \BbbR n, y = 0 \in \BbbR m,

 - M, x \in \BbbR n, y \in \BbbR m, y \not = 0 .

Then

C l
\lambda (g

M )(x, 0) = C l
\lambda (f)(x) and Cu

\lambda (g
 - M )(x, 0) = Cu

\lambda (f)(x) (for x \in \BbbR n) .
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In the case when the sampled set K is compact, the restriction property and Corollary
2.7 imply that if K is contained in a k-dimensional plane E \subset \BbbR n, we can then calculate the
average approximation operator AM

\lambda (fK(x)) for x \in co[K] \subset E by restricting our calculations
in E.

3. Level set approximations. We consider the case where the sampled set is given by
the union of finitely many compact level sets, that is, we know the values of a continuous
function f only on finitely many compact contour lines, and we want to study the structure
of AM

\lambda (fK). We will establish a result which gives a natural bound on the value of AM
\lambda (fK),

ensuring that, for \lambda > 0 sufficiently large, the value of AM
\lambda (fK) at points between level sets is

between the values of the corresponding level sets, and present an error estimate for AM
\lambda (fK).

Let f : \BbbR n \rightarrow \BbbR be a continuous function and a \in \BbbR . Denote by \Gamma a = \{ x \in \BbbR n, f(x) = a\} 
the level set of f of level a and by Va := \{ x \in \BbbR n, f(x) \leq a\} the sublevel set of f of level a.

We then have the following result.

Theorem 3.1. Suppose f : \BbbR n \rightarrow \BbbR is continuous and that for a0 < a1 < \cdot \cdot \cdot < am, m \in \BbbN ,
the level sets \Gamma ai = \{ x \in \BbbR n, f(x) = ai\} are compact for i = 0, 1, . . . ,m. Denote by

\delta 0 = min
\Bigl\{ 
dist(\Gamma ai , \Gamma aj ), 0 \leq i, j \leq m, i \not = j

\Bigr\} 
> 0

the minimum Euclidean distance between two different level sets. Define K = \cup mi=0\Gamma ai and
denote by dK the diameter of K. If \lambda > (am  - a0)/\delta 

2
0 and M > \lambda d2K + maxK | f | , then the

following hold:
(i) AM

\lambda (fK) is an interpolation of f from K to co[K], that is, for x0 \in \Gamma ai, i = 0, 1, . . . ,m,

(3.1) AM
\lambda (fK)(x0) = ai.

(ii) For each x0 satisfying ai \leq f(x0) \leq ai+1 for some 0 \leq i \leq m - 1,

(3.2) ai \leq AM
\lambda (fK)(x0) \leq ai+1 .

(iii) AM
\lambda (fK)(x0) = a0 for x0 \in Va0.

Remark 3.2.
(a) A sufficient condition for the level set \Gamma a to be compact is that f is continuous and

either lim| x| \rightarrow \infty f(x) = +\infty or lim| x| \rightarrow \infty f(x) =  - \infty .
(b) It might happen that there is an open subset of \{ x \in \BbbR n, ai \leq f(x) \leq ai+1\} on

which AM
\lambda (fK)(x) = ai or AM

\lambda (fK)(x) = ai+1. Therefore, Theorem 3.1 gives a weak
maximum principle.

(c) In \BbbR 2, it is not difficult to see that if two neighboring level sets are parallel lines,
then our interpolation gives a plane passing through these two lines. However, if the
function under consideration is not continuous, different level sets can ``intersect"" each
other. In general, it is not clear what the natural level set approximations for functions
with jump discontinuity will be like. In section 6 we will present a prototype example
of two level lines which are not parallel to each other and work out an analytical
expression of the interpolation operator AM

\lambda (fK) for such a case.
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We next give an error estimate for our level set average approximation AM
\lambda (fK), which is

obtained by applying Corollary 2.7 [55, Corollary 3.9]. We first introduce some further defi-
nitions that are needed for the application of this result. Under the assumptions of Theorem
3.1, for i = 0, 1, . . . ,m - 1, define the open set

(3.3) \Omega i = \{ x \in \BbbR n, ai < f(x) < ai+1\} ,

and then for x \in \Omega i, define di(x) using (2.8) with Q = \Omega i. Suppose that Vam is compact, let
R > 0 be such that Vam \subset B(0; R), and set V m

R = Vam \cup Bc(0; R). Then define the auxiliary
function

\~fV m
R
(x) =

\Biggl\{ 
f(x), x \in Vam ,

am + 1, x \in Bc(0; R) .

We consider the following two cases.
(i) If f is continuous, \~fV m

R
is bounded and uniformly continuous in V m

R . Therefore, by

the Tietze extension theorem [21, p. 149], \~fV m
R

can be extended to \BbbR n as a bounded

uniformly continuous function. We denote this extension by \~f and by \~A0 > 0 an upper
bound of | \~f | . Clearly, \~f(x) = f(x) for x \in Vam . Furthermore, we denote by \~\omega (t) the
least concave majorant of the modulus of continuity of \~f , which is itself a modulus of
continuity, thus satisfies the properties (2.2), and, in particular, can be bounded from
above by an affine function; that is, there exist some constants \~a \geq 0 and \~b \geq 0 such
that \~\omega (t) \leq \~at+\~b for all t \geq 0.

(ii) If f is Lipschitz continuous with Lipschitz modulus L > 0, then \~fV m
R

is bounded and

Lipschitz continuous in V m
R with a possibly different Lipschitz modulus \~L such that

(3.4) \~L \leq max
\Bigl\{ 
L, max

Vam

| f | + | am + 1| 
\Bigr\} 
.

By Kirszbraun's theorem [24, p. 202], \~fV m
R

can then be extended to \BbbR n as a bounded

Lipschitz function. Again we denote this extension by \~f and assume that | \~f(x)| \leq \~A0

for all x \in \BbbR n.
With the notation above, we have the following error estimates for AM

\lambda (fK).

Proposition 3.3. Suppose f : \BbbR n \rightarrow \BbbR is continuous and that for a0 < a1 < \cdot \cdot \cdot < am,
the sublevel sets Va0 \subset Va1 \subset \cdot \cdot \cdot \subset Vam are nonempty and compact. Let \Gamma ai be the level
set of f of level ai, K = \cup mi=0\Gamma ai, and di(x), \Omega i be defined by (2.8), (3.3), respectively, for
i = 0, 1, . . . ,m - 1. Denote by \~f the function defined in (i) above, and by \~A0 an upper bound
of | \~f | . If \lambda > am  - a0 + 1 and M > \~A0 + \lambda (2R + 1)2, then for all x \in \Omega i, i = 0, . . . ,m  - 1,
we have

(3.5) | AM
\lambda (fK)(x) - f(x)| \leq \~\omega 

\left(  di(x) +
\~a

\lambda 
+

\sqrt{} 
2\~b

\lambda 

\right)  ,

where \~\omega is the least concave majorant of the modulus of continuity of \~f . If we further assume
that f is a globally Lipschitz function of Lipschitz constant L > 0, \lambda > am  - a0 + 1, and
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M > \~A0 + \lambda (2R+ 1)2, then for all x \in \Omega i, i = 0, . . . ,m - 1, we have

(3.6) | AM
\lambda (fK)(x) - f(x)| \leq \~Ldi(x) +

\~L2

\lambda 
,

where \~L is defined by (3.4).

4. Scattered data approximations. We now turn our attention to the so-called case of
``scattered data"" approximation [51] corresponding to a discrete sampled set K. Since for any
function f : \BbbR n \rightarrow \BbbR , the restriction fK of f to a finite set K is always a Lipschitz function,
the following result provides a sufficient condition for our upper and lower transforms to be
interpolations in this case.

Theorem 4.1. Suppose K = \{ x1, x2, . . . , xm\} \subset \BbbR n is a finite set with distinct points and
assume f : K \subset \BbbR n \rightarrow \BbbR is a function. Assume  - M < f(xj) < M for j = 1, . . . ,m and
let L > 0 be the Lipschitz constant of f : K \subset \BbbR n \rightarrow \BbbR . Define \alpha = min\{ | xi  - xj | , xi, xj \in 
K, i \not = j\} > 0. Then for \lambda \geq L/\alpha ,

Cu
\lambda (f

 - M
K )(xj) = f(xj) and C l

\lambda (f
M
K )(xj) = f(xj) for xj \in K.

Let K \subset \BbbR n be a finite set. Without loss of generality, from now on, we assume that
dim(co[K]) = n, that is, that co[K] \subset \BbbR n is a convex body. In the case dim(co[K]) = k < n,
we can simply translate K so that 0 \in K, and let Ek = span(co[K]) where span(co[K])
is the k-dimensional subspace spanned by co[K]. In this case, Ek \subset \BbbR n is a supporting
plane of co[K] and we only need to work in Ek given that in our interpolation problem we
are only interested in values of our approximation in co[K]. We can therefore reduce our
approximation/interpolation problem to Ek by applying Proposition 2.8.

In order to describe our approximation/interpolation results, we first need to introduce
notions related to the Voronoi diagram and Delaunay triangulation for a finite set K [18, 38,
22].

Let K = \{ x1, . . . , xm\} be a finite set of distinct points of \BbbR n, and denote m = \#(K).
We define \scrV (K), the Voronoi diagram of K, to be the partition of \BbbR n into m cells, one for
each point of K, with the property that a point x \in \BbbR n belongs to the cell corresponding
to the point xi \in K if | x  - xi| < | x  - xj | for each xj \in K with j \not = i. We then denote by
M(K) the Voronoi edges of the Voronoi diagram \scrV (K) of K, meaning the set of the edges of
\scrV (K) where a point y \in M(K) if there are at least two different points xi, xj \in K such that
dist(y, K) = | y  - xi| = | y  - xj | > 0. Then there are finitely many points y1, . . . , yl \in M(K),
called Voronoi vertices, whose set is denoted by V (K), with the property that there are
corresponding radii r1, . . . , rl > 0, such that for each yi \in V (K), there are mi \geq n+ 1 points
xi1, . . . , x

i
mi
\in K such that dist(yi, K) = | yi  - xij | = ri so that the open ball B(yi; ri) does

not intersect K and \=B(yi; ri) \cap K = \{ xi1, . . . , ximi
\} . If we write Ki = \{ xi1, . . . , ximi

\} for each
i \in \{ 1, . . . , l\} , we also have that dim(co[Ki]) = n, \cup lj=1 co[Kj ] = co[K], and if i \not = j, either
dim(co[Ki] \cap co[Kj ]) < n or co[Ki] \cap co[Kj ] = \emptyset [38].

For each i = 1, . . . , l, co[Ki] is referred to as a Delaunay cell with generator Ki, center yi,
and radius ri, and the ball B(yi; ri) is called the associated open ball of the Delaunay cell
co[Ki]. We haveKi = K\cap \partial B(yi; ri) whileK\cap B(yi; ri) = \varnothing . A Delaunay cell is then said to be
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regular if it is an n-dimensional simplex (so, in particular, a triangle if n = 2 and a tetrahedron
if n = 3). If each Delaunay cell co[Ki] in co[K] is regular, the set \{ co[K1], co[K2], . . . , co[Kl]\} 
is said to be the regular Delaunay triangulation of co[K].

In the following, we consider two different situations:
(i) Each Delaunay cell co[Ki] is an n-dimensional simplex; that is, co[K] has a regular

Delaunay triangulation.
(ii) For some or for all Ki's, dim(co[Ki]) = dim(co[K]) = n and \#(Ki) > n + 1; that is,

the Delaunay cell is a convex polytope that is not an n-dimensional simplex.
We will show that if (i) holds, that is, if we have a regular Delaunay triangulation of co[K],
then our average approximation AM

\lambda (fK) defines the usual piecewise affine interpolation based
on this Delaunay triangulation [38, p. 191] when \lambda > 0 and M >> \lambda are sufficiently large.
If (ii) occurs, our average approximation AM

\lambda (fK) will be the average of the minimum and
maximum piecewise affine interpolations of fK in the cell.

Remark 4.2. A remarkable difference between our average approximation AM
\lambda (fK) and

the usual design of piecewise affine constructions is that we do not need to know or compute
the Delaunay cells in advance. Our method simply directly generates the piecewise affine
function.

Before we state our first structural theorem on the effect of the upper, lower, and average
approximations over a regular cell, we need the following lemma.

Lemma 4.3. Let B(x\ast ; r) \subset \BbbR n be the open ball centered at x\ast with radius r > 0, and let
S = \{ x1, x2, . . . , xm\} \subset \partial B(x\ast ; r) be a finite set with distinct points and with \#(S) = m \geq 
n + 1. Assume co[S] \subset \=B(x\ast ; r) is the convex hull of S satisfying dim(co[S]) = n. Suppose
fS : S \rightarrow \BbbR is a real-valued function with Lipschitz constant L > 0. If there is an affine
function \ell s : \BbbR n \rightarrow \BbbR such that \ell s(xi) = fS(xi) for all xi \in S, then there is a constant Cs > 0
such that the gradient of \ell satisfies | D\ell s(x)| \leq CsL.

Remark 4.4. In Lemma 4.3, if m = n + 1, then co[S] is an n-dimensional simplex and
there is an affine function \ell s such that \ell s(x) = fS(x) for x \in S. However, if m > n + 1, in
general one cannot find an affine function satisfying \ell s(x) = fS(x) for x \in S. We will deal
with such a case together with a more general one in Lemma 4.9 and in Theorem 4.11.

We now calculate the transforms Cu
\lambda (f

 - M
K ), C l

\lambda (f
M
K ), and AM

\lambda (fK) in a regular Delaunay
cell co[S] satisfying m = \#(S) = n+1 and dim(co[S]) = n. For each regular cell co[S], define

\sigma s = min
\Bigl\{ 
| xj  - xs|  - rs, xj \in K \setminus S

\Bigr\} 
> 0,

where xs, rs are the center and radius, respectively, of the associated Delaunay ball B(xs; rs)
of co[S], and let Cs be the constant given by Lemma 4.3 for the affine function \ell s associated
with \{ (x, fS(x)), x \in S\} . We then have the following result.

Theorem 4.5. Let K = \{ xi\} mi=1 \subset \BbbR n be a finite set with distinct points, and let fK : K \rightarrow \BbbR 
be a function with Lipschitz constant L > 0 and bound A0 > 0; that is, | fK(x)| \leq A0 for
x \in K. Suppose S = \{ x1, x2, . . . , xl+1\} \subset K satisfies that co[S] is a regular Delaunay cell with
associated Delaunay ball B(xs; rs). Let \ell s : \BbbR n \rightarrow \BbbR be the affine function given by Lemma
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4.3 for S and fK restricted on S. Then, for every x \in co[S],

(4.1)

Cu
\lambda (f

 - M
K )(x) = \lambda | x - xs| 2  - \lambda r2s + \ell s(x), C l

\lambda (f
M
K )(x) = \lambda r2s  - \lambda | x - xs| 2 + \ell s(x),

AM
\lambda (fK)(x) =

Cu
\lambda (f

 - M
K )(x) + C l

\lambda (f
M
K )(x)

2
= \ell s(x)

whenever

(4.2) \lambda >
2A0

\sigma s(2rs + \sigma s)
+

CsL

\sigma s

and

(4.3) M > \lambda r2s + CsLrs +A0 +
C2
sL

2

4\lambda 
.

Remark 4.6. If we replace our functions f - M
K and fM

K by f - \infty 
K and f\infty 

K , respectively,
defined by

f - \infty 
K (x) =

\Biggl\{ 
fK(x) if x \in \in K ,

 - \infty if x \in \BbbR n \setminus K ,
and f\infty 

K (x) =

\Biggl\{ 
fK(x) if x \in K ,

+\infty if x \in \BbbR n \setminus K ,

then condition (4.2) alone is sufficient to obtain (4.1). Although by setting M = +\infty we
have a mathematically simpler statement, the resulting approximations would not, however,
meet the Hausdorff stability property (see [55, Thm. 4.12] for a Hausdorff stability theorem
for AM

\lambda (fK)).

If we further assume that for the given finite setK there is a regular Delaunay triangulation
of co[K], which thus consists of n-dimensional simplices, we can then easily give global explicit
descriptions of Cu

\lambda (f
 - M
K ) and C l

\lambda (f
M
K ), and hence of AM

\lambda (fK) in each n-dimensional Delaunay
simplex. This, however, requires \lambda > 0 and M > 0 to be sufficiently large.

Corollary 4.7. Let K \subset \BbbR n be a finite set with distinct points such that it admits a reg-
ular Delaunay triangulation \scrD (K) of co[K], thus comprised of the n-dimensional simplices
co[S1], . . . , co[Sl], where V (K) is the set of vertices of the Voronoi diagram \scrV (K) of K with
\#(V (K)) = l. For each Delaunay cell Si for i = 1, . . . , l, consider its associated open ball
B(yi; ri) such that B(yi; ri) \cap K = \varnothing and K \cap \=B(yi; ri) = Si for i = 1, . . . , l. Define
\sigma i = min\{ | x - yi|  - ri, x \in K \setminus Si\} .

