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In this article, the RPA(D) and HRPA(D) models for the calculation
of linear response functions are presented. The performance of
the new RPA(D) and HRPA(D) models is compared to the perfor-
mance of the established RPA, HRPA, and SOPPA models in cal-
culations of indirect nuclear spin–spin coupling constants using
the CCSD model as a reference. The doubles correction offers a
significant improvement on both the RPA and HRPA models;
however, the improvement is more dramatic in the case of the
RPA model. For all coupling types investigated in this study, the

results obtained using the HRPA(D) model are comparable in
accuracy to those given by the SOPPA model, while requiring
between 30% and 90% of the calculation time needed for
SOPPA. The RPA(D) model, while of slightly lower accuracy com-
pared to the CCSD model than HRPA(D), offered calculation
times of only approximately 25% of those required for SOPPA for
all the investigated molecules. © 2018 Wiley Periodicals, Inc.

DOI:10.1002/jcc.25712

Introduction

Nuclear magnetic resonance (NMR) spectroscopy is probably the
most important experimental technique for identification and
structure determination of both organic and inorganic com-
pounds in solution. Nowadays, measurements of NMR spectra
are often accompanied by calculations of chemical shifts and
indirect nuclear spin–spin coupling constants, the two parame-
ters determining a solution or gas phase NMR spectrum.[1–3] In
particular, the coupling constants can provide important informa-
tion on, for example, the stereochemistry of compounds,[4,5] tau-
tomer equilibria,[6] nonbonded interactions,[7,8] or potentially
even chiral discrimination.[9,10]

Many methods are already available for these calculations
and for instance the CC3,[11–14] CCSD,[15–19] and SOPPA[20–22]

models have generally proven to yield results in good agree-
ment with experiment.[23] Unfortunately, all three methods are
computationally too demanding for larger molecules, that is,
molecules with more than 30 atoms or more than 800 basis
functions, and thus cheaper alternatives are desired. In particu-
lar, the inclusion of contributions from doubly excited determi-
nants dramatically increases the demands on computer
resources for larger systems. The SOPPA model for instance dif-
fers from the underlying RPA model by both second-order con-
tributions to the single excitation contribution and additional
double excitation contributions. While the RPA model,[24,25] cor-
responding to a coupled Hartree-Fock calculation, is feasible for
larger molecules, it lacks electron correlation which is problem-
atic especially for triplet properties, and one might conse-
quently encounter triplet instabilities.[12,26–28] As an alternative
to Hartree-Fock, one often turns to DFT. DFT, however, suffers
from the difficulty in choosing an Exchange-Correlation-
functional which is suitable for the given system.[29] There is
thus a need for a method for the calculation of molecular

properties which is cheaper than the SOPPA method yet more
reliable than, for example, the RPA method.

One such model already exist; the Higher RPA (HRPA)
model[30] includes the second-order correction to the A and
B matrices of SOPPA, while the contributions of the double
excitations found in the SOPPA model are still lacking. The
importance of the inclusion of double excitation contributions
has previously been acknowledged and lead to the develop-
ment of several methods such as CIS(D),[31–33] RPA(D),[34,35] and
HRPA(D)[35] for excitation energy calculations with promising
results.[34–39] The double excitation contribution is in these
models treated noniteratively as a correction to the results
obtained at the CIS, RPA, or HRPA level. The same idea has, in
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fact, also been used for the treatment of triple excitations in
the CCSDR(3) method.[40]

In the present work, this idea will once again be used, but
now for the calculation of linear response properties and in par-
ticular to the calculation of NMR indirect nuclear spin–spin cou-
pling constants. The equations for the new models will be
derived in the section “Theory”. The section “Implementation of
the RPA(D) and HRPA(D) Models” is devoted to a brief discus-
sion of the implementation of the models and in the
section “Computational Details”, the methods used for the cal-
culations of the isotropic nuclear spin–spin coupling constants
of 20 different molecules and a total of 32 couplings are pre-
sented, while the results obtained using the new models will
be compared to results obtained using already existing models
in the section “Results and Discussion”. It is expected that the
doubles correction substantially improves both the RPA and
HRPA models, hopefully to an extent that leaves the HRPA(D)
model comparable to SOPPA in accuracy.

Theory
Indirect nuclear spin–spin coupling constant

Indirect nuclear spin–spin coupling constants are a measure of
the change in the magnetic field, which a nucleus experiences
due to the presence of other nuclei with spin. The direct
through space effect is only seen in solid state NMR experi-
ments, while the indirect effect, where the effect of the other
nuclei is mediated by electrons between the nuclei, can always
be measured. When computing the indirect nuclear spin–spin
coupling constant nonrelativistically, one needs to consider four
contributions[41,42]; the diamagnetic spin-orbit (DSO) contribu-
tion, which is a simple ground state expectation value, although
it can be reformulated as a linear response function,[43,44] the
paramagnetic spin-orbit (PSO) contribution, the spin-dipolar
(SD) contribution and finally the Fermi contact
(FC) contribution. The three latter contributions are all linear
response properties, but while the PSO contribution involves
electron spin-independent operators, both the SD and FC con-
tributions are triplet properties.[41,42]

The equations used for the calculation of indirect spin–spin
coupling constants can be derived either from analytical deriva-
tives or using response theory. The former derivation starts
from the second derivative of the energy calculated at a given
level of theory or from the first derivative of the magnetic
moment both in the presence of fields. From the magnetic
moment one could also proceed with response theory.

The derivation via analytical derivatives allows one to treat prop-
erties as relaxed and unrelaxed, while response theory in its origi-
nal formulation leads to unrelaxed properties. Originally,
frequency-dependent properties could only be obtained via
response theory, but are nowadays also available as analytical
derivatives of the so-called quasi-energy.

For spin–spin coupling constants these differences are of less
importance, as spin–spin coupling constants are frequency

independent and contain triplet properties, which using a
relaxed method would be prone to triplet instabilities.

Derivation of the RPA(D) and HRPA(D) models

The models used in this study fall in two categories; the ones,
where the entire problem is solved iteratively (i.e., RPA, SOPPA,
and HRPA), and the ones, where a smaller problem is solved
iteratively, before a correction is added using pseudo-
perturbation theory[42] to include the missing contributions
from a larger model, in this case the SOPPA model. The latter
category is the doubles corrected models; RPA(D) and HRPA(D),
both of which are derived in this study for linear response
properties.