Let fK : K \subset \BbbR n \rightarrow \BbbR be a function with Lipschitz constant L > 0 satisfying, for some
A0 > 0, | fK(x)| \leq A0 for all x \in K. Let \ell i be the affine function defined in Lemma 4.3 for Si,
such that \ell i(x) = fK(x) for x \in Si and | D\ell i(x)| \leq CiL for some constant Ci > 0, i = 1, . . . , l.
Then in each simplex co[Si], i = 1, . . . , l, and for every x \in co[Si], we have

(4.4)

Cu
\lambda (f

 - M
K )(x) = \lambda | x - xi| 2  - \lambda r2i + \ell i(x), C l

\lambda (f
M
K )(x) = \lambda r2i  - \lambda | x - xi| 2 + \ell i(x) ,

AM
\lambda (fK)(x) =

Cu
\lambda (f

 - M
K )(x) + C l

\lambda (f
M
K )(x)

2
= \ell i(x)
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whenever

(4.5) \lambda > max
1\leq i\leq m

\biggl( 
2A0

\sigma i(2ri + \sigma i)
+

CiL

\sigma i

\biggr) 
and

M > max
1\leq i\leq m

\biggl( 
\lambda r2i + CiLri +A0 +

C2
i L

2

4\lambda 

\biggr) 
.

Remark 4.8. An observation similar to Remark 4.6 for Theorem 4.5 can be made for
Corollary 4.7. Under the assumptions of Corollary 4.7, condition (4.5) is sufficient to ensure
that (4.4) holds with f - \infty 

K , f\infty 
K , and A\infty 

\lambda (fK), respectively, for i = 1, . . . , l and for every
x \in co[Si].

Let S = \{ x1, . . . , xm\} \subset \BbbR n. Next we study the structure of our upper and lower trans-
forms and average approximations when the n-dimensional Delaunay cell co[S] is not a sim-
plex, that is, \#(S) = m > n + 1. In this case, we say that the n-dimensional Delaunay cell
co[S] is not regular. Without loss of generality we may assume that there is an open ball
B(0; r) centered at 0 with radius r > 0, such that S \subset \partial B(0; r). Let fS : S \rightarrow \BbbR be a
given function, and write fS(xi) = vi, i = 1, . . . ,m. Let \Gamma s = \{ (xi, vi), i = 1, . . . ,m\} be the
graph of fS in S \times \BbbR ; we may assume that the convex envelope co[\Gamma s] \subset \BbbR n \times \BbbR of \Gamma s is
an n + 1-dimensional convex polytope; otherwise there will be a single affine function as in
Lemma 4.3 satisfying \ell s(xi) = vi, and we are back to the situation of Theorem 4.5.

Let D = co[S] \subset \BbbR n and \Gamma = \partial co[\Gamma s] be the boundary of the convex polytope co[\Gamma s]. We
have the following result.

Lemma 4.9. Let S, fS, and \Gamma s be as defined above. Then the following hold:
(i) There are two continuous piecewise affine functions p+(x) and p - (x) in D = co[S]

defined by

p+(x) = max\{ v, (x, v) \in co[\Gamma s]\} 

= max

\Biggl\{ 
m\sum 
i=1

\lambda ivi, xi \in S, \lambda i \geq 0, i = 1, . . . ,m,

m\sum 
i=1

\lambda i = 1,

m\sum 
i=1

\lambda ixi = x

\Biggr\} 
,

p - (x) = min\{ v, (x, v) \in co[\Gamma s]\} 

= min

\Biggl\{ 
m\sum 
i=1

\lambda ivi, xi \in S, \lambda i \geq 0, i = 1, . . . ,m,
m\sum 
i=1

\lambda i = 1,
m\sum 
i=1

\lambda ixi = x

\Biggr\} 
,

where p+ and p - are piecewise affine concave and convex functions in D, respectively.
(ii) For every x \in \r D, the interior of D, p - (x) < p+(x).
(iii) The convex polytope D \subset \BbbR n has two decompositions D = \cup ki=1D

+
i and D = \cup lj=1D

 - 
j

such that D+
k and D - 

j are closed convex n-dimensional polytopes, \r D+
i \cap \r D+

j = \varnothing ,

and \r D - 
i \cap \r D - 

j = \varnothing for 1 \leq i \not = j \leq l. On each D+
k (respectively, D - 

j ), p+(x)

(respectively, p - (x)) is an affine function, that is, p+(x) := \ell +k (x) = a+k \cdot x + b+k ,
x \in D+

k (respectively, p - (x) := \ell  - j (x) = a - j \cdot x+ b - j , x \in D - 
j ). Furthermore, the affine
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function \ell +k (x) (respectively, \ell  - j (x)), defined in \BbbR n as above, satisfies \ell +k (x) \geq p+(x)

(respectively, \ell  - j (x) \leq p - (x)) for x \in D.

(iv) Let S+
k \subset D+

k be the set of all vertices of D+
k for k = 1, . . . ,m; then S+

k \subset S, and
\cup mk=1S

+
k = S. On each S+

k , p+(x) = fS(x).
(v) Let S - 

j \subset D - 
j be the set of all vertices of D - 

j for j = 1, . . . , l; then S - 
j \subset S, and

\cup lj=1S
 - 
j = S. On each S - 

k , p - (x) = fS(x).

Remark 4.10. In Lemma 4.9, the piecewise affine functions p+ and p - are replacements of
\ell s in Theorem 4.5. For the average approximation, the average p+ + p - 

2 of the piecewise affine
functions p+ and p - gives the new interpolation formula in D = co[S], replacing the affine
function \ell S . This means that our interpolation AM

\lambda (fK) might introduce extra nodes in co[S]
in a unique way, in the sense that D is the union of q n-dimensional convex polytopes Dav

i ,
i \in \{ 1, . . . , q\} , such that p+ + p - 

2 is affine on each Dav
i but not all vertices of Dav

i are contained
in S.

The following is a generalization of Theorem 4.5.

Theorem 4.11. Let K = \{ xi\} mi=1 \subset \BbbR n be a finite set with distinct points, and let fK :
K \rightarrow \BbbR be a function with Lipschitz constant L > 0 and bound A0 > 0, that is, | f(x)| \leq A0

for x \in K. Suppose S = \{ x1, x1, . . . , xm\} \subset K generates a Delaunay cell co[S] satisfying
dim(co[S]) = n and dim(co[\Gamma s]) = n + 1, where \Gamma s = \{ (x, fK(x)), x \in S\} is the graph
of fK restricted to S. Let B(ys; rs) be the associated open ball of the cell co[S]. Let p+ :
co[S]\rightarrow \BbbR be the piecewise affine concave function and p - : co[S]\rightarrow \BbbR be the piecewise affine
convex function defined in Lemma 4.9, and let co[S] = \cup mk=1D

+
k and co[S] = \cup lj=1D

 - 
j be the

decompositions of co[S] given by Lemma 4.9. Let

C+
s L = max

1\leq k\leq m
C+
k L, C - 

s L = max
1\leq j\leq l

C - 
j L, CsL = max\{ C+

s L, C - 
s L\} ,

where C+
k L and C - 

j L are the positive upper bounds given by Lemma 4.3 for | Dp+(x)| and
| Dp - (x)| , respectively, on D+

k and D - 
j . Let \sigma s = min\{ | x  - xs|  - rs, x \in K \setminus S\} > 0. Then

for every x \in co[S],
(4.6)

Cu
\lambda (f

 - M
K )(x) = \lambda | x - xs| 2  - \lambda r2s + p+(x) , C l

\lambda (f
M
K )(x) = \lambda r2s  - \lambda | x - xs| 2 + p - (x) ,

AM
\lambda (fK)(x) =

p+(x) + p - (x)

2

whenever

(4.7) \lambda >
2A0

\sigma s(2rs + \sigma s)
+

CsL

\sigma s

and

(4.8) M > \lambda r2s + CsLrs +A0 +
C2
sL

2

4\lambda 
.

Remark 4.12. Under the assumptions of Lemma 4.9 and Theorem 4.11, we see that p+(x)
and p - (x) are the maximal and minimal piecewise affine interpolations over co[S]. It is well
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known [38] that in this irregular case, there still exist Delaunay triangulations of co[S] consist-
ing of n-dimensional simplices, but the triangulation is not unique. The average approximation

AM
\lambda (fK)(x) =

p+(x) + p - (x)

2

given by Theorem 4.11 is exactly the average of the maximal and minimal interpolations in a
Delaunay cell.

5. Inpainting revisited. Consider now inpainting of damaged areas of an image. This is
the problem where we are given an image that is damaged in some parts and we want to
reconstruct the values in the damaged part on the basis of the known values of the image.
To specify the setting of the problem, let \Lambda \subset \BbbR n be a convex compact set representing the
domain of the image f which, without loss of generality, we assume to be a grayscale image,
and which is thus represented by a function f : \Lambda \subset \BbbR n \rightarrow \BbbR . We assume that f is bounded
and uniformly continuous. See Remark 5.2 and the comments on Example 5.3 for a discussion
of this assumption in the case of an image.

Denote by \Omega \subset \Lambda an open set representing the damaged areas of the image, and let
K = \Lambda \setminus \Omega . We have then \Omega \subset co[K].

On the basis of the values of f inK, we reconstruct the values of f in \Omega by using the average
approximation AM

\lambda (fK). In this section, we want to assess the error of this approximation.
The next result, which follows from an application of Corollary 2.7, is the main error

estimate for our inpainting method.

Proposition 5.1. Let \Lambda \subset \BbbR n be a convex compact set and \Omega \subset \Lambda a nonempty open set.
Assume f : \Lambda \subset \BbbR n \rightarrow \BbbR is bounded and uniformly continuous, such that for A0 > 0 we
have that | f(x)| \leq A0 for all x \in K = \Lambda \setminus \Omega . Let \~f be a bounded and uniformly continuous
extension of f to \BbbR n, derived by the Tietze extension theorem, with \~f(x) = c0 outside an open
ball B(0; r) with r > 0 and such that K \subset B(0; r). For R > r, define KR = K \cup Bc(0;R),
and let fKR

(x) = fK(x) for x \in K and fKR
(x) = c0 for x \in Bc(0;R). Denote by \omega the least

concave majorant of the modulus of continuity of \~f . Let a \geq 0, b \geq 0 be such that \omega (t) \leq at+b
for t \geq 0. Then for all \lambda > 0, M > A0 + \lambda (R+ r)2, and all x \in co[K], we have

(5.1) | AM
\lambda (fK)(x) - \~f(x)| \leq \omega 

\Biggl( 
rc(x) +

a

\lambda 
+

\sqrt{} 
2b

\lambda 

\Biggr) 
,

where rc(x) \geq 0 is the convex density radius of x with respect to K.
If we further assume that f is a globally Lipschitz function with Lipschitz constant L > 0,

then for \lambda > 0, M > A0 + \lambda (R+ r)2, and all x \in co[K], we have

(5.2) | AM
\lambda (fKR

)(x) - f(x)| \leq Lrc(x) +
L2

\lambda 
.

If we further assume that \~f is a C1,1 function such that | D \~f(x)  - D \~f(y)| \leq L| x  - y| for all
x, y \in \BbbR n with L > 0 the Lipschitz constant of D \~f , then for \lambda > L, M > A0+\lambda (R+ r)2, and
all x \in co[K], we have

(5.3) | AM
\lambda (fKR

)(x) - \~f(x)| \leq L

4

\biggl( 
\lambda + L/2

\lambda  - L/2
+ 1

\biggr) 
r2c (x) .
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Furthermore, in this case, AM
\lambda (fKR

) is an interpolation of fK in \BbbR n.

Remark 5.2.
(i) Using (2.9), it follows that the estimates (5.1) and (5.3) hold with rc(x) replaced by

d(x). Although the resulting estimates are less sharp, they have a clearer meaning in
light of the geometric interpretation of the gap d(x).

(ii) While the assumption of boundedness of the image f is a plausible one, the assump-
tion on the continuity of f seems to be less reasonable for applications to images
which might have sharp changes in grayscale intensity. However, Example 5.3 at the
end of this section illustrates the fact that our average approximation operator well
approximates jump discontinuities.

It is interesting to compare our error estimates (5.1) and (5.3) with the error analysis for
image inpainting discussed in [15]. Let \Omega \subset \BbbR 2 be a smooth domain, which is the damaged
area of the image to be reconstructed, and let u be a C2-function in a larger domain containing
\=\Omega . Let u0 = u on \partial \Omega , and consider the solution v of the boundary value problem \Delta v(x) = 0
with v = u0 on \partial \Omega . The function v is the reconstruction of u within \Omega . The error estimate
obtained in [15] is then given by

(5.4) | v(x) - u(x)| \leq T\beta 2

4
, x \in \Omega ,

where T = max\{ | \Delta u(x)| , x \in \=\Omega \} and \beta is the shorter semiaxis of any ellipse covering \Omega .
Reference [15] also contains variations of estimate (5.4) by deforming (if possible) a general
long thin domain into one for which \beta is reasonably small.

Note that in light of Remark 5.2(i), the error bound (5.3) depends explicitly on d(x)
and the Lipschitz constant L of the gradient D \~f , which is comparable with the bound T for
the Laplacian of u. Moreover, our assumptions on the smoothness of the domain \Omega and the
underlying function are weaker than those considered in [15]. In fact, we do not require any
smoothness of the boundary \partial \Omega . Our estimate is particularly sharp for more general thin
domains given its dependence on d(x). As noted in [15], the short semiaxis \beta 2 used in the
error estimate for harmonic inpainting cannot be replaced by d2(x) which better accounts for
the geometric structure of the damaged area to be inpainted. Due to the Hausdorff stability
property of the average approximation (see [55, Theorem 4.12]), if \Omega \epsilon is another domain whose
Hausdorff distance to \Omega is small, we can also obtain similar results to estimate (5.3) for such
domains.

Reference [15] also contains error estimates for the TV inpainting model using the en-
ergy

\int 
\Omega | v(x)| dx under the Dirichlet condition v| \partial \Omega = u0. However, it is not clear how such

estimates can be made rigorous. Compared with Proposition 5.1, where we assumed the un-
derlying function to be bounded and uniformly continuous, the TV model, in contrast, allows
the function to have jumps; thus the TV inpainting model tries to preserve such jump discon-
tinuities. However, such a model cannot be Hausdorff stable. Also, in order to establish the
existence of solutions for this model, we note that the boundary condition has to be relaxed.
Even for the more regular minimal graph energy

\int 
\Omega 

\sqrt{} 
1 + | Dv(x)| 2dx, existence of solutions

for the Dirichlet problem may not be guaranteed [31]. On the other hand, the average ap-
proximation always exists and is unique. See Example 6.5 in section 6 for an illustration of
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this.
Compared with our model for inpainting, we also note that for the relaxed Dirichlet

problem of the minimal graph or of the TV model, as the boundary value of the solution does
not have to agree with the original boundary value, extra jumps can be introduced along the
boundary. By comparison, since our average approximation is continuous, it will not introduce
such a jump discontinuity at the boundary.

One of the motivations for using TV related models [17] for the inpainting problem is that
functions of bounded variations can have jump discontinuities [3]. Some authors argue that
continuous functions cannot be used to model digital image related functions as functions
representing images may have jumps [17]. However, from the human vision perspective, it
is hard to distinguish between a jump discontinuity, where values change abruptly, and a
continuous function with sharp changes within a very small transition layer. The following
is a simple one-dimensional example showing the effects of our upper, lower, and average
compensated convex transforms on a jump function. More explicitly calculated prototype
examples of inpainting by using our method over jump discontinuity and continuous edges are
given in section 6.

Example 5.3. Let f(x) = sign(x) be the sign function defined by sign(x) = 1 if x > 0 and
sign(x) =  - 1 if x < 0. For \lambda > 0, we have

C l
\lambda (f)(x) =

\left\{       
 - 1, x \leq 0,

1 - \lambda (x - 
\sqrt{} 
2/\lambda )2, 0 \leq x \leq 

\sqrt{} 
2/\lambda ,

1, x \geq 
\sqrt{} 
2/\lambda ,

Cu
\lambda (f)(x) =

\left\{       
 - 1, x \leq  - 

\sqrt{} 
2/\lambda ,

\lambda (x+
\sqrt{} 
2/\lambda )2  - 1,  - 

\sqrt{} 
2/\lambda \leq x \leq 0 ,

1, x \geq 0,

1

2
(C l

\lambda (f)(x) + Cu
\lambda (f)(x)) =

\left\{                 

 - 1, x \leq  - 
\sqrt{} 
2/\lambda ,

\lambda 

2
(x+

\sqrt{} 
2/\lambda )2  - 1,  - 

\sqrt{} 
2/\lambda \leq x \leq 0,

1 - \lambda 

2
(x - 

\sqrt{} 
2/\lambda )2, 0 \leq x \leq 

\sqrt{} 
2/\lambda ,

1, x \geq 
\sqrt{} 
2/\lambda .

(5.5)

Figure 1 displays the graphs of these transforms with \lambda = 100, which give very good
approximations of the jump function with the square of the L2-error equal to 2

\surd 
2/(5
\surd 
\lambda )

for the average approximation and equal to
\surd 
2/(5
\surd 
\lambda for the lower and upper transforms.

Therefore, these transforms can be used quite effectively to replace the jump discontinuity.
For further prototype examples of inpainting with jump discontinuity, see section 6.

We conclude this section by presenting a result on inpainting in bounded convex domains
which we state only for continuous functions defined on the closure of the domain. For
Lipschitz and C1,1-functions, similar results can be established.
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(a) (b) (c)

Figure 1. (a) Lower transform of the sign function for \lambda = 100. (b) Upper transform of the sign function
for \lambda = 100. (c) Average approximation of the sign function for \lambda = 100.

Corollary 5.4. Suppose \Omega \subset \BbbR n is a nonempty, bounded, open, and convex set and U \subset \=U \subset 
\Omega is an open subset whose closure \=U is contained in \Omega . Suppose f : \=\Omega \rightarrow \BbbR is a continuous
function. Let \~f be any bounded uniformly continuous extension of f to \BbbR n and \omega be the least
concave majorant of the modulus of continuity of \~f which is itself a modulus of continuity.
Let K = \=\Omega \setminus U and define for M > 0

fM,\infty 
K (x) =

\left\{   
f(x), x \in K,
M, x \in U,
+\infty , x \in \BbbR n \setminus \=\Omega ,

f - M, - \infty 
K (x) =

\left\{   
f(x), x \in K,
 - M, x \in U,
 - \infty , x \in \BbbR n \setminus \=\Omega .

Then the average approximation in \=\Omega defined by

(5.6) AM ;\infty 
\lambda (fK)(x) =

1

2

\Bigl( 
C l
\lambda (f

M,+\infty 
K )(x) + Cu

\lambda (f
 - M, - \infty 
K )(x)

\Bigr) 
for x \in \=\Omega satisfies

| AM,\infty 
\lambda (fK)(x) - f(x)| \leq \omega (rc(x) + a/\lambda +

\sqrt{} 
b/\lambda )

for all x \in \=\Omega , where rc(x) is the convex density radius of x \in \=\Omega with respect to K.

Remark 5.5. The average approximation defined by (5.6) is the same average approxima-
tion as defined on the bounded domain \=\Omega ,

AM
\lambda (fK ; \=\Omega )(x) =

1

2

\Bigl( 
C l
\lambda (f

M
K ; \=\Omega )(x) + Cu

\lambda (f
 - M
K ; \=\Omega )(x)

\Bigr) 
for x \in \=\Omega , where fM

K (x) and f - M
K (x) are defined by (1.2), restricted to \=\Omega . We can also state

the average approximation under the Dirichlet boundary condition in a similar way. We leave
this to interested readers.

6. Prototype models. In this section we present explicitly calculated average approxima-
tions for some particular simple functions of two variables. Recall that such approximations
A\infty 

\lambda (fK) are obtained by first finding lower and upper compensated convex transforms and
then taking their arithmetic mean, and that the approximation properties of A\infty 

\lambda (fK) hold
for (x, y) \in co[K]. For some examples we also give expressions for the constituent lower and
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upper transforms to help illustrate the construction of the approximations. Such examples
serve the dual purpose of providing insight into this new class of approximations based on
compensated convexity transforms, and of verifying numerical methods for computing such
approximations. In fact, in section 7 below, we will see numerical examples that show that, at
a sufficient level of magnification, the conditions that occur in practice for the approximation
of general functions often look essentially like one of these prototypes.

6.1. Simple prototypes.

Example 6.1. These two examples give average approximations A\infty 
\lambda (fK) for simple sam-

pled functions over nonregular Delaunay cells. In each case, the average approximation is an
interpolation of the sampled function values.

(i) Consider the four-point set K = \{ (\pm 1, 0), (0, \pm 1)\} , and define fK(1, 0) = fK(0, 1) = 1
and fK( - 1, 0) = fK(0, - 1) =  - 1. The upper and lower compensated convex trans-
forms are then, for \lambda > 0,

C l
\lambda (f

\infty 
K )(x, y) =

\left\{   
2\lambda  - 1 - x+ y  - \lambda (x2 + y2) if x \geq  - 1, y \leq 1 and x \leq y,

2\lambda  - 1 + x - y  - \lambda (x2 + y2) if y \geq  - 1, x \leq 1 and x \geq y,
+\infty if | x| > 1 or | y| > 1,

Cu
\lambda (f

 - \infty 
K )(x, y) =

\left\{   
 - 2\lambda + 1 + x+ y + \lambda (x2 + y2) if x \geq  - 1, y \geq  - 1, and x+ y \leq 0,

 - 2\lambda + 1 - x - y + \lambda (x2 + y2) if x \leq 1, y \leq 1, and x+ y \geq 0,
 - \infty if | x| > 1 or | y| > 1,

so that, for (x, y) \in D := co[K] = \{ (x, y) \in \BbbR 2 : | x| \leq 1, | y| \leq 1\} , we have

A\infty 
\lambda (fK)(x, y) =

\left\{       
y if x \leq y and x+ y \leq 0,
 - x if x \leq y and x+ y \geq 0,
x if x \geq y and x+ y \leq 0,
 - y if x \geq y and x+ y \geq 0.

This is the continuous piecewise affine interpolation of fK inside the square D. The
graph of A\infty 

\lambda (fK) is shown in Figure 2(a).
(ii) Consider the eight-point set K \subset \BbbR 2 consisting of the eight points on the unit cir-

cle with polar angles k\pi /4, k = 0, 1, 2, . . . , 7, and define fK(cos(k\pi /4), sin(k\pi /4)) =
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( - 1)k. The upper and lower compensated convex transforms are then, for \lambda > 0,

C l
\lambda (f

\infty 
K )(x, y) =

\left\{               

\surd 
2+1\surd 
2 - 1
 - 2| y| \surd 

2 - 1
if | x| \leq 1, | y| \geq 1, and | y| + (

\surd 
2 - 1)| x| \leq 

\surd 
2,

\surd 
2+1\surd 
2 - 1
 - 2| x| \surd 

2 - 1
if | y| \leq  - 1, | x| \geq 1, and | x| + (

\surd 
2 - 1)| y| \leq 

\surd 
2,

1 if | x| \leq 1 and | y| \leq 1,

0 otherwise,

Cu
\lambda (f

 - \infty 
K )(x, y) =

\left\{                             

\surd 
2+1\surd 
2 - 1
 - 

\surd 
2| x - y| \surd 
2 - 1

if | x+ y| \leq 
\surd 
2, | x - y| \geq 

\surd 
2, and

| x - y| + (
\surd 
2 - 1)| x+ y| \leq 2,

\surd 
2+1\surd 
2 - 1
 - 

\surd 
2| x+y| \surd 
2 - 1

if | x+ y| \geq 
\surd 
2, | x+ y| \geq 

\surd 
2, and

| x+ y| + (
\surd 
2 - 1)| x - y| \leq 2,

1 if | x+ y| \leq 
\surd 
2 and | x - y| \leq 

\surd 
2,

0 otherwise,

whereas A\infty 
\lambda (fK)(x, y) is obtained by taking the arithmetic mean of C l

\lambda (f
\infty 
K )(x, y) and

Cu
\lambda (f

 - \infty 
K )(x, y). Figure 2(b) shows the graph of A\infty 

\lambda (fK) in co[K], which is the inside
of the regular octagon with vertices at the eight points of K. As in (i), A\infty 

\lambda (fK) is a
continuous piecewise affine interpolation of fK in co[K].

(a) (b)

Figure 2. Graphs of the average approximation operators A\infty 
\lambda (fK) in Example 6.1, when K is (a) a four

point set on the circle of unit radius and (b) an eight point set on the circle of unit radius. In both (a) and
(b), the average approximation operator is an interpolation operator over co[K].

Example 6.2. These two examples give average approximations A\infty 
\lambda (fK) for unbounded

sets K with co[K] = \BbbR 2.
(i) Consider the set K = \ell  - \cup \ell + with \ell  - = \{ (x, x), x \in \BbbR \} , \ell + = \{ (y, - y), y \in \BbbR \} , and

define fK(x, x) =  - x2 and fK(y, - y) = y2. To simplify the calculations, first consider
the scaled and rotated function g \~K defined on the set \~K = \{ (x, 0), x \in \BbbR \} \cup \{ (0, y), y \in 
\BbbR \} , with g \~K(x, 0) =  - x2 and g \~K(0, y) = y2. Then, for (x, y) \in \BbbR 2, the lower and
upper compensated convex transforms of g \~K are

C l
\lambda (g

\infty 
\~K
)(x, y) = y2 + 2| x| | y|  - x2, Cu

\lambda (g
 - \infty 
\~K

)(x, y) = y2  - 2| x| | y|  - x2,
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and the average approximation of g \~K is

A\infty 
\lambda (g \~K)(x, y) =

1

2

\Bigl( 
C l
\lambda (g

\infty 
\~K
)(x, y) + Cu

\lambda (g
 - \infty 
\~K

)(x, y)
\Bigr) 
= y2  - x2 .

The average approximation A\infty 
\lambda (fK) of fK is then obtained from A\infty 

\lambda (g \~K) via a change
of variables and is

A\infty 
\lambda (fK)(x, y) =

1

2

\biggl( 
A\infty 

\lambda (g \~K)

\biggl( 
x+ y\surd 

2
,
x - y\surd 

2

\biggr) \biggr) 
=  - xy .

Figure 3(a) shows the graph of A\infty 
\lambda (fK).

(ii) Let K = \{ (x, 0), x \in \BbbR \} \cup \{ (0, y), y \in \BbbR \} , and define fK by fK(x, 0) = | x| for x \in \BbbR 
and fK(0, y) =  - | y| for y \in \BbbR . For (x, y) \in \BbbR 2, the lower and upper compensated
convex transforms of fK are

C l
\lambda (f

\infty 
K )(x, y) =

\Biggl\{ 
2| x|  - 1

4\lambda  - \lambda (x2 + y2) if | x| + | y| \leq 1
2\lambda ,

| x| + 2\lambda | x| | y|  - | y| if | x| + | y| \geq 1
2\lambda ,

Cu
\lambda (f

 - \infty 
K )(x, y) =

\left\{     
 - 2| y| + 1

4\lambda + \lambda (x2 + y2) if | x| + | y| \leq 1

2\lambda 
,

| x|  - 2\lambda | x| | y|  - | y| if | x| + | y| \geq 1

2\lambda 
,

and the average approximation operator is

A\infty 
\lambda (fK)(x, y) = | x|  - | y| ,

which here coincides with the natural interpolation of fK by the piecewise affine func-
tion f(x, y) = | x|  - | y| , (x, y) \in \BbbR 2. The graph of A\infty 

\lambda (fK) is shown in Figure 3(b).

(a) (b)

Figure 3. Graphs of the average approximation operators A\infty 
\lambda (fK) in Example 6.2(i) and (ii), respectively.

6.2. Inpainting prototypes. Examples 6.3 and 6.4 are prototype models for the inpainting
problem. Our question is to what extent our method can preserve singularities on the bound-
ary based on the given boundary values. Our calculations show that if the domain is narrow
and similar singular boundary values appear on both sides of the narrow gap, the inpainting
function A\infty 

\lambda (fK) can preserve the singular shape across the gap, subject to a \lambda -dependent
regularization of the singularity due to the local smoothing effect of the compensated convex
transforms.
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Example 6.3.
(i) For r > 0, h > 0, let K = \{ (\pm r, y), | y| \leq h\} \subset \BbbR 2, i.e., two parallel line segments a

distance r apart (see Figure 4(a)), and define fK(\pm r, y) = 1  - | y| . Let D = co[K] =
\{ (x, y) \in \BbbR 2 : | x| \leq r, | y| \leq h\} . Then for \lambda > 1/2h,

C l
\lambda (f

\infty 
K )(x, y) =

\left\{       
1 - 1

4\lambda + \lambda r2  - \lambda x2  - \lambda y2 if | x| \leq r and | y| \leq 1
2\lambda ,

1 + \lambda r2  - \lambda x2  - | y| if | x| \leq r and 1
2\lambda \leq | y| \leq h,

+\infty otherwise,

Cu
\lambda (f

 - \infty 
K )(x, y) =

\Biggl\{ 
1 - \lambda r2 + \lambda x2  - | y| if | x| \leq r and | y| \leq h,

 - \infty otherwise,

and for (x, y) \in D, the average approximation operator is

A\infty 
\lambda (fK)(x, y) =

\Biggl\{ 
1 - 1

8\lambda  - 
\lambda y2

2  - 
| y| 
2 if | x| \leq r and | y| \leq 1

2\lambda ,

1 - | y| if | x| \leq r and 1
2\lambda \leq | y| \leq h .

The graph of A\infty 
\lambda (fK) is shown in Figure 4(b).

Note that this example shows that if we only sample the two gables K of the roof, the
whole roof can be recovered well for any r > 0 and h > 0. On the other hand, we will
see in the next example that the situation is more complicated if the other two sides,
(x,\pm h) for | x| \leq r, are added to the sample set.

(a) (b)

Figure 4. Example 6.3(i). (a) The sample set K shown in bold, with the sample function fK = 1 - | y| . (b)
Graph of A\infty 

\lambda (fK) for \lambda = 1.

(ii) Next let D = \{ (x, y), | x| \leq r, | y| \leq h\} with h > 0 and r > 0, take the sample set
K = \partial D = \{ (\pm r, y), | y| \leq h\} \cup \{ (x,\pm h), | x| \leq r\} , and define

fK(x, y) =

\Biggl\{ 
h - | y| , x = \pm r, | y| \leq h,

0, y = \pm h, | x| \leq r.

For large \lambda , the shape of A\infty 
\lambda (fK(x, y)) in D now depends on whether h > r, h < r,

or h = r.
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(a) If h > r, the two gables of the roof h - | y| at x = \pm r are close to each other and
we have a very good approximation of the whole roof h - | y| for (x, y) \in D when
\lambda is sufficiently large. For (x, y) \in D, the approximation A\infty 

\lambda (fK(x, y)) is

A\infty 
\lambda (fK)(x, y) =

\Biggl\{ 
h - 1

4\lambda  - \lambda y2 if | y| \leq 1
2\lambda and | x| \leq r,

h - | y| if 1
2\lambda \leq | y| \leq h and | x| \leq r,

which yields the explicit error estimate

| A\infty 
\lambda (fK)(x, y) - f(x, y)| \leq 1

8\lambda .

In particular, the ridge of the roof is preserved well in this case.
(b) If h = r and \lambda > 0 is large, the roof dips in the middle, while the ``ridge"" is still

preserved.
(c) If h < r and \lambda > 0 is large, the roof falls inside D = co[K] and touches the

ground. In this case, the ridge is no longer preserved at all.
In summary, the average approximation can approximate well the nonsmooth function
given on two sides of K provided the two gables are close enough. In this case, we
could say that by symmetry we have a behavior similar to the one seen in Example
6.3(a). On the other hand, when the two gables are far apart, i.e., when h/r < 1,
having fK = 0 on the sides y = \pm h results in a zero interpolation in the middle of the
domain. We stress again that this situation is different from the one seen in Example
6.3(a), where fK was sampled only on the sides x = \pm r. Figure 5 shows the graphs of
A\infty 

\lambda in each of the three cases, together with the sample set K.

A preliminary one-dimensional prototype of the inpainting of a region when the boundary
values have discontinuities was given in Example 5.3. We next explore how our inpainting
method can preserve jumps in a two-dimensional example.

Example 6.4. Consider the inpainting of the region D = \{ (x, y), | x| \leq r, | y| \leq h\} , for r,
h > 0, in the case of narrow gap, that is, when h < r. The sample set is the boundary of the
domain D, that is, K = \partial D, and the sample function fK is taken as fK(x, y) = sign(x). The
sample set K with the sample function fK ' is shown in Figure 6(b). Then for \lambda > 0 large
enough, the average approximation operator is in fact given by (5.5), that is, for (x, y) \in D,

A\infty 
\lambda (fK)(x, y) =

\left\{               

 - 1 if x \leq  - 
\sqrt{} 
2/\lambda and | y| \leq h ,

\lambda 
2 (x+

\sqrt{} 
2/\lambda )2  - 1 if  - 

\sqrt{} 
2/\lambda \leq x \leq 0 and | y| \leq h ,

1 - \lambda 
2 (x - 

\sqrt{} 
2/\lambda )2 if 0 \leq x \leq 

\sqrt{} 
2/\lambda and | y| \leq h ,

1 if x \geq 
\sqrt{} 

2/\lambda and | y| \leq h .