The derivation starts in both cases from the matrix represen-
tation of the linear response function[42,45,46] at the SOPPA level
in atomic units.

hhP̂;αÔω

β iiω¼ TT P̂α
� �

ωS−Eð Þ−1T Ô
ω

β

� �
ð1Þ

Here, TT P̂α
� �

and T Ô
ω

β

� �
are property gradients, that is, vec-

tors which elements are the expectation values over the com-
mutator of a given property operator and an excitation
(or deexcitation) operator. Furthermore, E is the Hessian matrix,
S is the overlap matrix in the space of the excitation and deex-
citation operators, and ω is the frequency in atomic units corre-
sponding to the perturbing field.

Evaluating the linear response function for a particular com-

bination of operators, P̂α and Ô
ω

β , implies calculating the inverse

of the matrix (ωS − E). This is usually avoided by directly calcu-
lating the product of the inverse matrix and the right-hand side
property gradient, which is called the solution vector Xβ(ω). This
can be determined by solving the following inhomogeneous
system of linear equations:

ωS−Eð ÞXβ ωð Þ¼ T Ô
ω

β

� �
ð2Þ

The solution of these equations, which is approximated by
perturbation theory in our RPA(D) and HRPA(D) models for lin-
ear response functions, are derived in the following.

The idea is hereby to expand the matrices and vectors in
eq. 2, in a kind of perturbation series, called pseudo-
perturbation theory. Rather than starting from the Hamilto-
nian as in ordinary perturbation theory, we consider the form
of the matrices E and S and choose the “full” matrices as the
ones known from a larger problem—here SOPPA. These can
now be partitioned into contributions of different (pseudo-)
order, where the zeroth-order matrices are chosen as those
corresponding to a smaller known problem—here RPA and
HRPA, respectively.

RPA(D). As the first step one has to define the perturba-
tion for the pseudo-perturbation theory treatment. For that
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purpose, the SOPPA matrices[34,42,47,48] are partitioned into a
zeroth-order contribution as well as a first and second-order
correction:

E 0½ � ¼
A 0;1ð Þ B 1ð Þ 0 0
B 1ð Þ A 0;1ð Þ 0 0
0 0 D 0ð Þ 0
0 0 0 D 0ð Þ

0BB@
1CCA ð3Þ

E 1½ � ¼
0 0 eC 1ð Þ

0
0 0 0 eC 1ð Þ

C 1ð Þ 0 0 0
0 C 1ð Þ 0 0

0BBB@
1CCCA ð4Þ

E 2½ � ¼
A 2ð Þ B 2ð Þ 0 0
B 2ð Þ A 2ð Þ 0 0
0 0 0 0
0 0 0 0

0BB@
1CCA ð5Þ

S 0½ � ¼
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

0BB@
1CCA ð6Þ

S 1½ � ¼
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0BB@
1CCA ð7Þ

S 2½ � ¼
Σ 2ð Þ 0 0 0
0 −Σ 2ð Þ 0 0
0 0 0 0
0 0 0 0

0BB@
1CCA ð8Þ

T Ô
ω

β

� � 0½ �
¼

eOω 0ð Þ
β

dOω 0ð Þ
β
0
0

0BBB@
1CCCA ð9Þ

T Ô
ω

β

� � 1½ �
¼

0
0

eΩω 1ð Þ
β

dΩω 1ð Þ
β

0BBB@
1CCCA ð10Þ

T Ô
ω

β

� � 2½ �
¼

eOω 2ð Þ
β

dOω 2ð Þ
β
0
0

0BBB@
1CCCA ð11Þ

Note that, all elements of the matrices and vectors in eqs. 3–11
are matrices or vectors, respectively, themselves. Furthermore, the
orders of these elements, indicated in superscripts (n), refer to the
order in Møller-Plesset perturbation theory, while the order of the
whole vector or matrix, indicated in superscripts [n], refer to the
order in the pseudo-perturbation theory defined here.

The elements are defined in the following way, where Φ0

denotes the wavefunction of the reference state, which is here
the ground state of the molecule, i, j, k, and l are occupied

orbitals, while a, b, c, and d are virtual orbitals, and q†ai is the
single excitation operator, exciting an electron from orbital i to

orbital a. The corresponding deexcitation operator is
denoted qai.

A 0;1;2ð Þ
ai,bj ¼ ΦMP

0 j qai , F̂ + V̂ ,q†bj
h ih i

jΦMP
0

D E 0;1;2ð Þ
ð12Þ

B 1;2ð Þ
ai,bj ¼ ΦMP

0 j qai , F̂ + V̂ ,qbj
� �� �jΦMP

0

� 	 1;2ð Þ ð13Þ

D 0ð Þ
aibj,ckdl ¼ ΦSCF

0 j qaiqbj , F̂ + V̂ ,q†ckq
†
dl

� �� �jΦSCF
0

� 	 0ð Þ ð14Þ

C 1ð Þ
aibj,ck ¼ ΦSCF

0 j qaiqbj , F̂ + V̂ ,q†ck
� �� �jΦSCF

0

� 	 1ð Þ ð15Þ

eC 1ð Þ
ck,aibj ¼ ΦSCF

0 j qck , F̂ + V̂ ,q†aiq
†
bj

h ih i
jΦSCF

0

D E 1ð Þ
ð16Þ

Σ 0;2ð Þ
ai,bj ¼ ΦMP

0 j qai ,q†bj
h i

jΦMP
0

D E 0;2ð Þ
ð17Þ

eOω 0;2ð Þ
β,ai ¼ ΦMP

0 j qai ,Ôω

β

h i
jΦMP

0

D E 0;2ð Þ
ð18Þ

dOω 0;2ð Þ
β,ai ¼ ΦMP

0 j q†ai ,Ô
ω

β

h i
jΦMP

0

D E 0;2ð Þ ð19Þ

eΩω 1ð Þ
β,aibj ¼ ΦMP

0 j qaiqbj , Ôω

β

h i
jΦMP

0

D E 1ð Þ
ð20Þ

dΩω 1ð Þ
β,aibj ¼ ΦMP

0 j q†aiq†bj ,Ô
ω

β

h i
jΦMP

0

D E 1ð Þ
ð21Þ

eP 0;2ð Þ
α,ai ¼ ΦMP

0 j P̂α,q†ai
� �jΦMP

0

� 	 0;2ð Þ ð22Þ
dP 0;2ð Þ

α,ai ¼ ΦMP
0 j P̂α,qai
� �jΦMP

0

� 	 0;2ð Þ ð23Þ

eΠω 1ð Þ
α,aibj ¼ ΦMP

0 j P̂α,q†aiq†bj
h i

jΦMP
0

D E 1ð Þ
ð24Þ

dΠω 1ð Þ
α,aibj ¼ ΦMP

0 j P̂α,qaiqbj
� �jΦMP

0

� 	 1ð Þ ð25Þ

Partitioning also the solution vector Xβ(ω) into zeroth, first,
and second-order contributions, and using the partitioning of
the other vectors and matrices, eq. 2 can be rewritten as