Figure 6(a) shows the graph of the average approximation A\infty 
\lambda (fK) in this case. The approx-

imation A\infty 
\lambda (fK)(x, y) is different from sign(x) in the range [ - 

\sqrt{} 
2/\lambda ,

\sqrt{} 
2/\lambda ]\times [ - h, h] due to

the smoothing effect of the compensated transform in the neighborhood of the singularity.

The width of such a neighborhood depends on
\surd 
\lambda 
 - 1

. The full recovery of the sign function
in D requires taking the limit lim\lambda \rightarrow \infty A\infty 

\lambda (fK)(x, y).
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(a) (b)

(c) (d)

Figure 5. Example 6.3(ii). (a) The sample set K shown in bold, with the sample function fK . Average
approximation in D for the following parameters: (b) h = 1, r = 0.9, \lambda = 10. (c) h = 1, r = 1, \lambda = 10. (d)
h = 0.9, r = 1, \lambda = 10.

Note that if, on the other hand, h > r, the gap is ``wide"" and the graph of A\infty 
\lambda (fK) starts

to collapse in the middle of the domain, similar to what happens in Example 6.3(ii)(c). In
the collapsed region, the approximation looks like an affine function connecting the two sides
\{ x = \pm r\} of D on which fK is given by the constants +1, when x = +r, and  - 1, when
x =  - r.

6.3. Level-set prototypes. We next present prototype models for the approximation of
functions sampled on contour lines.

Example 6.5. This example examines the behavior of A\infty 
\lambda (fK) when the contour lines of

f are (i) smooth and (ii) not smooth.
(i) For 0 < r < R, let K = \Gamma r \cup \Gamma R with \Gamma r and \Gamma R circles of radius r and R, respectively,

as displayed in Figure 7(a), and define the sample function fK by fK(x, y) = 0 for
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(a) (b)

Figure 6. Example 6.4. Inpainting in the closed set D = \{ (x, y), | x| \leq l, | y| \leq h\} by the boundary value
of the sign function on the sample set K = \partial D. (a) Graph of A\infty 

\lambda (fK) for h = 0.6, r = 1, \lambda = 25, showing
that the jump is preserved across the domain D. (b) Sample set K shown in bold with the sampled function
fK = sign(x).

(x, y) \in \Gamma r and fK(x, y) = M > 0 if (x, y) \in \Gamma R. Then for \lambda > M/(R2  - r2),

Cu
\lambda (f

 - \infty 
K )(x, y) =

\left\{   M + \lambda (x2 + y2  - r2) if
\sqrt{} 

x2 + y2 \leq r,

\lambda (x2 + y2  - R2) + M+\lambda (R2 - r2)
R - r (R - 

\sqrt{} 
x2 + y2) if r \leq 

\sqrt{} 
x2 + y2 \leq R ,

Cl
\lambda (f

\infty 
K )(x, y) =

\left\{   M + \lambda (r2  - x2  - y2) if
\sqrt{} 
x2 + y2 \leq r,

\lambda (R2  - x2  - y2) - \lambda (R2 - r2) - M
R - r (R - 

\sqrt{} 
x2 + y2) if r \leq 

\sqrt{} 
x2 + y2 \leq R ,

so that for (x, y) \in D = co[K] = \{ (x, y) : x2 + y2 \leq R2\} , the average approximation
A\infty 

\lambda (fK) is

A\infty 
\lambda (fK)(x, y) =

\left\{   M if
\sqrt{} 
x2 + y2 \leq r,

M(R - 
\surd 

x2+y2)

R - r if r \leq 
\sqrt{} 

x2 + y2 \leq R .

The graph of A\infty 
\lambda (fK) is shown in Figure 7(b).

Note that a common method for the interpolation of function values assigned on con-
tour lines is to solve the Dirichlet problem for the minimal surface equation
div Du\surd 

1+| Du| 2
= 0 over the annulus domain r \leq 

\sqrt{} 
x2 + y2 \leq R with boundary con-

ditions u(x, y) = 0 if (x, y) \in \Gamma r and u(x, y) = M if (x, y) \in \Gamma R. It is then known
that this problem does not have a regular solution [31]. Moreover, the interpolation
obtained by solving the total variation equation div Du

| Du| = 0 faces the same type of

issue, because to obtain its numerical solution, the denominator | Du| is usually re-
placed by the term

\sqrt{} 
\epsilon 2 + | Du| 2, thus obtaining the scaled minimal surface equation

div Du\surd 
\epsilon +| Du| 2

= 0 whose solution, as mentioned above, may not be regular. As a result,

these models must be relaxed, and one must look for generalized solutions [30]. In
contrast, the method we propose yields the natural, easy to compute, and expected
interpolation A\infty 

\lambda (fK) between the two level lines.
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(a) (b)

Figure 7. Example 6.5(i). (a) Sample set K given by the two circular level lines \Gamma r and \Gamma R with fK(x, y) = 0
for (x, y) \in \Gamma r and fK(x, y) = M > 0 if (x, y) \in \Gamma R. (b) Graph of A\infty 

\lambda (fK) with r = 1, R = 2, M = 5, and
\lambda = 10.

(ii) For a, \lambda > 0, consider the sample set K = K1 \cup K2 with K1 = \{ (x, y) : | y| = ax, x \geq 
0\} and K2 = \{ (x, y) : | y| = a(x - 

\surd 
1+a2

a
\surd 
\lambda 

), x \geq 
\surd 
1+a2

a
\surd 
\lambda 
\} , and define the sample function

fK by fK(x, y) = 1 for (x, y) \in K1 and fK(x, y) = 2 for (x, y) \in K2. The set K and
fK are shown in Figure 8(a). For (x, y) \in D = co[K] = \{ (x, y) : | y| \leq ax, x \geq 0\} , the
average approximation operator A\infty 

\lambda (fK) is

A\infty 
\lambda (fK)(x, y) =

\left\{                   

1 if | y| \leq ax and 0 \leq x \leq 1
a
\surd 
1+a2

,

1 +

\surd 
1+a2

\biggl( 
 - 1
a
\surd 
1+a2

+x

\biggr) 
a if x \geq 1

a
\surd 
1+a2

and x+a| y| \surd 
1+a2

\leq 1
a
\surd 
\lambda 
,

2 - 
\bigm| \bigm| \bigm| 1\surd 

\lambda 
+  - ax+| y| \surd 

1+a2

\bigm| \bigm| \bigm| if  - 1\surd 
\lambda 
\leq  - ax+| y| \surd 

1+a2
\leq 0 and 1

a
\surd 
\lambda 
\leq x+a| y| \surd 

1+a2
,

2 if  - ax+| y| \surd 
1+a2

\leq  - 1\surd 
\lambda 
and x \geq 

\surd 
1+a2

a
\surd 
\lambda 

.

The graph of A\infty 
\lambda (fK) is displayed in Figure 8(b), whereas Figure 8(c) displays its

isolines. Note that the interpolation A\infty 
\lambda (fK) takes the constant value 1, which is the

value given on the level set K1, inside a triangle next to the corner of K1, which is
then pieced continuously to K2 by a continuous piecewise affine function.

We conclude this section with a prototype example of level set approximation for a function
with a jump discontinuity at the point (0, 0).

Example 6.6. For \alpha , m > 0, consider the sample set K given by K = \ell + \cup \ell  - with
\ell + = \{ (x, y), y =  - \alpha x, x > 0\} and \ell  - = \{ (x, y), y = \alpha x, x > 0\} , and define fK(x, y) = m on
\ell + and fK(x, y) =  - m on \ell +. The set K and fK are displayed in Figure 9(a). To describe
the average approximation of fK in co[K] = \{ (x, y), | y| \leq \alpha x, x > 0\} which we denote by
S+, we use a parameterized description of the graph (x, y,A\infty 

\lambda (fK)(x, y)) in terms of two new
parameters. This is to avoid solving quartic equations when we find the lower and upper
transforms. Let c\lambda = 2m/\lambda . To calculate the lower transform C l

\lambda (f
\infty 
K ) in S+ we need to find
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(a) (b) (c)

Figure 8. Example 6.5(ii). (a) Sample set K given by two nonsmooth level sets K1 and K2 with a = 1 and
fK(x, y) = 0 for (x, y) \in K1 and fK(x, y) = 2 if (x, y) \in K2. (b) Graph of A\infty 

\lambda (fK) with \lambda = 1. (c) Isolines of
A\infty 

\lambda (fK).

the common tangent planes for f\infty 
K (x, y) + \lambda (x2 + y2) of both \ell + and \ell  - . We can write the

coordinates of the convex envelope as (x, y, co[f\infty 
K (x, y) + \lambda (x2 + y2)]) by\left(  (1 - tl)

\sqrt{} 
s2l + c\lambda + tlsl

\surd 
1 + \alpha 2

,
 - \alpha (1 - tl)

\sqrt{} 
s2l + c\lambda + \alpha tlsl

\surd 
1 + \alpha 2

, \lambda s2l + 2\lambda (1 - tl)c\lambda  - m

\right)  ,

where 0 \leq tl \leq 1 and sl \geq 0. Similarly, the coordinates of (x, y, co[\lambda (x2 + y2)  - f - \infty 
K (x, y)])

are \Biggl( 
(1 - tu)sutu

\sqrt{} 
s2u + c\lambda \surd 

1 + \alpha 2
,
 - \alpha (1 - tu)su + \alpha tu

\sqrt{} 
s2u + c\lambda \surd 

1 + \alpha 2
, \lambda s2u + 2\lambda tuc\lambda  - m

\Biggr) 
,

where 0 \leq tu \leq 1 and su \geq 0. However, the (x, y) coordinates in these two cases do not
represent the same points. Therefore, we need to set them equal so that

(6.1) tl =

\sqrt{} 
s2u + c\lambda 

\Bigl( \sqrt{} 
s2l + c\lambda  - su

\Bigr) 
\sqrt{} 
s2u + c\lambda 

\sqrt{} 
s2l + c\lambda  - susl

, tu =
sl

\Bigl( \sqrt{} 
s2l + c\lambda  - su

\Bigr) 
\sqrt{} 
s2u + c\lambda 

\sqrt{} 
s2l + c\lambda  - susl

.

As 0 \leq tl, tu \leq 1, we see that | s2u  - s2l | \leq c\lambda . Thus if we let

x(sl, su) =
(1 - tl)

\sqrt{} 
s2l + c\lambda + tlsl

\surd 
1 + \alpha 2

, y(sl, su) =
 - \alpha (1 - tl)

\sqrt{} 
s2l + c\lambda + \alpha tlsl

\surd 
1 + \alpha 2

,

and

A\infty 
\lambda (fK)(sl, su) =

1

2

\Bigl( 
\lambda (s2l  - s2u) + 2\lambda c\lambda ((1 - tl  - tu))

\Bigr) 
,

the graph of the average approximation of fK in the sector S+ defined above is

\Gamma S+,\lambda =
\bigl\{ 
(x(sl, su), y(sl, su), A

\infty 
\lambda (fK)(sl, su)) , su \geq 0, sl \geq 0, | s2u  - s2l | \leq c\lambda 

\bigr\} 
,

where tl and tu are given by (6.1).
Although it is not easy to write the graph in the standard Euclidean system, observe

that the graph is smooth in the interior region \{ (sl, su), sl > 0, su > 0, | s2l  - s2u| < c\lambda \} .
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By our construction, we also note that the surface \Gamma S+,\lambda is formed by the average of two
families of parameterized line segments. Also, when \lambda > 0 is large, outside a small sector, say,
S\lambda 
+ = \{ | y| \leq \alpha , 0 < x < 2

\sqrt{} 
2m/\lambda \} , our formula is an interpolation in S+ \setminus S\lambda 

+. Figure 9(b)
shows a portion of the graph of A\infty 

\lambda (fK).

(a) (b)

Figure 9. Example 6.6. (a) Sampled set K with the definition of fK that presents a discontinuity jump at
(0, 0). (b) Graph of A\infty 

\lambda (fK) with \alpha = 0.25, m = 1, and \lambda = 5.

7. Numerical examples. For more complicated sets K and functions fK , the average
approximation operators AM

\lambda (fK) and A\infty 
\lambda (fK) must be evaluated numerically. Figure 10

sketches the steps needed for their implementation. It is noted that the numerical realization
relies mainly on the availability of numerical schemes for computing the upper and lower
transforms of a given function, which in turn means the availability of schemes to compute
the convex envelope of a function. Because of the locality property of the compensated
convex transforms (see, for instance, Theorem 3.10 in [57], where quantitative estimates of
the neighborhood size are also given), it is possible to develop fast schemes that depend only
on the local behavior of the input function. This is in sharp contrast to the evaluation of
the convex envelope of a function which is a global evaluation. In the current context, we
consider a generalization of the scheme introduced in [37] which is briefly summarized in
Algorithm 1 and described below. Given a uniform grid of points xk \in \BbbR n, equally spaced
with grid size h, let us denote by Sxk

the d-point stencil of \BbbR n with center at xK defined as
Sxk

= \{ xk + hr, | r| \infty \leq 1, r \in \BbbZ n\} with | \cdot | \infty the \ell \infty -norm of r \in \BbbZ n and d = \#(S). At each
grid point xk we compute the convex envelope of f at xk by an iterative scheme where each
iteration step m is given by

(co f)m(xk) = min
\Bigl\{ 
f(xk),

\sum 
\lambda i(co f)m - 1(xi),

\sum 
\lambda i = 1, \lambda i \geq 0, xi \in Sxk

\Bigr\} 
with the minimum taken between f(xk) and only some convex combinations at the stencil
grid points. For the full algorithmic and implementation details of the scheme, the convex
combinations that one needs to take, and its convergence analysis, we refer the reader to [53].

In this section, we present some illustrative numerical experiments of the applications
described above, namely, for surface reconstruction from contour lines, point clouds, and
image inpainting. For the first two applications, we discuss examples of approximation of
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Figure 10. Flow chart for the numerical evaluation of AM
\lambda (fK).

Algorithm 1. Conceptual implementation of the scheme that computes the convex envelope
of f .

1: Set m = 1, (co f)0 = f, tol
2: \epsilon = \| f\| L2

3: while \epsilon > tol do
4: \forall xk, (co f)m(xk) = min

\Bigl\{ 
f(xk),

\sum 
\lambda i(co f)m - 1(xi),

\sum 
\lambda i = 1, \lambda i \geq 0, xi \in Sxk

\Bigr\} 
5: \epsilon = \| (co f)m  - (co f)m - 1\| L2

6: m\leftarrow m+ 1
7: end while

a smooth function, of a continuous but nondifferentiable function, and of a discontinuous
function. The quality of the approximation is measured by computing the relative L2-error

(7.1) \epsilon =
\| f  - AM

\lambda (fK)\| L2(\Omega )

\| f\| L2(\Omega )
,

where f is the original function that we want to approximate and AM
\lambda (fK) is the average

approximation of the sample fK of f over K. We mainly postpone a thorough comparison
with other state-of-art methods to forthcoming papers, just giving some first comparisons
with the AMLE method presented in [2, 13] and applied to surface reconstruction and image
inpainting. Image denoising for salt \& pepper noise and image inpainting were solved by the
TV model described in [14] and in [29], respectively.

We conclude this short introduction by stating that at least for the examples and methods
we have considered here, we have observed higher accuracy of the AM

\lambda (fK) interpolant and
faster execution time for its numerical evaluation compared to the other methods.

7.1. Surface reconstruction from contour lines. We describe next some numerical exper-
iments on surface reconstruction from sectional contours. This is the problem of reconstructing
the graph of a function f by knowing only some contour lines of f , and it has applications
in medical imaging, computer graphics, reverse engineering, and terrain modeling, among
other areas. The underlying function f : \BbbR 2 \supset \Omega \rightarrow \BbbR is assumed to have various regularity
properties. Consider first the reconstruction of an infinitely differentiable function given by
the Franke test function [25] and then the reconstruction of functions with less regularity.
In addition to the relative L2-error \epsilon defined by (7.1), which gives a measure of how close
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AM
\lambda (fK) is to f , we also compute

(7.2) \epsilon K =
\| fK  - AM

\lambda (fK)K\| L2(K)

\| fK\| L2(K)
,

where fK is the sample function and AM
\lambda (fK)K the restriction of AM

\lambda (fK) to K, to assess
the quality of AM

\lambda (fK) as an interpolant of fK . We will thus verify that in the examples
where f is continuous, the average approximation AM

\lambda (fK) represents an interpolation of fK ,
consistently with the theoretical results established in section 3.

(a) (b) (c)

Figure 11. Example 7.1.1. (a) Graph of the Franke test function f defined by (7.3). (b) Sample set K of
10-contour lines of f at equally spaced heights equal to (max(f) - min(f))/10, defining the sample function fK .
(c) Sample set K of 50-contour lines of f at equally spaced heights equal to (max(f) - min(f))/50, defining the
sample function fK .

7.1.1. Franke test function. The Franke function was introduced in [25] as one of the
test functions for the evaluation of methods for scattered data interpolation [26]. The function
consists of two Gaussian peaks and a sharper Gaussian dip superimposed on a surface sloping
toward the first quadrant [25] and is defined by

f(x, y) =
3

4
e - ((9x - 2)2+(9y - 2)2)/4 +

3

4
e - ((9x+1)2/49+(9y+1)2/10) +

1

2
e - ((9x - 7)2/4 - (9y - 3)2)/4

 - 1

5
e - ((9x - 4)2+(9y - 7)2) .

(7.3)

Consider f defined in the unit square \Omega =]0, 1[2. Its graph is displayed in Figure 11(a).
Approximations using two different sets of contour lines have been computed by applying the
methods described in this paper and by the AMLE model introduced in [13] and applied in
[2] to the interpolation of digital elevation models. The two sets of contour lines consist of 10
and 50 equally spaced level lines, respectively. Given the smoothness of f , the isolines are also
smooth curves. The two sample sets are displayed in Figures 11(b) and 11(c), respectively,
whereas the graphs of the corresponding average approximations AM

\lambda (fK) are shown in Figures
12(a) and 12(c). Figures 12(b) and 12(d) display, on the other hand, the corresponding contour
lines which, compared to the same equally spaced level lines of f displayed in Figure 11(c),
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(a) (b)

(c) (d)

Figure 12. Example 7.1.1. (a) Graph of the interpolation function AM
\lambda (fK) computed for \lambda = 1 \cdot 104, M =

1 \cdot 105, and corresponding to the set K of 10-contour lines of f displayed in Figure 11(b). Relative L2-errors:
\epsilon = 0.01986, \epsilon K = 3.33 \cdot 10 - 15. (b) Isolines of AM

\lambda (fK) at equally spaced heights equal to (max(f) - min(f))/50.
(c) Graph of the interpolation function AM

\lambda (fK) computed for \lambda = 1 \cdot 104, M = \cdot 105, and corresponding to the
set K of 50-contour lines of f displayed in Figure 11(d). Relative L2-errors: \epsilon = 0.0021, \epsilon K = 2.62 \cdot 10 - 15.
(d) Isolines of AM

\lambda (fK) at equally spaced heights equal to (max(f) - min(f))/50.

show a good quality of the reconstruction given by AM
\lambda (fK). This is also confirmed by the

values of the relative L2-error \epsilon equal to 0.01986 and 0.00218 for the two sample sets K of
contour lines, respectively. Note the clear reduction of error by increasing the density of
the data set. For the two average approximations, the value of \epsilon K is of the order of 10 - 15,
confirming that the average approximation AM

\lambda (fK) interpolates exactly fK .
Figure 13 displays the reconstruction obtained by the AMLE method. The numerical

results were obtained by using the MATLAB code described in [39]. In this case, for a
number of iterations equal to 106, we found a relative L2-error higher than the one generated
by AM

\lambda (fK) with \epsilon equal to 0.0338 and 0.0101 for the two sample sets K of 10 and 50 level
lines, respectively. Consistently with the findings of [35], also here we find that the AMLE
interpolation generates additional kinks which are not present in f and might be the cause
for the reduced quality of the approximation compared to AM

\lambda (fK).

7.1.2. Continuous piecewise affine function. We describe now the approximation of
the continuous piecewise affine function f associated with the triangulation shown in Figure
14(a), where also the node values of f are given, while Figure 14(b) displays the graph of
f . Two different sample sets of contour lines have been considered. One consists of six
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(a) (b)

(c) (d)

Figure 13. Example 7.1.1. (a) Graph of the AMLE interpolation function of fK with K the set of 10-contour
lines of f displayed in Figure 11(b). Relative L2-error \epsilon = 0.0338. (b) Isolines of the AMLE interpolation
function of fK at equally spaced heights equal to (max(f) - min(f))/50. (c) Graph of the AMLE interpolation
function of fK with K the set of 50-contour lines of f displayed in Figure 11(d). Relative L2-error \epsilon = 0.0101.
(d) Isolines of the AMLE interpolation function of fK at equally spaced heights equal to (max(f) - min(f))/50.

isolines, whereas the other is formed by 15 isolines. The isolines are not equally spaced and
are displayed in Figures 14(c) and 14(d), respectively, whereas the graphs of the corresponding
average approximations AM

\lambda (fK) are shown in Figures 15(a) and 15(c) along with the isolines
corresponding to 50 equally spaced isolevels. In this example the isolines are not smooth
curves, so locally, around their singularities, for the interpretation of the results, it can be
useful to recall and compare them with the behavior of the average approximation described
in the prototype Example 6.5(ii) in section 6. The average approximation displays a step
which reduces by increasing the number of isolines. Note that these steps are also visible in
the MATLAB display of the graph of the function f ; thus they are errors of the interpolation
scheme that is used. We find that for the reconstruction of the function sampled on the six-
contour line set, the relative L2-error \epsilon is equal to 0.019302. This value reduces to 0.004805
for the reconstruction of the function sampled on the 15-contour line set K. For both of these
examples, it is confirmed that the average approximation AM

\lambda (fK) interpolates fK given that
the computed value of \epsilon K is of the order of 10 - 16.

The AMLE method appears to yield slightly better results for the reconstruction from the
sample set K of six contour lines. In this case, we find a relative L2-error \epsilon equal to 0.01675,
slightly lower than the one produced by AM

\lambda (fK). Figure 16(a) displays the graph of the AMLE
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(a) (b)

(c) (d)

Figure 14. Example 7.1.2. (a) Triangulation with nodal values used to construct a continuous piecewise
affine function. (b) Graph of f associated with the triangulation defined in (a). (c) Sample set K of 6-contour
line of f , defining the sample function fK . (d) Sample set K of 15-contour line of f , defining the sample
function fK .

interpolant which does not contain steps along the edges of the pyramid, whereas Figure 16(b)
shows its isolines for 50 levels of equally spaced heights. For the AMLE interpolant of the
sample set K of 15 contour lines, whose graph is displayed in Figure 16(c) and the isolines in
Figure 16(d), the relative L2-error \epsilon is equal to 0.00713, which is slightly higher than the one
produced by AM

\lambda (fK) for the same sample set K. Here note also the appearance of additional
kinks in the graph of the AMLE interpolant, which might reduce the global quality of the
AMLE approximation compared to AM

\lambda (fK).

7.1.3. Discontinuous piecewise affine function. The approximation of discontinuous
functions has not been covered by the theoretical developments of section 3, where we as-
sumed f to be continuous. Now we present a test case where we examine how our average
approximation performs numerically and verify that also in this case AM

\lambda (fK) represents a
continuous interpolation of fK . We consider the following discontinuous piecewise affine func-
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(a) (b)

(c) (d)

Figure 15. Example 7.1.2. (a) Graph of the interpolation function AM
\lambda (fK) with K given in Figure

14(c), and \lambda = 1 \cdot 105, M = 1 \cdot 105, tol = 10 - 9. Relative L2-errors: \epsilon = 0.019302, \epsilon K = 4.50 \cdot 10 - 16. (b)
Isolines of AM

\lambda (fK) at equally spaced heights equal to (max(f)  - min(f))/50. (c) Graph of the interpolation
function AM

\lambda (fK) with K given in Figure 14(d), and \lambda = 1 \cdot 105, M = 1 \cdot 105, tol = 10 - 9. Relative L2-errors:
\epsilon = 0.004805, \epsilon K = 8.68\cdot 10 - 16. (d) Isolines of AM

\lambda (fK) at equally spaced heights equal to (max(f) - min(f))/50.

tion:

f : (x, y) \in ]0, 1[2\rightarrow 200, f(x, y) =

\left\{               

x+ y  - 1 if 1/2 \leq x \leq 1, 1/2 \leq y \leq 1,

x - y  - 1/2 if 1/2 \leq x \leq 1, 0 \leq y < 1/2,

 - x+ y  - 1/2 if 0 \leq x < 1/2, 1/2 \leq y \leq 1,

 - x - y if 0 \leq x < 1/2, 0 \leq y < 1/2,

whose graph is displayed in Figure 17(b), while Figure 17(a) shows the equation of f in each
of its affine parts.

We compare the reconstruction of f for two sample setsK, one formed by 20 equally spaced
isolines and the other by 100 equally spaced isolines. Such sets are displayed in Figures 17(c)
and 17(d), respectively. Notably, for both sample sets K, AM

\lambda (fK) coincides exactly with
the original function f . We find, indeed, for both sample sets K, \epsilon and \epsilon K are of the order
of 10 - 15 by taking \lambda = 107, M = 106. This occurs because of an exact sampling of the
discontinuity jump; thus we are able to reproduce exactly the affine parts of f , consistently
with the theoretical findings of section 3. Furthermore, given the high value of \lambda and recalling
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(a) (b)

(c) (d)

Figure 16. Example 7.1.2. (a) Graph of the AMLE interpolation function of fK with K the set of 6-contour
lines of f displayed in Figure 14(c). Relative L2-error \epsilon = 0.01675. (b) Isolines of the AMLE interpolant at
equally spaced heights equal to (max(f)  - min(f))/50. (c) Graph of the AMLE interpolation function of fK
with K the set of 15-contour lines of f displayed in Figure 14(d). Relative L2-error \epsilon = 0.0071297. (d) Isolines
of the AMLE interpolant at equally spaced heights equal to (max(f) - min(f))/50.

the behavior of the jump in the prototype Example 5.3, we are able to describe the sharp
discontinuity.

For the case where we do not have an exact sampling of the discontinuity jump, we refer
the reader to Example 7.2.3 concerning the surface reconstruction from point clouds with
sampling points not necessarily on the discontinuity.

A different behavior is displayed by the AMLE interpolation. Consistently with the obser-
vations in [35], the level lines of the AMLE interpolant are smooth [44]; thus discontinuities
cannot be recovered. A better visual appreciation of this fact is obtained by looking at the
graphs of the AMLE interpolant shown in Figures 18(a) and 18(c) for the two sample sets K,
and at their isolines displayed in Figures 18(b) and 18(d), respectively. The isolines at the two
sides of the jump should ``end"" in the discontinuity, but they are somehow enforced to join
each other by the continuous isolines of the AMLE interpolant. In this case we find values of
the relative L2-error \epsilon , with \epsilon = 0.1071 and \epsilon = 0.06738 for the two sample sets, respectively.

Table 1 summarizes the relative L2-errors of AM
\lambda (fK) and the AMLE interpolant for the

examples considered in this section.

7.2. Scattered data approximation. We turn now to some numerical experiments on
scattered data approximation. In particular, in the terminology of [36], we consider the



2404 KEWEI ZHANG, ELAINE CROOKS, AND ANTONIO ORLANDO

(a) (b)

(c) (d)

Figure 17. Example 7.1.3. (a) Equations of each affine part of f . (b) Graph of f . (c) Sample set K of
20-contour line of f at equally spaced heights equal to (max(f) - min(f))/20, defining the sample function fK .
(d) Sample set K of 50-contour lines of fat equally spaced heights equal to (max(f) - min(f))/50, defining the
sample function fK .

problem of function reconstruction from point clouds, where the sample points that form the
set K do not meet any particular condition as to spacing or density. As in the previous
section, the set of test problems consists of three test functions with different regularity: an
infinitely differentiable function given by the Franke test function, a continuous piecewise
affine function, and a discontinuous piecewise affine function. The three test functions are
all to be approximated in \Omega =]0, 1[2. In the numerical implementation of the method, the
domain \Omega is discretized with a grid of 201\times 201 points, and the two sample sets K are obtained
by sampling the grid points using a random number generator with different levels of density.
The two sample sets K, corresponding to a coarse and a dense sampling, are displayed in
Figures 19(a) and 19(b), respectively. The reason for taking such a regular discretization of
\Omega is that the numerical scheme we use to compute the convex envelope (see Algorithm 1)
is particularly suitable for applications to image processing where such discrete geometry is
related to the image resolution.

For the measure of the global quality of the approximation AM
\lambda (fK) we compute the
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(a) (b)

(c) (d)

Figure 18. Example 7.1.3. (a) Graph of the AMLE interpolation function of fK with K the set of 20-
contour lines of f displayed in Figure 17(c). Relative L2-error \epsilon = 0.1071. (b) Isolines of the AMLE interpolant
at equally spaced heights equal to (max(f) - min(f))/50. (c) Graph of the AMLE interpolation function of fK
with K the set of 50-contour lines of f displayed in Figure 17(d). Relative L2-error \epsilon = 0.06738. (d) Isolines
of the AMLE interpolant at equally spaced heights equal to (max(f) - min(f))/50.

Table 1
Summary of the accuracy of the compensated convexity based interpolant AM

\lambda (fK) and of the AMLE in-
terpolant for the examples considered in section 7.1. Legend: K, sample set. \epsilon , relative L2-error. \epsilon K , relative
L2-error on the sample set K. F, Franke test function (Example 7.1.1). CPA, continuous piecewise affine
function (Example 7.1.2). DPA, discontinuous piecewise affine function (Example 7.1.3).

\epsilon 

f K AM
\lambda (fK) AMLE

F
10 level lines 0.0199 0.0338
50 level lines 0.0021 0.0101

CPA
6 level lines 0.0193 0.0167
15 level lines 0.0048 0.0071

DPA
20 level lines 8.7 \cdot 10 - 15 0.1071
100 level lines 1.5 \cdot 10 - 16 0.0674

relative L2-error \epsilon defined by (7.1), whereas we will use the relative L2-error \epsilon K defined by

(7.4) \epsilon K =

\sqrt{} \sum 
k\in K
| f(xk) - AM

\lambda (fK)(xk)| 2\sqrt{} \sum 
k\in K
| f(xk)| 2
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(a) (b)

Figure 19. Set K of sample points of a grid of 201\times 201 points in ]0, 1[2 for two levels of sampling density:
(a) Coarse sampling with 400 grid points out of 40401. (b) Dense sampling with 4061 grid points out of 40401.

to assess the quality of AM
\lambda (fK) as interpolant of fK . In this case, too, we will find that the

average approximation AM
\lambda (fK) is an interpolation of fK , consistently with the theoretical

findings of section 4. We then conclude this section by giving an example of digital elevation
model reconstruction starting from real data, and another of salt \& pepper noise removal as
an application of scattered data approximation to image processing.

7.2.1. Franke test function. In this example, the Franke test function f defined by (7.3)
is sampled over the two sets K of scattered points displayed in Figures 19(a) and 19(b),
respectively. For the resulting sample functions fK we compute the corresponding average
approximations AM

\lambda (fK), whose graphs are displayed in Figure 20, along with the respective
isolines. Specifically, the comparison of the isolines of AM

\lambda (fK) displayed in Figures 20(b) and
20(d) for the coarse and dense sample sets K, respectively, with the isolines of the Franke
function f displayed in Figure 11(d), allows a visual appreciation of the quality of the re-
construction. This is also confirmed by the computed values of the relative L2-error \epsilon . For
the coarse sample set we get \epsilon = 0.0206, whereas, for the denser sample set, \epsilon = 0.00157.
Finally, also in this case, we verify that AM

\lambda (fK) is an interpolant of fK given that for both
approximations the relative L2-error \epsilon K defined by (7.4) is of the order of 10 - 15.

The AMLE method as introduced in [13] can be applied also in this case for the interpo-
lation of isolated points. In fact, this is one of its particular features out of the PDE-based
interpolators. The graphs of the AMLE interpolants for the two sample sets are displayed
in Figure 21, which contains also the plot of the corresponding isolines for 50 level lines of
equally spaced heights. The plot of these isolines, once compared with the same isolines of
f displayed in Figure 11(c), allows a visual assessment of the quality of the reconstruction.
As in Example 7.1.1 concerning the reconstruction from contour lines, we note also here the
introduction of artificial artifacts in the form of kinks in the graph of the interpolant, which,
in contrast, are not present in the graph of AM

\lambda (fK). For the coarse and dense sampling
set we find that the relative L2-error of the AMLE interpolant amounts to \epsilon = 0.05764 and
\epsilon = 0.010902, respectively, which are slightly higher than the values produced by AM

\lambda (fK).