T Ô
ω

β

� � 0½ �

|fflfflfflfflffl{zfflfflfflfflffl}
0-order contribution

+ T Ô
ω

β

� � 1½ �

|fflfflfflfflffl{zfflfflfflfflffl}
1st-order contribution

+ T Ô
ω

β

� � 2½ �

|fflfflfflfflffl{zfflfflfflfflffl}
2nd-order contribution

¼ ωS 0½ �−E 0½ �
� �

Xβ ωð Þ 0½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0-order contribution

+ ωS 0½ �−E 0½ �
� �

Xβ ωð Þ 1½ � + ωS 1½ �−E 1½ �
� �

Xβ ωð Þ 0½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1st-order contribution

+ ωS 1½ �−E 1½ �
� �

Xβ ωð Þ 1½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nd-order contribution

+ ωS 2½ �−E 2½ �
� �

Xβ ωð Þ 0½ � + ωS 0½ �−E 0½ �
� �

Xβ ωð Þ 2½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nd-order contribution

+… ð26Þ

As the full property gradient in this case consists of the sum
of the zeroth, first, and second-order contributions, any higher-
order contributions to the full property gradient must be zero.
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The equation can thus be split up into zeroth, first, and second-
order equations, where eqs. 3–11 can be inserted. This yields
the following zeroth-order equation:

eOω 0ð Þ
β

dOω 0ð Þ
β

0

0

0BBBB@
1CCCCA¼

ω1−A 0;1ð Þ −B 1ð Þ 0 0

−B 1ð Þ −ω1−A 0;1ð Þ 0 0

0 0 ω1−D 0ð Þ 0

0 0 0 −ω1−D 0ð Þ

0BBB@
1CCCA

×

eXω 0½ �
β

dXω 0½ �
β

eΞω 0½ �
β

dΞω 0½ �
β

0BBBBBB@

1CCCCCCA
ð27Þ

Due to the form of the zeroth-order property gradient, the
double-excitation part of the solution vector must be equal to

zero, that is, eΞω 0½ �
β ¼ 0 and dΞω 0½ �

β ¼ 0. Thus eq. 27 can be writ-

ten more compactly as the inhomogeneous system of equa-
tions given in eq. 28.

ω1−A 0;1ð Þ −B 1ð Þ

−B 1ð Þ −ω1−A 0;1ð Þ

� � eXω 0½ �
β

dXω 0½ �
β

 !
¼

eOω 0ð Þ
β

dOω 0ð Þ
β

 !
ð28Þ

Notice that, solving eq. 28 corresponds to solving the RPA
problem.

Likewise, the first-order equation can be written as:

0
0

eΩω 1ð Þ
β

dΩω 1ð Þ
β

0BBB@
1CCCA¼ −

0 0 eC 1ð Þ
0

0 0 0 eC 1ð Þ

C 1ð Þ 0 0 0
0 C 1ð Þ 0 0

0BBB@
1CCCA

eXω 0½ �
β

dXω 0½ �
β
0
0

0BBB@
1CCCA

+

ω1−A 0;1ð Þ −B 1ð Þ 0 0
−B 1ð Þ −ω1−A 0;1ð Þ 0 0
0 0 ω1−D 0ð Þ 0
0 0 0 −ω1−D 0ð Þ

0BB@
1CCA

eXω 1½ �
β

dXω 1½ �
β

eΞω 1½ �
β

dΞω 1½ �
β

0BBBB@
1CCCCA

ð29Þ

Due to the form of the first-order property gradient and the
zeroth-order solution vector, the first-order solution vector must
have its single-excitation part equal to 0. Thus, eq. 29 can be
rewritten compactly as the first-order inhomogeneous system
of equations in eq. 30.

ω1−D 0ð Þ 0
0 −ω1−D 0ð Þ

� � eΞω 1½ �
β

dΞω 1½ �
β

 !
¼

eΩω 1ð Þ
β

dΩω 1ð Þ
β

 !
+ C 1ð Þ 0

0 C 1ð Þ

� � eXω 0½ �
β

dXω 0½ �
β

 !
ð30Þ

As D(0) is diagonal, this equation is trivial to solve. Finally, the
second-order equation can be written as:

eOω 2ð Þ
β

dOω 2ð Þ
β
0
0

0BBB@
1CCCA¼ −

0 0 eC 1ð Þ
0

0 0 0 eC 1ð Þ

C 1ð Þ 0 0 0
0 C 1ð Þ 0 0

0BBB@
1CCCA

0
0

eΞω 1½ �
β

dΞω 1½ �
β

0BBB@
1CCCA

+

ω1−A 0;1ð Þ −B 1ð Þ 0 0
−B 1ð Þ −ω1−A 0;1ð Þ 0 0
0 0 ω1−D 0ð Þ 0
0 0 0 −ω1−D 0ð Þ

0BB@
1CCA

eXω 2½ �
β

dXω 2½ �
β

eΞω 2½ �
β

dΞω 2½ �
β

0BBBB@
1CCCCA

+

ωΣ 2ð Þ−A 2ð Þ −B 2ð Þ 0 0
−B 2ð Þ −ωΣ 2ð Þ−A 2ð Þ 0 0
0 0 ω1−D 0ð Þ 0
0 0 0 −ω1−D 0ð Þ

0BB@
1CCA

eXω 0½ �
β

dXω 0½ �
β
0
0

0BBB@
1CCCA

ð31Þ

Considering that the second-order solution vector like the
zeroth-order one must have its double excitation part equal to
0, allows eq. 31 to be compactly written as an inhomogeneous
system of equations in the following way:

ω1−A 0;1ð Þ −B 1ð Þ

−B 1ð Þ −ω1−A 0;1ð Þ

 !
eXω 2½ �

β

dXω 2½ �
β

0@ 1A
¼

eOω 2ð Þ
β

dOω 2ð Þ
β

0@ 1A+
eC 1ð Þ

0

0 eC 1ð Þ

 !
eΞω 1½ �

β

dΞω 1½ �
β

0@ 1A
−

ωΣ 2ð Þ−A 2ð Þ −B 2ð Þ

−B 2ð Þ −ωΣ 2ð Þ−A 2ð Þ

 !
eXω 0½ �

β

dXω 0½ �
β

0@ 1A
ð32Þ

The form of the solution vectors can thus be written:

Xβ ωð Þ 0½ � ¼

eXω 0½ �
β

dXω 0½ �
β
0
0

0BBB@
1CCCA ð33Þ

Xβ ωð Þ 1½ � ¼
0
0

eΞω 1½ �
β

dΞω 1½ �
β

0BBB@
1CCCA ð34Þ

Xβ ωð Þ 2½ � ¼

eXω 2½ �
β

dXω 2½ �
β
0
0

0BBB@
1CCCA ð35Þ

By inserting the partitioned solution vectors, eqs. 33–35, and
the property gradient, eqs. 9–11, in the expression for the linear
response function, eq. 1, it is possible to obtain an expression
for the full linear response function evaluated through second
order in pseudo-perturbation theory.

P̂α; Ô
ω

β

D ED ERPA Dð Þ

ω
¼ TT P̂α

� � 0½ �
Xβ ωð Þ 0½ � + TT P̂α

� � 0½ �
Xβ ωð Þ 1½ �

+ TT P̂α
� � 1½ �

Xβ ωð Þ 0½ � + TT P̂α
� � 0½ �

Xβ ωð Þ 2½ �

+ TT P̂α
� � 1½ �

Xβ ωð Þ 1½ � + TT P̂α
� � 2½ �

Xβ ωð Þ 0½ � ð36Þ
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As the property gradient TT P̂α
� � i½ �

has the same form as

property gradient T Ô
ω

β

� � i½ �
, given in eqs. 9–11, all first-order

contributions to the linear response function will be 0, due to
the form of the solution vector contributions eqs. 33–35. The
zeroth-order contribution will simply be the RPA linear response
function, while the second-order contribution offers a correc-
tion. Using that a left-hand side zeroth-order solution vector
could be written as eq. 37,

eXω 0½ �
α

T
dXω 0½ �

α

T
� �

¼ eP 0ð Þ
α

dP 0ð Þ
α

� � ω1−A 0;1ð Þ −B 1ð Þ

−B 1ð Þ −ω1−A 0;1ð Þ

� �−1

ð37Þ

the linear response function at the RPA(D) level can be written in
the following way, where the expression for the first-order solu-
tion vector has also been inserted. For simplicity, the expression

has been split up in a single excitation part hhP̂α;Ôω
β iiRPA Dð Þ,S

ω and

a double excitation part hhP̂α;Ôω
β iiRPA Dð Þ,D

ω .

P̂α;Ôω
β

D ED ERPA Dð Þ

ω
¼ P̂α;Ôω

β

D ED ERPA Dð Þ,S

ω
+ P̂α;Ôω

β

D ED ERPA Dð Þ,D

ω

ð38Þ

P̂α; Ô
ω

β

D ED ERPA Dð Þ,S

ω
¼ eP 0ð Þ

α
dP 0ð Þ

α

� � eXω 0½ �
β

dXω 0½ �
β

 !
+ eXω 0½ �

α

T
dXω 0½ �

α

T
� � eOω 2ð Þ

β
dOω 2ð Þ

β

 !

+ eXω 0½ �
α

T
dXω 0½ �

α

T
� �

A 2ð Þ−ωΣ 2ð Þ B 2ð Þ

B 2ð Þ ωΣ 2ð Þ +A 2ð Þ

� � eXω 0½ �
β

dXω 0½ �
β

 !

+ eP 2ð Þ
α

dP 2ð Þ
α

� � eXω 0½ �
β

dXω 0½ �
β

 !
ð39Þ

P̂α; Ô
ω

β

D ED ERPA Dð Þ,D

ω
¼ − eXω 0½ �

α

T
dXω 0½ �

α

T
� � eC 1ð Þ

0
0 eC 1ð Þ

 !
D 0ð Þ−ω1 0

0 D 0ð Þ +ω1

� �−1

×
eΩω 1ð Þ

β
dΩω 1ð Þ

β

 !
+ C 1ð Þ 0

0 C 1ð Þ

� � eXω 0½ �
β

dXω 0½ �
β

 !( )

− eΠ 1ð Þ
α

dΠ 1ð Þ
α

� � D 0ð Þ−ω1 0
0 D 0ð Þ +ω1

� �−1

×
eΩω 1ð Þ

β
dΩω 1ð Þ

β

 !
+ C 1ð Þ 0

0 C 1ð Þ

� � eXω 0½ �
β

dXω 0½ �
β

 !( )
ð40Þ

We can thus calculate the polarization propagator at the
RPA(D) level by only calculating the small RPA problem
iteratively.

HRPA(D). The derivation of the HRPA(D) model for linear
response properties is completely analogous to the derivation
of the RPA(D) model. First, the SOPPA matrices[42,47,48] are parti-
tioned into a zeroth-order contribution and a first-order correc-
tion consisting of the remaining contributions. The zeroth-order
contribution differs from the zeroth-order contribution in the
derivation of the RPA(D) model, in that it includes also the
A(2), B(2), and Σ(2) matrices and the second-order contributions
to the single-excitation part of the property gradients.