7.2.2. Continuous piecewise affine function. The continuous piecewise affine function
f introduced in section 7.1.2 is evaluated here over the two sample sets K of Figures 19(a)
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(a) (b)

(c) (d)

Figure 20. Example 7.2.1. (a) Graph of AM
\lambda (fK) for \lambda = 1 \cdot 104, M = 1 \cdot 105, and the set K of Figure

19(a). Relative L2-errors: \epsilon = 0.020252, \epsilon K = 5.31 \cdot 10 - 15. (b) Isolines of AM
\lambda (fK) at equally spaced heights

equal to (max(f)  - min(f))/50. (c) Graph of AM
\lambda (fK) for \lambda = 5 \cdot 103, M = 1 \cdot 105, and the set K of Figure

19(b). Relative L2-errors: \epsilon = 0.0015548, \epsilon K = 4.13 \cdot 10 - 15. (d) Isolines of AM
\lambda (fK) at equally spaced heights

equal to (max(f) - min(f))/50.

and 19(b), defining two test cases of sample function fK . The graph of the corresponding
average approximation AM

\lambda (fK) is displayed in Figure 22 along with the respective isolines,
whereas Figure 23 shows those of the AMLE interpolating along with its isolines of equally
spaced heights. The drawing of the isolines allows a visual assessment of the quality of the
reconstruction if these are compared to the isolines of the original function f displayed in
Figure 15(c). A first observation about the graphs of AM

\lambda (fK) is the near absence of the steps
along the edges of the pyramid due to the constraint enforced by the fixed contour lines; on
the contrary, the graphs of the AMLE interpolant present, even for this example, artifacts in
the form of artificial kinks and valleys. The relative L2-error \epsilon produced by AM

\lambda (fK) is equal
to 0.0215 for the coarse sample set and to 0.00390 for the denser sample set, whereas it is
\epsilon = 0.053594 and \epsilon = 0.012515 for the AMLE interpolant of the coarse and dense sample set,
respectively. Compared with the reconstruction of f from contour lines, where the sample
points can be considered to be somehow organized, we observe that both the reconstructed
function AM

\lambda (fK) and the AMLE interpolant appear to be less regular, which reflects the fact
that the sample points are scattered over \Omega without any requirement of spacing or density.
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(a) (b)

(c) (d)

Figure 21. Example 7.2.1. (a) Graph of the AMLE interpolation function of fK with K the set of scattered
points displayed in Figure 19(a). Relative L2-error: \epsilon = 0.05764. (b) Isolines of the AMLE interpolant at
equally spaced heights equal to (max(f)  - min(f))/50. (c) Graph of the AMLE interpolation function of fK
with K the set of scattered points displayed in Figure 19(b). Relative L2-error: \epsilon = 0.010902. (d) Isolines of
the AMLE interpolant at equally spaced heights equal to (max(f) - min(f))/50.

This effect clearly reduces by increasing the density of the sample points, though for the
AMLE interpolant we note that the relative L2-errors for the two cases of sampling density
remain of the same order of magnitude. For this example, too, we finally verify that AM

\lambda (fK)
is an interpolation of fK given that the relative L2-error \epsilon K is of the order 10 - 16 for both test
cases.

7.2.3. Discontinuous piecewise affine function. The discontinuous piecewise affine func-
tion f introduced in section 7.1.3 is evaluated here over the two sample sets K displayed in
Figures 19(a) and 19(b) to form two sample functions fK corresponding to a coarse and a
dense sample set, respectively. The graph of AM

\lambda (fK) is displayed in Figure 24 for the two
cases, along with their isolines, whereas Figure 25 shows the graph of the AMLE interpolants
along with their isolines with equally spaced heights. Also here, it is useful to compare such
isolines with those of the original function f displayed in Figure 18(d) for a visual assessment
of the quality of the reconstructions. Unlike the reconstruction of f from contour lines, where
we had the exact sampling of the discontinuity which was coincident with the grid lines, here
we note an irregular behavior for AM

\lambda (fK) around the discontinuities of f . Such irregular
behavior reduces by increasing the sampling density, especially if such density increase occurs
in the neighborhood of the singularities. On the other hand, the AMLE interpolant displays
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(a) (b)

(c) (d)

Figure 22. Example 7.2.2. (a) Graph of AM
\lambda (fK) for \lambda = 5 \cdot 104, M = 1 \cdot 105, and the set K of Figure

19(a). Relative L2-errors: \epsilon = 0.021574, \epsilon K = 4.4626 \cdot 10 - 16. (b) Isolines of AM
\lambda (fK) at equally spaced heights

equal to (max(f)  - min(f))/50. (c) Graph of AM
\lambda (fK) for \lambda = 5 \cdot 104, M = 1 \cdot 105, and the set K of Figure

19(b). Relative L2-errors: \epsilon = 0.003914, \epsilon K = 6.2983 \cdot 10 - 16. (d) Isolines of AM
\lambda (fK) at equally spaced heights

equal to (max(f) - min(f))/50.

around the singularities a behavior similar to the one obtained from the contour lines, with
the difference that now the transition from one affine part of f to the other appears to be
smoother. As for the accuracy of the reconstructions, for AM

\lambda (fK) we find that \epsilon = 0.173 for
the coarse sample set and \epsilon = 0.0901 for the denser sample set, whereas the relative L2-error
\epsilon K on both sample sets K is of the order of 10 - 16, confirming that again, AM

\lambda (fK) is an
interpolant of fK . For the AMLE interpolant, even in this case, we find higher values for the
relative L2-error, with \epsilon = 0.22577 and \epsilon = 0.13897 for the coarser and denser sample set,
respectively. We note also the introduction of artificial artifacts in the graph of the AMLE
interpolant.

The relative L2-errors obtained for scattered data approximation using AM
\lambda and AMLE

interpolation are summarized in Table 2 for the examples considered in this section.

7.2.4. DEM reconstruction. We consider here the problem of producing a Digital Ele-
vation Map (DEM) from a sample of the the NASA SRTM global digital elevation model of
Earth land. The data provided by the National Elevation Dataset [27] contain geographical
coordinates (latitude, longitude, and elevation) of points sampled at one arc-second intervals
in latitude and longitude. For our experiments, we choose the region defined by the coordi-
nates [N 40\circ 48\prime 50\prime \prime , N40\circ 52\prime 50\prime \prime ] \times [E 14\circ 45\prime 50\prime \prime , E14\circ 50\prime 00\prime \prime ] extracted from the SRTM1 cell
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(a) (b)

(c) (d)

Figure 23. Example 7.2.2. (a) Graph of the AMLE interpolation function of fK with K the set of scattered
points displayed in Figure 19(a). Relative L2-error: \epsilon = 0.053594. (b) Isolines of the AMLE interpolant at
equally spaced heights equal to (max(f)  - min(f))/50. (c) Graph of the AMLE interpolation function of fK
with K the set of scattered points displayed in Figure 19(b). Relative L2-error: \epsilon = 0.012515. (d) Isolines of
the AMLE interpolant at equally spaced heights equal to (max(f) - min(f))/50.

N40E014.hgt [1]. Such a region consists of an area with extension 7.413Km\times 5.844 km and
height varying between 266m and 1600m, with variegated topography features. In the digiti-
zation by the U.S. Geological Survey, each pixel represents a 30m\times 30m patch. Figure 26(a)
displays the elevation model from the SRTM1 data, which we refer to in the following as the
ground truth model. We will take a sample fK of such data, make the reconstruction using
the AM

\lambda (fK) and the AMLE interpolant, and compare them with the ground truth model.
In the numerical experiments, we consider two sample data, characterized by different data
density and type of information. The first, which we refer to as sample set K1, consists only
of level lines at a regular height interval of 66m and contains 19\% of the ground truth real
digital data. The second sample set, denoted by K2, has been formed by randomly taking the
30\% of the points belonging to the level lines of the set K1 and scattered points corresponding
to 5\% density so that the sample set K2 amounts to about 9\% of the ground truth points. The
two sample sets K1 and K2 are shown in Figures 26(b) and 26(c), respectively. The graph of
the AM

\lambda (fK) interpolant and of the AMLE interpolant for the two sample sets along with the
respective isolines at equally spaced heights equal to 66m are displayed in Figures 27 and 28,
respectively, whereas Table 3 contains the values of the relative L2-error between such inter-
polants and the ground truth model. Though both reconstructions are comparable visually to
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(a) (b)

(c) (d)

Figure 24. Example 7.2.3. (a) Graph of AM
\lambda (fK) for \lambda = 1 \cdot 107, M = 1 \cdot 105, and the set K of Figure

19(a). Relative L2-errors: \epsilon = 0.16729, \epsilon K = 1.2849 \cdot 10 - 16. (b) Isolines of AM
\lambda (fK) at equally spaced heights

equal to (max(f)  - min(f))/50. (c) Graph of AM
\lambda (fK) for \lambda = 1 \cdot 107, M = 1 \cdot 105, and the set K of Figure

19(b). Relative L2-errors: \epsilon = 0.088589, \epsilon K = 1.459 \cdot 10 - 16. (d) Isolines of AM
\lambda (fK) at equally spaced heights

equal to (max(f) - min(f))/50.

the ground truth model, a closer inspection of the pictures shows that in the reconstruction
from the synthetic data, the AMLE interpolant does not correctly reconstruct the mountains'
peaks, which appear to be smoothed, and introduces artificial ridges along the slopes of the
mountains. In contrast, the AM

\lambda (fK) interpolant appears better for capturing features of the
ground truth model. Finally, we also note that though the sample set K1 contains a number
of ground truth points higher than the sample set K2, the reconstruction from K2 appears to
be better than the one obtained from K1. This behavior was found for both interpolations,
though it is more notable in the case of the AM

\lambda (fK) interpolant. By taking scattered data,
we are able to get a better characterization of irregular surfaces compared to the one obtained
from a structured representation such as provided by the level lines.

7.2.5. Salt \& pepper noise removal. As an application of scattered data approximation
to image processing, we consider here the restoration of an image corrupted by salt \& pepper
noise. This is an impulse-type noise that is caused, for instance, by malfunctioning pixels
in camera sensors or faulty memory locations in hardware, so that information is lost at
the faulty pixels and the corrupted pixels are set alternatively to the minimum or to the
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(a) (b)

(c) (d)

Figure 25. Example 7.2.3. (a) Graph of the AMLE interpolation function of fK with K the set of scattered
points displayed in Figure 19(a). Relative L2-error: \epsilon = 0.22577. (b) Isolines of the AMLE interpolant at
equally spaced heights equal to (max(f)  - min(f))/50. (c) Graph of the AMLE interpolation function of fK
with K the set of scattered points displayed in Figure 19(b). Relative L2-error: \epsilon = 0.13897. (d) Isolines of the
AMLE interpolant at equally spaced heights equal to (max(f) - min(f))/50.

Table 2
Accuracy of the interpolation for the examples considered in section 7.2. Legend: K, sample set. \epsilon , relative

L2-error. \epsilon K , relative L2-error on the sample set K. F, Franke test function (Example 7.1.1). CPA, continuous
piecewise affine function (Example 7.1.2). DPA, discontinuous piecewise affine function (Example 7.1.3).

\epsilon 

f K AM
\lambda (fK) AMLE

F
coarse 0.0203 0.0576
dense 0.0016 0.0109

CPA
coarse 0.0216 0.0536
dense 0.0039 0.0125

DPA
coarse 0.1673 0.2258
dense 0.0876 0.1390

maximum value of the range of the image values. When the noise density is low, about less
than 40\%, the median filter is quite effective for restoring the image. However, this filter loses
its denoising power for higher noise density given that details and features of the original
image are smeared out. In those cases, other techniques must be applied; one possibility is
the two-stage TV-based method proposed in [14]. In the following numerical experiments, we
consider the image displayed in Figure 29(a) with size 512\times 512 pixels, damaged by 70\% salt
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(a) (b) (c)

Figure 26. Example 7.2.4. Reconstruction of real-world digital elevation maps. (a) Ground truth model
from USGS-STRM 1 data relative to the area with geographical coordinates; [N 40\circ 48\prime 50\prime \prime , N40\circ 52\prime 50\prime \prime ] \times 
[E 14\circ 45\prime 50\prime \prime , E14\circ 50\prime 00\prime \prime ]. (b) Sample set K1 formed by only level lines at regular height interval of 66m.
The set K1 contains 19\% of the ground truth points. (c) Sample set K2 formed by taking randomly 30\% of the
points belonging to the level lines of the set K1 and scattered points corresponding to 5\% density. The sample
set K2 contains 9\% of the ground truth points.

(a) (b)

(c) (d)

Figure 27. Example 7.2.4. Reconstruction of real-world digital elevation maps. (a) Graph of AM
\lambda (fK) for

sample set K1. Parameters: \lambda = 1 \cdot 103, M = 1 \cdot 106. Relative L2-errors: \epsilon = 0.01560, \epsilon K = 0. (b) Graph of
AM

\lambda (fK) for sample set K2. Parameters: \lambda = 1 \cdot 103, M = 1 \cdot 106. Relative L2-errors: \epsilon = 0.0117, \epsilon K = 0. (c)
Isolines of AM

\lambda (fK) from sample set K1 at regular heights of 66m. (d) Isolines of AM
\lambda (fK) from sample set K2

at regular heights of 66m.

\& pepper noise. The resulting corrupted image is displayed in Figure 29(b), where only 78643
pixels out of the total 262144 pixels carry true information. The true image values represent
our sample function fK , whereas the set of the true pixels forms our sample set K. To assess
the restoration performance we use the peak signal-to-noise ratio (PSNR) which is expressed
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(a) (b)

(c) (d)

Figure 28. Example 7.2.4. Reconstruction of real-world digital elevation maps. (a) Graph of the AMLE
Interpolant from set K1. Relative L2-error: \epsilon = 0.0214. (b) Graph of the AMLE Interpolant from set K2.
Relative L2-error: \epsilon = 0.0226. (c) Isolines of the AMLE Interpolant from sample set K1 at regular heights of
66m. (d) Isolines of the AMLE Interpolant from sample set K2 at regular heights of 66m.

Table 3
Relative L2-error for the DEM reconstruction from the two sample sets using the AM

\lambda (fK) and the AMLE
interpolant.

\epsilon 

Sample set AM
\lambda (fK) AMLE

K1 0.0156 0.02137

K2 0.0117 0.02261

in the units of dB and, for an 8-bit image, is defined by

(7.5) PSNR = 10 log10
2552

1
mn

\sum 
i,j | fi,j  - ri,j | 2

,

where fi,j and ri,j denote the pixel values of the original and restored image, respectively, and
m, n denote the size of the image f . In our numerical experiments, we have considered the
following cases. The first one assumes the set K to be given by the noise-free interior pixels
of the corrupted image together with the boundary pixels of the original image. In the second
case, K is just the set of the noise-free pixels of the corrupted image, without any special
consideration of the image boundary pixels. In analyzing this second case, to reduce the
boundary effects produced by the application of Algorithm 1, we have applied our method to
an enlarged image and then restricted the resulting restored image to the original domain. The
enlarged image has been obtained by padding a fixed number of pixels before the first image
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element and after the last image element along each dimension, making mirror reflections with
respect to the boundary. The values used for padding are all from the corrupted image. In
our examples, we have considered two versions of enlarged images, obtained by padding the
corrupted image with 2 pixels and 10 pixels, respectively. Table 4 compares the values of
the PSNR of the restored images by our method and the TV-based method applied to the
corrupted image with noise-free boundary and to the two versions of the enlarged images with
the boundary values of the enlarged images given by the padded noisy image data. We observe
that there are no important variations in the denoising result between the different methods
of treating the image boundary. This is also reflected by the close value of the PSNR of the
resulting restored images. For 70\% salt \& pepper noise, Figure 29(c) displays the restored
image AM

\lambda (fK) with K equal to the true set that has been enlarged by two pixels, whereas
Figure 29(d) shows the restored image by the TV-based method [12, 14] using the same set K.
Although the visual quality of the images restored from 70\% noise corruption is comparable
between our method and the TV-based method, the PSNR using our method is higher than
that for the TV-based method in all of the experiments reported in Table 4. An additional
advantage of our method is its speed. Our method does not require initialization, which is in
contrast to the two-stage TV-based method, for which the initialization, for instance, is given
by the restored image using an adaptive median filter.

Finally, to demonstrate the performance of our method in some extreme cases of very
sparse data, we consider cases of noise density equal to 90\% and 99\%. Figure 30 displays the
restored image by the compensated-convexity--based method and by the TV-based method for
cases where K is padded by two pixels and ten pixels for 90\% and 99\% noise level, respectively.
As far as the visual quality of the restored images is concerned, and to the extent that such
judgement can make sense given the high level of noise density, the inspection of Figure 30
seems to indicate that AM

\lambda (fK) gives a better approximation of details than the TV-based
restored image. This is also reflected by the values of the PSNR index in Table 4.

Table 4
Comparison of PSNR of the restored images by the compensated convexity based method (AM

\lambda (fK)) and by
the two-stage TV-based method (TV) for different sets K.