E 0½ � ¼
A 0;1;2ð Þ B 1;2ð Þ 0 0
B 1;2ð Þ A 0;1;2ð Þ 0 0
0 0 D 0ð Þ 0
0 0 0 D 0ð Þ

0BB@
1CCA ð41Þ

E 1½ � ¼
0 0 eC 1ð Þ

0
0 0 0 eC 1ð Þ

C 1ð Þ 0 0 0
0 C 1ð Þ 0 0

0BBB@
1CCCA ð42Þ

S 0½ � ¼
1+Σ 2ð Þ 0 0 0

0 −1−Σ 2ð Þ 0 0
0 0 1 0
0 0 0 −1

0BB@
1CCA ð43Þ

S 1½ � ¼
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0BB@
1CCA ð44Þ

T Ô
ω

β

� � 0½ �
¼

eOω 0;2ð Þ
β

dOω 0;2ð Þ
β
0
0

0BBB@
1CCCA ð45Þ

T Ô
ω

β

� � 1½ �
¼

0
0

eΩω 1ð Þ
β

dΩω 1ð Þ
β

0BBB@
1CCCA ð46Þ

All elements of the matrices and vectors in eqs. 41–46 are
again matrices or vectors themselves, and the orders indicated
in superscripts (n) refer to Møller-Plesset perturbation theory
order. The elements of these matrices or vectors were already
defined in eqs. 12–25.

To evaluate the linear response function, the inhomogeneous
system of equations in eq. 2 must again be solved. Assuming
once more that the solution vector Xβ(ω) can be split into
zeroth, first, and second-order contributions, and using the par-
titioning of the other vectors and matrices, eq. 2 can be rewrit-
ten as

T Ô
ω

β

� � 0½ �

|fflfflfflfflffl{zfflfflfflfflffl}
0-order contribution

+ T Ô
ω

β

� � 1½ �

|fflfflfflfflffl{zfflfflfflfflffl}
1st-order contribution

¼ ωS 0½ �−E 0½ �
� �

Xβ ωð Þ 0½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0-order contribution

+ ωS 0½ �−E 0½ �
� �

Xβ ωð Þ 1½ � + ωS 1½ �−E 1½ �
� �

Xβ ωð Þ 0½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1st-order contribution

+ ωS 1½ �−E 1½ �
� �

Xβ ωð Þ 1½ � + ωS 0½ �−E 0½ �
� �

Xβ ωð Þ 2½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nd-order contribution

+… ð47Þ

As the full property gradient in this case is considered the
sum of the zeroth and first-order contributions, any second-
order contribution to the full property gradient must be 0. The
equation can thus be split up into the following zeroth, first,
and second-order equations, where eqs. 41–46 can be inserted.
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As seen in the derivation of the RPA(D) model, the form of the
zeroth-order property gradient allows the zeroth-order equation
to be written compactly, as only the single excitation part of
the problem is nonzero:

ω 1+Σ 2ð Þ� �
−A 0;1;2ð Þ −B 1;2ð Þ

−B 1;2ð Þ −ω 1+Σ 2ð Þ� �
−A 0;1;2ð Þ

 !
eXω 0½ �

β
dXω 0½ �

β

 !
¼

eOω 0;2ð Þ
β

dOω 0;2ð Þ
β

 !
ð48Þ

Note that solving eq. 48 corresponds to solving the HRPA
problem.

Likewise, the first and second-order equations can be com-
pactly written as

ω1−D 0ð Þ 0

0 −ω1−D 0ð Þ

 !
eΞω 1½ �

β

dΞω 1½ �
β

0@ 1A
¼

eΩω 1½ �
β

dΩω 1½ �
β

0@ 1A+
C 1ð Þ 0

0 C 1ð Þ

 !
eXω 0½ �

β

dXω 0½ �
β

0@ 1A
ð49Þ

ω 1+Σ 2ð Þ� �
−A 0;1;2ð Þ −B 1;2ð Þ

−B 1;2ð Þ −ω 1+Σ 2ð Þ� �
−A 0;1;2ð Þ

 !
eXω 2½ �

β

dXω 2½ �
β

0@ 1A
¼ eC 1ð Þ

0

0 eC 1ð Þ

 !
eΞω 1½ �

β

dΞω 1½ �
β

0@ 1A
ð50Þ

It is observed that the first-order equation in this derivation is
identical to the one obtained for the derivation of the RPA(D)
model—that is, eq. 30 and 49 are identical.

By inserting the partitioned solution vector and property gradi-
ent in the expression for the linear response function, it is possible
to obtain a new expression for the full linear response function
evaluated through second order in pseudo-perturbation theory.

P̂α;Ô
ω

β

D ED EHRPA Dð Þ

ω
¼ TT P̂α

� � 0½ �
Xβ ωð Þ 0½ �

+ TT P̂α
� � 0½ �

Xβ ωð Þ 1½ � + TT P̂α
� � 1½ �

Xβ ωð Þ 0½ �

+ TT P̂α
� � 0½ �

Xβ ωð Þ 2½ � + TT P̂α
� � 1½ �

Xβ ωð Þ 1½ � ð51Þ

Again, all first-order contributions to the linear response
function will be 0, due to the form of the zeroth and first-order
vectors using the same arguments following eq. 36. The zeroth-
order contribution will simply be the HRPA linear response
function, while the second-order contribution offers a correc-
tion. By once again utilizing that a left-hand side zeroth-order
solution vector can be defined, now as

eXω 0½ �
α

T
dXω 0½ �

α

T
� �

¼ eP 0;2ð Þ
α

dP 0;2ð Þ
α

� �
×

ω 1+Σ 2ð Þ� �
−A 0;1;2ð Þ −B 1;2ð Þ

−B 1;2ð Þ −ω 1+Σ 2ð Þ� �
−A 0;1;2ð Þ

 !−1

ð52Þ

the second order linear response function at the HRPA(D) level
can be written

P̂α;Ô
ω

β

D ED EHRPA Dð Þ

ω
¼ P̂α;Ô

ω

β

D ED EHRPA Dð Þ,S

ω
+ P̂α; Ô

ω

β

D ED EHRPA Dð Þ,D

ω

ð53Þ

P̂α;Ô
ω

β

D ED EHRPA Dð Þ,S

ω
¼ eP 0;2ð Þ

α
dP 0;2ð Þ

α

� � eXω 0½ �
β

dXω 0½ �
β

 !
¼ P̂α;Ô

ω

β

D ED EHRPA
ω

ð54Þ

P̂α ; Ô
ω

β

D ED EHRPA Dð Þ,D

ω
¼ − eXω 0½ �

α

T
dXω 0½ �

α

T
� � eC 1ð Þ

0

0 eC 1ð Þ

 !
D 0ð Þ−ω1 0

0 ω1+D 0ð Þ

� �−1

×
eΩω 1ð Þ

β

dΩω 1ð Þ
β

 !
+ C 1ð Þ 0

0 C 1ð Þ

� � eXω 0½ �
β

dXω 0½ �
β

 !( )

− eΠ 1ð Þ
α

dΠ 1ð Þ
α

� � D 0ð Þ−ω1 0
0 ω1+D 0ð Þ

� �−1

×
eΩω 1ð Þ

β

dΩω 1ð Þ
β

 !
+

C 1ð Þ 0
0 C 1ð Þ

� � eXω 0½ �
β

dXω 0½ �
β

 !( )

¼ P̂α ;Ô
ω

β

D ED ERPA Dð Þ,D

ω

ð55Þ

It is observed that the double excitation part of the polariza-
tion propagators are identical for RPA(D) and HRPA(D) eqs. 39
and 55.

Computational cost of doubles corrected methods

While both RPA(D) and HRPA(D) are approximations to SOPPA
with reduced cost, the extend to which the cost is reduced dif-
fers. Thus, it is worthwhile to briefly discuss the cost of these
methods in terms of the number of occupied orbitals, O, the
number of basis functions, N, and the number of virtual orbitals,
V = N − O. The cost of calculating the RPA equations scales
with the fourth power of the size of the basis set (N4). The lead-
ing terms in the SOPPA approach on the other hand scales as a
partial two-electron integrals transformation, N4O.1 As all of the
methods presented here require transformation with the
SOPPA matrices, they all have N4O as their highest scaling term.

In RPA(D) only the RPA equations are solved iteratively and
the N4O contribution are calculated once using the converged
RPA vectors. The savings of RPA(D) relative to SOPPA for a large
system should be proportional to the number of iterations
required to converge the SOPPA equations. HRPA(D) on the
other hand requires the iterative solution of the HRPA equa-
tions, which includes the most computationally costly part of
the SOPPA matrix, the B(2) matrix. A HRPA iteration thus
requires the same amount of N4O terms as a SOPPA iteration,
though the calculation of some N3O2 and NV2O2 terms can be
avoided. The savings of HRPA in terms of the computational
cost of an iteration is thus quite small in the typical case of
V >> O, but solving a system of linear equations of singles size
may still be considerably easier than one of full singles and
doubles size.

1 Or in V4O in an MO based approach, however, this would require storing all
integrals and performing a full N5 integral transformation.
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Implementation of the RPA(D) and HRPA(D)
Models

The RPA(D) and HRPA(D) models have been implemented in
the atomic integral direct SOPPA module[34,48] of the DALTON
program.[49]

To implement the RPA(D) model the two contributions in
eqs. 39–40 are investigated further separately. Considering first
the single excitation part of the linear response function

P̂α;Ô
ω

β

D ED ERPA Dð Þ,S

ω
in eq. 39, this can be rewritten as follows:

P̂α; Ô
ω

β

D ED ERPA Dð Þ,S

ω

¼ TT P̂α
� � 0½ �

Xω 0½ �
β +Xω 0½ �

α T Ô
ω

β

� � 2½ �
+ TT P̂α

� � 2½ �
Xω 0½ �
β

+Xω 0½ �
α E 2½ �−ωS 2½ �
� �

Xω 0½ �
β

¼ TT P̂α
� � 0½ �

Xω 0½ �
β +Xω 0½ �

α T Ô
ω

β

� � 2½ �
+
1
2

E 2½ �−ωS 2½ �
� �

Xω 0½ �
β

 �

+
1
2
Xω 0½ �
α E 2½ �−ωS 2½ �
� �

+ TT P̂α
� � 2½ �

 �
Xω 0½ �
β

¼Xω 0½ �
α T Ô

ω

β

� � 0;2½ �
+
1
2

E 0;2½ �−ωS 0;2½ �
� �

Xω 0½ �
β

 �

+
1
2
Xω 0½ �
α E 0;2½ �−ωS 0;2½ �
� �

+ TT P̂α
� � 0;2½ �

 �
Xω 0½ �
β ð56Þ

To implement the RPA(D) linear response function, it is necessary
first to run an RPA calculation and to save the RPA solution vectors

Xω 0½ �
α and Xω 0½ �

β . The single excitation part of the RPA(D) linear

response function is thus calculated in the following steps:

• The vector Yα ¼ E 0;2½ �−ωS 0;2½ �� �
X 0½ �
α and the equivalent

Yβ are determined for the single excitation part using
existing routines for linear transformations of a vector
with the E[0, 2] and S[0, 2] matrices.

• The vector Z1α ¼ TT P̂α
� � 0;2½ �

+ 1
2Yα and the equivalent

Z1β ¼ TT Ô
ω

β

� � 0;2½ �
+ 1

2Yβ are determined for the single

excitation part.
• The single excitation part of the RPA(D) linear response
function is calculated as

P̂α;Ô
ω

β

D ED ERPA Dð Þ,S

ω
¼Xω 0½ �

α Z1β +Z1αX
ω 0½ �
β ð57Þ

Considering the double excitation part of the linear response

function P̂α;Ô
ω

β

D ED ERPA Dð Þ,D

ω
given in eq. 40, we obtain:

P̂α; Ô
ω

β

D ED ERPA Dð Þ,D

ω
¼ −Xω 0½ �

α E 1½ � E 0½ �−ωS 0½ �
� �−1

T Ô
ω

β

� � 1½ �
+ E 1½ �Xω 0½ �

β

 �

−TT P̂α
� � 1½ �

E 0½ �−ωS 0½ �
� �−1

T Ô
ω

β

� � 1½ �
+ E 1½ �Xω 0½ �

β

 �

¼ − Xω 0½ �
α E 1½ � + TT P̂α

� � 1½ �n o
E 0½ �−ωS 0½ �
� �−1

× T Ô
ω

β

� � 1½ �
+ E 1½ �Xω 0½ �

β

 �
ð58Þ

Defining the vectors Z2α ¼TT P̂α
� � 1½ �

+Xα ωð Þ 0½ �E 1½ � and Z2β ¼

T Ô
ω

β

� � 1½ �
+ E 1½ �Xβ ωð Þ 0½ � eq. 58 can be written:

P̂α;Ô
ω

β

D ED ERPA Dð Þ,D

ω
¼ −Z2α E 0½ �−ωS 0½ �

� �−1
Z2β ð59Þ

Equation 59 was implemented in the DALTON program using
that the inversion of the (E[0] − ωS[0]) matrix is trivial due to its
diagonal form. Finally, the linear response function at the
RPA(D) level is calculated as the sum of the single and double
excitation contributions as stated in eq. 38.