PSNR
K with noise-free boundary K padded by two pixels K padded by ten pixels

Noise density AM
\lambda (fK) TV AM

\lambda (fK) TV AM
\lambda (fK) TV

70\% (6.990 dB) 31.910 dB 31.175 dB 31.865 dB 31.134 dB 31.869 dB 31.136 dB

90\% (5.901 dB) 27.574 dB 26.625 dB 27.506 dB 26.564 dB 27.513 dB 26.566 dB

99\% (5.492 dB) 22.076 dB 20.595 dB 21.761 dB 20.469 dB 21.972 dB 20.492 dB

7.3. Image inpainting. As an example of image inpainting, we consider the problem of
removing text overprinted on the image displayed in Figure 31(a). If we denote by P the
set of pixels containing the overprinted text, and by \Omega the domain of the whole image, then
K = \Omega \setminus P is the set of the true pixels, and the inpainting problem is in fact the problem
of reconstructing the image over P from knowing fK , if we denote by f the original image
values. To assess the performance of our reconstruction compared to state-of-art inpainting
methods, we compare our method with the TV-based image inpainting method solved by
the split Bregman method described in [29] and with the AMLE inpainting reported in [45].
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(a) (b)

(c) (d)

Figure 29. Example 7.2.5. (a) Original image with size 512\times 512. (b) Original image covered by a salt \&
pepper noise density of 70\%. PSNR = 6.99 dB. (c) Restored image AM

\lambda (fK) with K the set of the pixels not
corrupted by the salt \& pepper noise when the corrupted image is enlarged symmetrically by two pixels on each
side, \lambda = 15 and M = 1E13. PSNR = 31.865 dB. If the boundary pixels were noise-free, the corresponding
restored image would have PSNR = 31.910 dB. (d) Restored image by the two-stage TV-based method described
in [12, 14] with K the set of the pixels not corrupted by the salt \& pepper noise when the corrupted image is
enlarged symmetrically by two pixels on each side. PSNR = 31.134 dB. If the boundary pixels were noise-free,
the corresponding restored image would have PSNR = 31.175 dB.

The restored image AM
\lambda (fK) obtained by our compensated convexity method is displayed in

Figure 31(b), and the restored image by the AMLE method is shown in Figure 31(d), whereas
Figure 31(c) presents the restored image by the the split Bregman inpainting method. All the
restored images look visually quite good. However, if we use the PSNR as a measure of the
quality of the restoration, we find that AM

\lambda (fK) has a value of PSNR equal to 42.2066 dB, and
the split Bregman inpainting restored image gives a value for PSNR = 41.0498 dB, whereas
the AMLE restored image has PSNR equal to 39.4405 dB.

Finally, to assess how well AM
\lambda (fK) is able to preserve image details and not introduce

unintended effects such as image blurring and staircase effects, Figure 32 displays details of
the original image and of the restored images by the three methods. Once again, the good
performance of AM

\lambda (fK) can be appreciated visually.
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(a) (b)

(c) (d)

Figure 30. Example 7.2.5. Restoration of 90\% corrupted image (PSNR = 5.901 dB) by (a) restored image
AM

\lambda (fK), with K the set of the pixels not corrupted by the salt \& pepper noise when the corrupted image is
enlarged symmetrically by two pixels on each side, \lambda = 15 and M = 1E13. PSNR = 27.506 dB. (b) Restored
image by the two-stage TV-based method described in [12, 14] with the same set K as in (a). PSNR = 26.564 dB.
Restoration of 99\% corrupted image (PSNR = 5.492 dB) by (c) restored image AM

\lambda (fK), with K the set of the
pixels not corrupted by the salt \& pepper noise when the corrupted image is enlarged symmetrically by ten pixels
on each side, \lambda = 15 and M = 1E13. PSNR = 21.972 dB. (d) Restored image by the two-stage TV-based
method described in [12, 14] with the same set K as in (c). PSNR = 20.492 dB.

8. Proofs of the main results.

Proof of Proposition 2.8. We write (x, y) \in \BbbR n+m with x \in \BbbR n and y \in \BbbR m. We only
prove the result for the upper transform as the proof of the lower transform is similar. By the
definition of the upper transform, we have

co[\lambda | \cdot | 2  - f ](x) = \lambda | x| 2  - Cu
\lambda (f(x)), x \in \BbbR n .

We show that co[\lambda | \cdot | 2 - f ](x) is also the convex envelope of the function \lambda (| x| 2+| y| 2) - g - M (x, y)
restricted to z = 0. By definition,

\lambda | x| 2  - Cu
\lambda (f(x)) = co[\lambda | \cdot | 2  - f ](x) \leq \lambda | x| 2  - f(x) \leq \lambda (| x| 2 + | y| 2) - g - M (x, y)
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(a) (b)

(c) (d)

Figure 31. Example 7.3. Inpainting of the text overprinted on an image: (a) Original image with over-
printed text. (b) Restored image AM

\lambda (fK) with K the set to be inpainted, \lambda = 250, and M = 1 \cdot 104. Computed
value for PSNR = 42.2066 dB; relative L2-error \epsilon = 0.016139. (c) Restored image by the AMLE method de-
scribed in [45, 39]. Computed value for PSNR = 39.4405 dB. Relative L2-error \epsilon = 0.022192. (d) Restored
image by the split Bregman inpainting method described in [29]. Computed value for PSNR = 41.0498 dB.
Relative L2-error \epsilon = 0.018438.

as f(x) \geq g - M (x, y) for all x \in \BbbR n and y \in \BbbR m. Thus, for y = 0,

co[\lambda | \cdot | 2  - f ](x) \leq co[\lambda (| x| 2 + | y| 2) - g - M (x, y)]| y=0 .

On the other hand,

co[\lambda (| x| 2 + | y| 2) - g - M (x, y)]| y=0 \leq \lambda | x| 2  - g - M (x, 0) = \lambda | x| 2  - f(x) .

Since the restriction of a convex function to a linear subspace remains convex, we also see that

co[\lambda (| x| 2 + | y| 2) - g - M (x, y)]| y=0 \leq co[\lambda | \cdot | 2  - f ](x) .

Thus
co[\lambda (| x| 2 + | y| 2) - g - M (x, z)]| y=0 = co[\lambda | \cdot | 2  - f ](x) ;

hence the conclusion follows.
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(a) (b)

(c) (d)

Figure 32. Example 7.3. Comparison of a detail of the original image with the corresponding detail of the
restored images according to the compensated convexity method and the TV-based method. (a) Lips detail of
the original image without overprinted text. (b) Lips detail of the restored image AM

\lambda (fK). (c) Lips detail of
the AMLE-based restored image. (d) Lips detail of the TV-based restored image.

Proof of Theorem 3.1. Note first that it follows from the fact that a0 < a1 < \cdot \cdot \cdot < am,
m \in \BbbN , that Vai \subset Vaj for all 0 \leq i < j \leq m. Also, by the translation invariant property
of compensated convex transforms, we may assume without loss of generality that x0 = 0, so
that

C l
\lambda (f

M
K )(0) = co[fM

K + \lambda | \cdot | 2](0), Cu
\lambda (f

 - M
K )(0) = co[\lambda | \cdot | 2  - f - M

K ](0).

(i) Suppose that x0 = 0 \in \Gamma ak , and consider the constant function \ell (x) = ak. Clearly
ak = fM

K (0) + \lambda | 0| 2. Next we show that ak \leq fM
K (x) + \lambda | x| 2 for x \in \Gamma aj , for j \not = k. Thus we

need to prove that ak \leq aj + \lambda | x| 2. Since 0 \in \Gamma ak and x \in \Gamma aj , we have | x| 2 \geq \delta 20 . Under our
assumption on \lambda , we see that ak \leq aj+\lambda | x| 2 holds. Since ak < M , we have ak \leq fM

K (x)+\lambda | x| 2
for all x \in \BbbR n; hence C l

\lambda (f
M
K )(0) = ak. Similarly, we can show that Cu

\lambda (f
 - M
K )(0) = ak, so that

AM
\lambda (fK)(0) = ak.
(ii) Since (i) clearly ensures that (3.2) holds whenever f(x0) = ai for some 0 \leq i \leq m, it

remains to consider x0 = 0 such that ai < f(x0) < ai+1 for some 0 \leq i \leq m - 1. Now define

(8.1) fM
K - 

i
(x) =

\Biggl\{ 
fM
K (x), x /\in \Gamma ai+1 ,

ai, x \in \Gamma ai+1 ,
fM
K+

i
(x) =

\Biggl\{ 
fM
K (x), x /\in \Gamma ai ,

ai+1, x \in \Gamma ai .

Clearly fM
K - 

i

(x) \leq fM
K (x) \leq fM

K+
i

(x) and f - M

K - 
i

(x) \leq f - M
K (x) \leq f - M

K+
i

(x) for x \in \BbbR n, so that

(8.2)
Cl

\lambda (f
M
K - 

i

)(x) \leq Cl
\lambda (f

M
K )(x) \leq Cl

\lambda (f
M
K+

i

)(x), Cu
\lambda (f

 - M

K - 
i

)(x) \leq Cu
\lambda (f

 - M
K )(x) \leq Cu

\lambda (f
 - M

K+
i

)(x), x \in \BbbR n,

and hence by definition,

(8.3) AM
\lambda (fK - 

i
)(x) \leq AM

\lambda (fK)(x) \leq AM
\lambda (fK+

i
)(x), x \in \BbbR n.
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Next we will prove that

(8.4) AM
\lambda (fK - 

i
)(0) = ai, AM

\lambda (fK+
i
)(0) = ai+1 .

We first show that co[fM
K - 

i

+ \lambda | \cdot | 2](0) \geq ai. Clearly ai \leq ai + \lambda | x| 2 = fM
K - 

i

(x) + \lambda | x| 2 for

x \in \Gamma ai \cup \Gamma ai+1 . For x \in \Gamma aj with j \not = i, i + 1, ai \leq aj + \lambda | x| 2 if ai  - aj \leq \lambda | x| 2. This
inequality holds if am  - a0 \leq \lambda \delta 20 , that is, for \lambda \geq (am  - a0)/\delta 

2
0 , which is what we have

assumed. The inequality | x| \geq \delta 0 for x \in \Gamma aj can be proved by applying the intermediate
value theorem to f . If j < i, as f(0) > ai and f(x) = aj < ai, we have, by the intermediate
value theorem, that there is some \xi \in (0, 1) such that f(\xi x) = ai, that is, \xi x \in \Gamma ai . Thus
| x| > (1  - \xi )| x| = | x  - \xi x| \geq \delta 0 as x \in \Gamma aj and \xi x \in \Gamma ai . If j > i + 1, we have f(0) < ai+1

and f(x) = aj > ai+1. Again we can use the same method to show that | x| \geq \delta 0.
By definition of the convex envelope, we see that there is an affine function \ell such that

\ell (x) \leq fM
K - 

i

(x)+\lambda | x| 2 for x \in \BbbR n and \ell (0) = co[fM
K - 

i

+\lambda | \cdot | 2](0). From the proof above, we see

that \ell (0) \geq ai. Furthermore, if we let Kl = \{ x \in \BbbR n, \ell (x) = fM
K - 

i

(x) + \lambda | x| 2\} , then 0 \in co[Kl]

and \ell (x) = co[fM
K - 

i

+ \lambda | \cdot | 2](x) for x \in co[Kl].

By [55, Proposition 3.3], we see that Kl \subset K. Now we show that Kl \subset \Gamma ai \cup \Gamma ai+1 . If
this is not the case, then Kl \cap \Gamma ak \not = \varnothing for some k \not \in \{ i, i + 1\} . We consider two different
cases: (a) k < i and (b) k > i + 1. For case (a), we see that there is some x\ast \in Kl \cap \Gamma ak .
Thus \ell (x\ast ) = ak + \lambda | x\ast | 2. As f(0) > ai and f(x\ast ) = ak < ai, similar to the proof above, by
the intermediate value theorem, we have that there is some \xi \in (0, 1) such that f(\xi x\ast ) = ai.
Therefore, \xi x\ast \in \Gamma ai so that \ell (\xi x\ast ) \leq fM

K - 
i

(\xi x\ast ). This implies

(8.5) (1 - \xi )\ell (0) + \xi \ell (x\ast ) \leq ai + \lambda | \xi x\ast | 2 .

As \ell (0) \geq ai and \ell (x\ast ) = ak + \lambda | x\ast | 2, we derive from (8.5) that

(8.6) (1 - \xi )ai + \xi 
\bigl( 
ak + \lambda | x\ast | 2

\bigr) 
\leq ai + \lambda | \xi x\ast | 2;

hence,

(8.7) \xi (1 - \xi )\lambda | x\ast | 2 \leq \xi (ai  - ak) .

Thus we have found that for 0 < \xi < 1

(8.8) \lambda (1 - \xi )| x\ast | 2 \leq (ai  - ak) .

Since \lambda (1  - \xi )| x\ast | 2 \geq \lambda (1  - \xi )2| x\ast | 2 \geq \lambda \delta 20 and ai  - ak \leq am  - a0, we have \lambda \delta 20 \leq am  - a0,
which contradicts our assumption on \lambda .

If case (b) occurs, we have f(0) < ai+1 and f(x\ast ) = ak > ai+1. Again by the intermediate
value theorem, there is some \xi \in (0, 1) such that f(\xi x\ast ) = ai+1. However, note that here the
value of fM

K - 
i

on \Gamma ai+1 is ai. Therefore, a similar argument to that for case (a) will lead to a

contradiction. Thus in both cases we have proved that Kl \subset \Gamma ai \cup \Gamma ai+1 .
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Now we consider Cu
\lambda (f

 - M

K - 
i

)(0) = co[\lambda | \cdot | 2  - f - M

K - 
i

](0). Let \^\ell be the affine function such

that \^\ell (x) \leq \lambda | x| 2  - f - M

K - 
i

(x), \^\ell (0) = co[\lambda | \cdot | 2  - f - M

K - 
i

](0), and let Ku = \{ x \in K, \^\ell (x) =

\lambda | x| 2 - f - M

K - 
i

(x)\} . Again we have \^\ell (0) \geq  - ai and we can also show that Ku \subset \Gamma ai \cup \Gamma ai+1 . By

the definition of the convex envelope, we have
(8.9)

co[fM
K - 

i
+ \lambda | \cdot | 2](0)

= inf

\Biggl\{ 
n+1\sum 
k=1

\lambda k

\Bigl( 
fM
K - 

i
(xk) + \lambda | xk| 2

\Bigr) 
, xk \in \BbbR n, \lambda k \geq 0,

n+1\sum 
k=1

\lambda k = 1,
n+1\sum 
k=1

\lambda kxk = 0

\Biggr\} 

= inf

\Biggl\{ 
n+1\sum 
k=1

\lambda k

\Bigl( 
fM
K - 

i
(xk) + \lambda | xk| 2

\Bigr) 
, xk \in Kl, \lambda k \geq 0,

n+1\sum 
k=1

\lambda k = 1,
n+1\sum 
k=1

\lambda kxk = 0

\Biggr\} 

= inf

\Biggl\{ 
n+1\sum 
k=1

\lambda k

\Bigl( 
fM
K - 

i
(xk) + \lambda | xk| 2

\Bigr) 
, xk \in Kl \cup Ku, \lambda k \geq 0,

n+1\sum 
k=1

\lambda k = 1,
n+1\sum 
k=1

\lambda kxk = 0

\Biggr\} 

= ai + inf

\Biggl\{ 
n+1\sum 
k=1

\lambda k\lambda | xk| 2, xk \in Kl \cup Ku, \lambda k \geq 0,

n+1\sum 
k=1

\lambda k = 1,

n+1\sum 
k=1

\lambda kxk = 0

\Biggr\} 
=: ai + C0 .

Similarly, we have co[\lambda | \cdot | 2  - f - M

K - 
i

](0) =  - ai + C0, and hence

(8.10) AM
\lambda (fK - 

i
)(0) =

1

2

\Bigl( 
co[fM

K - 
i
+ \lambda | \cdot | 2](0) - co[\lambda | \cdot | 2  - f - M

K - 
i

](0)
\Bigr) 
= ai .

By using the same argument as above, we can also show that AM
\lambda (fK+

i
)(0) = ai+1, and this

proves (8.4).
(iii) Suppose f(0) < a0. If we let \ell be the affine function such that \ell (x) \leq fM

K (x) + \lambda | x| 2,
\ell (0) = co[fM

K +\lambda | \cdot | 2](0), and let Kl = \{ x \in co[K], \ell (x) = fM
K (x)+\lambda | x| 2\} , then in this special

case we only need to show that Kl \subset \Gamma a0 . As a0 < a1 < \cdot \cdot \cdot < am, we only need to rule out
one possibility that Kl \cap \Gamma i \not = \emptyset for any 0 < i \leq m. By following the arguments of the proof
of (ii)(b), we can show that Kl \subset \Gamma 0. Similarly, we can also show that Ku \subset \Gamma 0, where Ku =
\{ x \in co[K], \^\ell (x) = \lambda | x| 2  - f - M

K (x)\} for the affine function \^\ell such that \^\ell (x) \leq \lambda | x| 2  - f - M
K (x)

and \^\ell (0) = co[\lambda | \cdot | 2  - f - M
K ](0). The proof is then similar to that of part (ii). Note that here

we do not have to introduce functions fM
K+

0

and fM
K - 

0

as in (ii) given that the condition we have

is f(0) < a0 while in (ii) we had ai < f(0) < ai+1.