HRPA(D)

The HRPA(D) model was implemented by modifying the routine
for the calculation of the linear response function using the
RPA(D) model. As for the RPA(D) implementation, the calculation
of the single excitation and double excitation contributions have
been implemented separately to enable comparison of the mag-
nitude of the contributions. As the single excitation part of the
HRPA(D) linear response function is just the HRPA linear response
function, this contribution is found by multiplying the calculated
HRPA solution vector, Xβ(ω)

[0], with the left-hand side single
excitation property gradient. While of zeroth-order in pseudo-
perturbation theory, the contributions are evaluated through sec-
ond order for Møller-Plesset perturbation theory. The double
excitation part of the HRPA(D) model is identical to the one
obtained for the RPA(D) model. The implementation of the dou-
ble excitation part of the RPA(D) linear response function is thus
used for the HRPA(D) calculation as well. The only difference
between the double excitation part of the RPA(D) and HRPA(D)
models lies in the zeroth-order solution vector used, that is,
whether the RPA or HRPA solution vector is needed. The correct
solution vector is in both cases obtained by running an RPA
or HRPA calculation prior to the evaluation of the equations
presented in this section.

Computational Details

Indirect nuclear spin–spin coupling constants have been calcu-
lated for the twenty molecules shown in Table 1, using a local
development version of the DALTON program[49] for the RPA,
RPA(D), HRPA, and HRPA(D) models with the default conver-
gence criterion. SOPPA and reference CCSD results have been
taken from the literature.[22] The CCSD results have been cho-
sen as a reference, as these were the results at the highest level
of theory available from literature for the chosen set of mole-
cules. The CCSD method however, is not the most accurate in
existence and calculations have been performed on some mol-
ecules at the CC3 and CCSDT levels, for example, H2O

[11,14] and
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HF.[11] The effect on these two molecules of using the CCSDT or
CC3 methods rather than the CCSD method was shown to be
between approximately 0.5 Hz and 2 Hz, though for other mol-
ecules the residual was larger.[11,14]

For comparisons of calculation time, SOPPA calculations were
also performed using the local development version of DAL-
TON. Note that, the timings are only approximate as it was not
possible to control which other calculations were run simulta-
neously with the ones given here. Also, not all calculations were
run on the same node.

To enable comparisons with results from the literature, the
ccJ-pVTZ basis set[50] has been used as in Kjær et al.,[22] as well
as the same geometries. The triple zeta basis was previously
shown to yield sufficiently accurate results for a range of SOPPA
and Coupled Cluster-based models.[22,51] The added tight func-
tions in the ccJ-pVTZ basis set make it well suited for calcula-
tions of magnetic properties, such as indirect nuclear spin–spin
coupling constants; indeed it was optimized for this type of
properties.[50] Observe in Table 1 that for F2H+

3 and FHF− there
are formally both an ordinary one-bond XH coupling and a
one-bond XH coupling across a hydrogen bond. However, due
to symmetry of the molecules, these two types of couplings are
identical. Thirty-two different couplings will therefore be investi-
gated in the following section. Note that, it is the 15N isotope
that has been investigated. As a range of different couplings
with widely varying values are investigated, comparisons will
be done using the relative deviations of the results from the
chosen reference.

Of the Thirty-two couplings seven are of the one-bond XY-
type, that is, 1J(XY) and four are two-bond XY coupling across a
hydrogen bond, that is, 2hJ(XY). Here X and Y refer to any non-
Hydrogen atom. There are 11 1J(XH) couplings, that is, one
bond XH couplings as well as three one-bond XH couplings
across a hydrogen bond—1hJ(XH). Finally, seven two-bond HH
bonds, 2J(HH) couplings will be investigated. Both the number

of bonds, the coupling spans as well as the number of electrons
in the vicinity of the involved nuclei influence the indirect
nuclear spin–spin coupling constant. More electrons will for
instance, result in a larger electron correlation effect, which is
thus expected to play the largest role for couplings of the XY-
type. Due to these differences the couplings will be investi-
gated separately.

Results and Discussion
All couplings

Thirty-two different indirect nuclear spin–spin coupling con-
stants have been calculated as well as their corresponding con-
tributions. A comparison of the obtained results (i.e., all the full
isotropic coupling constants as well as the PSO, SD, and FC-con-
tributions) with the CCSD results from Kjær et al.,[22] is shown in
Figure 1. Note that, the statistics shown in Figure 1 as well as
Table 2 includes all PSO, SD, and FC-contributions in addition to
the total isotropic coupling constants to minimize the effects of
error cancellation possibly contained in the total isotropic cou-
pling constant from adding up the contributions.

The set of couplings investigated contain a wide range of
couplings, many of which however, are couplings to F, O, and
N. These often have large correlation contributions, and some
models, such as RPA, therefore have difficulties describing
them, as also remarked upon in Kjær et al.[22]

A sign change was observed in two FC-terms upon doubles
correction of the RPA model; the one obtained for the F-F cou-
pling in F2H2, that is, F2H2(F-F), as well as the one obtained for
H2F(H-H). As the FC-term is the dominant contribution for the
couplings investigated here, a large error in this term can lead
to a very large error in the total isotropic coupling constant.
Note that erroneous RPA results for this contribution can cause
errors of RPA(D) results to explode for the total isotropic cou-
pling constant. This was seen for a calculation of the N-O cou-
pling in NH2OH, where the relative deviation of the RPA
calculated FC-term was 0.15 resulting in a relative deviation of
the total isotropic coupling constant of 3, while the relative
deviations for the RPA(D) model were 3 and 22, respectively.
This coupling has therefore been removed from the set. No
such problems were observed for HRPA and HRPA(D), where
the relative deviations of the FC-term and the total isotropic
coupling constant for both models were below 1.

For another four couplings, CH3OH(O-H), CH4(C-H), HF(F-H),
and H2O(O-H), the sign of the SD-contribution becomes correct
compared to the CCSD results on going from RPA to RPA(D),
that is, in the doubles corrected model. When considering the
HRPA and HRPA(D) models, only one FC-term (F2H2(F-F)) was
found to change its sign, while a change of sign was seen for
the SD-term in three cases, CH3OH(O-H),CH4(C-H), and NH3F

−(N-
H), two of which were already observed for RPA/RPA(D). Here,
all changes of sign lead to the correct sign in the HRPA(D) cal-
culations compared to the CCSD results.