Proof of Proposition 3.3. (i) Without loss of generality, we may assume x0 = 0 \in \Omega i. Now
note that Corollary 2.7, applied with f , r, and R given by \~f , R, and R+1, respectively, gives
that

(8.11) | AM
\lambda ( \~fKR+1

)(0) - \~f(0)| \leq \~\omega 

\left(  rc(0) +
\~a

\lambda 
+

\sqrt{} 
2\~b

\lambda 

\right)  .

Then since 0 \in \Omega i \subset Vam , it follows that \~f(0) = f(0), and also that rc(0) \leq di(0), by (2.9).
To prove (3.5), it thus remains to show that AM

\lambda ( \~fKR+1
)(0) = AM

\lambda (fK)(0). To see this, note
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first that by arguments similar to those in the proof of [55, Theorem 3.7], we have that

(8.12) C l
\lambda (

\~fM
KR+1

)(0) =
n\ast \sum 
k=1

\lambda k( \~fKR
(xk) + \lambda | xk| 2)

for some 2 \leq n\ast \leq n + 1, \lambda k > 0, xk \in KR+1, k = 1, 2, . . . , n\ast , with \Sigma n\ast 
k=1\lambda k = 1 and

\Sigma n\ast 
k=1\lambda kxk = 0. Now if xk \in K for each 1 \leq k \leq n\ast , then \~fKR+1

(xk) = fK(xk), and

hence C l
\lambda (

\~fM
KR+1

)(0) = C l
\lambda (f

M
K )(0). So suppose, for contradiction, that xk0 \in KR+1 \setminus K =

Bc(0;R+ 1). Then there exists an affine function \ell such that

\ell (y) \leq \~fM
KR+1

(y) + \lambda | y| 2 for all y \in \BbbR n, \ell (xk) = \~fM
KR+1

(xk) + \lambda | xk| 2, 1 \leq k \leq n\ast ,

so that

\ell (xk0) =
\~fM
KR+1

(xk0) + \lambda | xk0 | 2 = am + 1 + \lambda | xk0 | 2.

Since \~fM
KR+1

(y) = am + 1 for all y \in Bc(0, R + 1), \ell must be the unique tangent plane to the

function y \rightarrow am + 1 + \lambda | y| 2 at y = xk0 , namely

\ell (y) = am + 1 + \lambda | xk0 | 2 + 2\lambda xk0 \cdot (y  - xk0), y \in \BbbR n.

Now it follows from the fact that this plane does not touch the graph of y \rightarrow am+1+\lambda | y| 2 at
any other point that xk \not \in Bc(0, R+ 1) for 1 \leq k \leq n\ast , k \not = k0, and hence, since n\ast \geq 2, there
must exist x\^k,

\^k \not = k0, with x\^k \in \Gamma aj for some 1 \leq j \leq m and \ell (x\^k) =
\~fM
KR+1

(x\^k) + \lambda | x\^k| 
2 =

aj + \lambda | x\^k| 
2. But then

am + 1 + \lambda | xk0 | 2 + 2\lambda xk0 \cdot x\^k  - 2\lambda | xk0 | 2 = aj + \lambda | x\^k| 
2,

and hence, since xk0 \in Bc(0;R+ 1) and x\^k \in B(0, R),

am  - aj + 1 = \lambda (| x\^k| 
2  - 2xk0 \cdot x\^k + | xk0 | 

2) = \lambda | x\^k  - xk0 | 2 > \lambda ,

which contradicts the assumption on \lambda . Likewise, Cu
\lambda (

\~f - M
KR+1

)(0) = Cu
\lambda (

\~f - M
K )(0), and hence

AM
\lambda ( \~fKR+1

)(0) = AM
\lambda (fK)(0), as required.

(ii) The proof of the Lipschitz case follows similar arguments.

Proof of Theorem 4.1. Similar to the proof of Theorem 3.1(i), we fix xj0 \in K and let
f\lambda (x) = \lambda | x  - xj0 | 2  - f - M

K (x). Define \ell (x) =  - f(xj0) for all x \in \BbbR n. Then \ell is a constant
function and so is affine. Clearly \ell (xj0) = f\lambda (xj0). We need to prove that

(8.13) \ell (x) \leq f\lambda (x)

for all x \in \BbbR n so that co[f\lambda ](xj0) = \ell (xj0) =  - f(xj0); hence Cu
\lambda (f

 - M
K )(xj0) = f(xj0). Inequal-

ity (8.13) is equivalent to

 - f(xj0) \leq \lambda | x - xj0 | 2  - f - M
K (x), x \in \BbbR n .
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If x \in \BbbR n \setminus K, fM
K (x) =  - M . Since  - f(xj0)) < M < \lambda | x  - xj0 | 2 + M , we clearly have

\ell (x) \leq f\lambda (x) for all x \in \BbbR n \setminus K. If xj \in K and xj \not = xj0 , we need to prove that

 - f(xj0) \leq \lambda | xj  - xj0 | 2  - f(xj), or, equivalently, f(xj) - f(xj0) \leq \lambda | xj  - xj0 | 2 .

Since \alpha = min\{ | xi  - xj | , xi, xj \in K, xi \not = xj\} , if \lambda > L/\alpha , we have

f(xj) - f(xj0) \leq L| xj  - xj0 | \leq \lambda \alpha | xj  - xj0 | \leq \lambda | xj  - xj0 | 2 ,

which completes the proof.

Proof of Lemma 4.3. We may write \ell s(x) = a \cdot x + b with a \in \BbbR n and b \in \BbbR . We see
that D\ell s(x) = a, and we need to give an estimate of | a| . Since we have \ell s(xi) = fS(xi) and
| \ell s(xi)  - \ell s(x1)| = | fS(xi)  - fS(x1)| \leq L| xi  - x1| , we see that | a \cdot (xi  - x1)| \leq L| xi  - x0| for
i = 1, 2, . . . , k. As dim(co[S]) = n, there are at least n-vectors, say \{ x2  - x1, . . . , xn+1  - x1\} ,
which are linearly independent and hence form a basis of \BbbR n. If we let \{ e1, . . . , en\} be
any orthonormal basis of \BbbR n, there is an n \times n invertible matrix A = (aij)

n
i,j=1 such that

ei =
\sum n

j=1 aij(xj+1  - x1). Hence

| a \cdot ei| \leq 
n\sum 

j=1

| aij | | a \cdot (xj+1  - x1)| \leq L

\left(  n\sum 
j=1

| aij | 2
\right)  1/2\left(  n\sum 

j=1

| xj+1  - x1| 2
\right)  1/2

.

Therefore, the Euclidean norm of a satisfies | a| \leq L| A| (
\sum n

j=1 | xi - x0| 2)1/2, where | A| denotes
the Frobenius norm of the matrix A, and can then take Cs = | A| (

\sum n
j=1 | xi  - x0| 2)1/2, which

completes the proof.

Proof of Theorem 4.5. We prove the result for the upper transform. The proof of the
lower transform follows similar arguments.

Let us consider the affine function \lambda r2s  - \ell s(x). For x \in S, clearly

(8.14) \lambda r2s  - \ell s(x) = \lambda r2s  - fK(x) = \lambda | x - xs| 2  - f - M
K (x) .

If we can show that \lambda r2s  - \ell s(x) < \lambda | x - xs| 2  - f - M
K (x) for x \in \BbbR n \setminus S, then one obtains

(8.15) co[\lambda | (\cdot ) - xs| 2  - f - M
K ](x) = \lambda r2s  - \ell s(x)

for x \in co[S], and the proof for the upper transform then follows.
We consider two different cases: (i) x \in K \setminus S and (ii) x \in \BbbR n \setminus K.
For case (i), let x \in K \setminus S. We need then to prove that

(8.16) \lambda r2s  - \ell s(x) < \lambda | x - xs| 2  - fK(x) ,

or, equivalently, that

(8.17) \lambda r2s  - \ell s(x) + fK(x) < \lambda | x - xs| 2 .
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We have the following estimates for the left-hand side of (8.17):

\lambda r2s  - \ell s(x) + fK(x) \leq \lambda r2s + | \ell s(x) - \ell s(xs)| + | \ell s(xs)| +A0

\leq \lambda r2s + CsL| x - xs| + CsLrs + 2A0 .
(8.18)

We have used the fact that for any x\ast \in S,

(8.19) | \ell s(xs)| \leq | \ell s(xs) - \ell s(x
\ast )| + | \ell s(x\ast )| \leq CsLrs +A0

as \ell s(x
\ast ) = fK(x\ast ). Therefore, (8.17) holds if

(8.20) \lambda r2s + CsL| x - xs| + CsLrs + 2A0 < \lambda | x - xs| 2 .

Note that | x - xs| \geq rs + \sigma s. Let us consider the function

(8.21) g(t) = \lambda t2  - \lambda r2s  - CsLt - CsLrs  - 2A0 .

If we can find conditions for \lambda such that g(rs + \sigma s) > 0 and g\prime (t) > 0 when t \geq rs + \sigma s, then
(8.20) holds and (8.17) will be satisfied.

We see that g(rs + \sigma s) > 0 is equivalent to

(8.22) \lambda [(rs + \sigma s)
2  - r2s ] > CsL(2rs + \sigma s) + 2A0 .

This last inequality is equivalent to (4.2). Thus (8.17) holds and thus g(rs + \sigma s) > 0.
Next we have g\prime (t) = 2\lambda t - CsL. Since g\prime (t) itself is an increasing function, we only need

to show that g\prime (rs + \sigma s) > 0, which is equivalent to

(8.23) \lambda >
CsL

2(rs + \sigma s)
,

which follows from (4.2). This completes the proof for case (i).
(ii) Let x \in \BbbR n \setminus K; hence  - f - M

K (x) = M . We need to prove that

(8.24) \lambda r2s  - \ell s(x) < \lambda | x - xs| 2 +M .

Again we have

(8.25) \lambda r2s  - \ell s(x) \leq \lambda r2s + CsL| x - xs| + CsLrs +A0 .

Therefore, we prove (ii) if

(8.26) \lambda r2s + CsL| x - xs| + CsLrs +A0 < \lambda | x - xs| 2 +M .

Since (4.2) is satisfied, then by inspection it is easy to verify that (8.26) holds for all non-
negative numbers | x - xs| \geq 0, which completes the proof.
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Proof of Lemma 4.9. (i) We see that both p+ and p - are well-defined functions in D and
clearly p - (x) \leq v \leq p+(x) for every (x, v) \in co[\Gamma s]. It is also easy to see that the two different
expressions for p+(x) and, respectively, for p - (x) are equal.

(ii) Since co[\Gamma s] is a convex polytope, we have, for any x1, x2 \in D and for every 0 < t < 1,
that

t(x1, p+(x1)) + (1 - t)(x2, p+(x2)) = (tx1 + (1 - t)x2, tp+(x1) + (1 - t)p+(x2)) \in co(\Gamma s)

as both D and co[\Gamma s] are convex. Furthermore, by definition of p+, tp+(x1)+ (1 - t)p+(x2) \leq 
p+(tx1 + (1  - t)x2). Thus p+ is concave in D, and hence is continuous in D. Similarly we
can show that p - is convex, and hence continuous, in D. Also p+ and p - are both piecewise
affine functions. In fact, since co[\Gamma s] is a convex polytope, co[\Gamma s] has finitely many closed n-
dimensional faces. We may write \partial co[\Gamma s] = \Gamma +\cup \Gamma  - \cup \Gamma 0, where \Gamma + = \cup mk=1F

+
k , \Gamma  - = \cup lj=1F

 - 
j ,

and \Gamma 0 = \cup sr=1F
0
r with F+

k , F - 
j , and F 0

r n-faces of co[\Gamma s]. For F
+
k , there is an affine function

\ell +k : \BbbR n \rightarrow \BbbR such that \ell +k (x) = v if (x, v) \in F+
k and \ell +k (x) > v if (x, v) \in co[\Gamma s] \setminus (F+

k ).
Similarly, for F - 

j , there is an affine function \ell  - j : \BbbR n \rightarrow \BbbR such that \ell  - j (x) = v if (x, v) \in F - 
j

and \ell  - k (x) < v if (x, v) \in co[\Gamma s] \setminus (F - 
j ). Every F 0

r is an n-face whose normal vectors are in

\BbbR n \times \{ 0\} \subset \BbbR n \times \BbbR ; that is, F 0
r is perpendicular to D \times \{ 0\} . Since the vertices of each F+

k

are extreme points of co[\Gamma s] and every point x \in S is an extreme point of co[S], we see that
for every extreme point (x, v) of co[\Gamma s], x is an extreme point of D. Let D+

k = P\BbbR n(F+
k )

be the orthogonal projection from F+
k to \BbbR n; then D+

k is a convex polytope contained in
D whose vertices are all in S. The projection P\BbbR n also maps the relative boundary of F+

k

to the boundary of D+
k , and the relative interior F+

k to the interior of D+
k . Also on D+

k ,
p+(x) = \ell +k (x). Thus p+(\cdot ) is affine on D+

k .
Similarly, for each F - 

j , we define D - 
j = P\BbbR n(F - 

j ). Then the vertices of D - 
j belong to S

and p - (x) := \ell  - j (x) is affine on D - 
j .

(iii) It is easy to see that \r D+
k \cap \r D+

j = \emptyset and \r D - 
k \cap \r D - 

j = \emptyset for k \not = j. Next we show that

D = \cup mk=1D
+
k = \cup lj=1D

 - 
j .

If \cup mk=1D
+
k \not = D, there is an interior point x \in D \setminus \cup mk=1D

+
k . By definition (x, p+(x)) \in 

\partial co[\Gamma s], and we may assume that (x, p+(x)) lies in the relative interior of an n-face F \subset 
\partial co[\Gamma s]. If F is one of the F - 

j 's, this implies p+(x) = p - (x). This cannot happen inside D.

If F is one of the F 0
r 's, then D0

r := P\BbbR n(F 0
r ) is an n  - 1-dimensional polytope. If E is the

(n - 1)-dimensional plane in \BbbR n containing D0
r , then D must lie on one side of D0

r . Therefore,
D0

r \subset \partial D; hence x is a boundary point of D. This contradicts our assumption that x is an
interior point of D. Thus D = \cup mk=1D

+
k . Similarly, we can show that D = \cup lj=1D

 - 
j .

The other conclusions also follow from the above arguments.

Proof of Theorem 4.11. Since co[S] = \cup mk=1D
+
k , then on each D+

k , there is an affine func-
tion \ell +k : \BbbR n \rightarrow \BbbR such that \ell +k (x) = p+k (x) for x \in D+

k and \ell +k (x) > fK(x) for x \in S+
k , where

S+
k is the set of extreme points of D+

k given by Lemma 4.9 which is a subset of S. Let C+
k > 0

be the constant given by Lemma 4.3 so that | D\ell +k (x)| < C+
k L \leq CsL.

If we can show that co[\lambda | (\cdot ) - xs| 2 - f - M
K ] = \lambda r2s  - \ell +k (x) for x \in D+

k , the proof is finished.
As in the proof of Theorem 4.5, we have to consider different cases. If x \in \BbbR n or x \in \BbbR n \setminus K
or x \in K \setminus S, the proof for the inequality \lambda r2s  - l+k (x) \leq \lambda | x  - xs| 2  - f - M

K (x) is the same as
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that in the proof of Theorem 4.5. The only new case we have to consider is for x \in S \setminus S+
k .

But for x \in S \setminus S+
k , the above inequality is

(8.27) \lambda r2s  - \ell +k (x) \leq \lambda | x - xs| 2  - fK(x) = \lambda r2s  - fK(x) ,

which is equivalent to \ell +k (x) \geq fK(x) as S \subset \partial B(xs; rs). We also know from Lemma 4.9 that
\ell +k (x) > fK(x) for x \in S \setminus S+

k . Therefore, on each D+
k , (8.27) holds as p+(x) = \ell +k (x) on D+

k .
The proof for the lower transform is similar. The proof is finished.

Proof of Corollary 5.4. For the proof of this result, we first follow the proof of Theorem
2.5 so that the points xi for the convex envelope are in \=\Omega . Then we follow the proof of [55,
Theorem 3.7] to show that xi's can only be in K. The rest of the proof then follows from that
of Theorem 2.5.
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