As can be seen from Figure 1 and Table 2, the SOPPA model
performs better compared to CCSD than all other models as
expected, as this model solves the entire second-order problem

Table 1. Molecules and couplings investigated in this study from Kjær
et al.[22]

Molecule 1J(XY) 2hJ(XY) 1J(XH) 1hJ(XH) 2J(HH)

C2H6 (C-C) - - - -
CH3F (C-F) - - - -
CH3NH2 (C-N) - - - -
CH3OH (C-O) - (O-H) - -
CH4 - - (C-H) - (H-H)
F2H2 - (F-F) - - -
F2H+

3 - (F-F) (F-H) (F-H) -
FHF− - (F-F) (F-H) (F-H) -
HF - - (F-H) - -
H2F

+ - - (F-H) - (H-H)
H2N

− - - (N-H) - (H-H)
H2O - - (O-H) - (H-H)
H3O

+ - - (O-H) - (H-H)
OH− - - (O-H) - -
N2H4 (N-N) - - - -
NF3 (N-F) - - - -
NH2F (N-F) - - - -
NH3F

− - (N-F) (N-H) (F-H) -
NH3 - - (N-H) - (H-H)
NH+

4 - - (N-H) - (H-H)
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iteratively. In contrast, the RPA model solves the problem itera-
tively only through first order. It is thus no surprise that this
model yields the least accurate results compared to CCSD. In
fact, all the other models offer a vast improvement on the RPA
model.

One finds that both the HRPA model and the RPA(D) model
appear to underestimate the results with mean deviations of
approximately −10%, whereas the remaining models seem to
overestimate the results as in Table 2. The HRPA(D) model is
observed to have a mean deviation of approximately 0 and thus
no clear trend to over/underestimate can be found. From Figure 1
it looks as if the HRPA(D) model is almost as accurate as the SOPPA
model. Likewise, the RPA(D) and HRPA models seem comparable
in accuracy, with the RPA(D) model yielding the better results.

From Figure 1 and Table 2, it is evident that the HRPA(D)
model offers a significant improvement over the HRPA model,
while it is not quite as large as the one offered by the RPA(D)
model on the RPA model. Whereas the RPA model has an abso-
lute mean deviation approximately 4 times larger than that of
the RPA(D) model, the HRPA model has an absolute mean devia-
tion only 3 times as large as that of the HRPA(D) model. Likewise,
the standard deviation is decreased by slightly more than a

factor of 3 from RPA to RPA(D), while the decrease is about a fac-
tor of 2.5 going from HRPA to HRPA(D). The smaller effect of the
correction in the case of the HRPA model is not surprising, since
it only consists in a correction from the double excitation part,
while the RPA(D) model also includes a correction from the sin-
gle excitation part. It is interesting to observe that the RPA(D)
model appears to perform better for these couplings than the
HRPA model. From Table 2, it is clear that the absolute mean
deviation of the HRPA model is almost twice as large as that of
the RPA(D) model. Likewise, the standard deviation is about 1.4
times larger for the HRPA model than for the RPA(D) model. This
indicates the importance of the double excitation part of the
SOPPA linear response function, as the HRPA model should give
a better estimate of the single excitation part.

Although the increase in accuracy from RPA to RPA(D) is
larger than the increase found from HRPA to HRPA(D), the bet-
ter starting point of HRPA(D) allows this doubles corrected
model to become comparable in accuracy to the SOPPA model,
while the RPA(D) is still significantly less accurate. From Table 2,
one can further see that the SOPPA model has an absolute
mean deviation of only a third of that of the RPA(D) model, but
about 2/3 of the one obtained for the HRPA(D) model. Likewise,
the RPA(D) model has a standard deviation of about thrice that
of the SOPPA model, while that of the HRPA(D) model is only
about 3/5 larger than that of the SOPPA model. These same
trends can also be identified for all individual contributions to
the indirect nuclear spin–spin coupling constant (the DSO term
is not investigated, as this is not calculated as a linear response
property) as shown in Figure 2. All values can be found in the
Supporting Information.

Turning to the individual contributions, one finds in Figure 2
that the distribution of the relative deviations is significantly
smaller for the PSO-term than for the remaining contributions.
Furthermore, the SOPPA and RPA(D) models seem to overesti-
mate the PSO-term, which is recalled to be a singlet property,
while the RPA, HRPA, and HRPA(D) models appear to

(a) (b)

Figure 1. Relative deviations of all linear response properties from CCSD results calculated with ccJ-pVTZ basis set for 32 couplings, that is, all the full
isotropic coupling constants as well as the PSO, SD, and FC contributions. A total of 128 linear response properties. The relative deviation was determined as
JCCSDi −JModel

i

� �
=JCCSDi , where i is the total isotropic coupling constant or one of its contributions. Note that, several of the couplings and contributions to

couplings for the RPA model are outside of the frame in (a). These are the SD-term of CH4(C-H), NH+
4 (N-H) and HF(F-H), the FC-term of H2F

+(H-H), CH3NH2(C-
N), and F2H2(F-F) and finally the total coupling constant of H2F

+(H-H) and H2N
−(H-H). [Color figure can be viewed at wileyonlinelibrary.com]

Table 2. Absolute mean deviation and standard deviation of the relative
deviations of the results of the investigated models from CCSD results
calculated with ccJ-pVTZ basis set.

Model Abs. mean dev. Mean dev. Std. dev.

RPA 0.6579 0.4089 1.0883
RPA(D) 0.1744 −0.0974 0.3218
HRPA 0.2948 −0.0964 0.4355
HRPA(D) 0.0989 0.0002 0.1656
SOPPA 0.0689 0.0414 0.1048

The PSO, SD, and FC contributions have been included in the statistics in addition to the
total isotropic coupling constants.
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underestimate this contribution. The mean deviation of the
PSO, SD, and FC-terms as well as the total isotropic coupling
constant can be found in Supporting Information. Calculations
of singlet excitation energies carried out for the RPA, RPA(D),
and SOPPA models[34,36–39,47] as well as the HRPA model[52]

showed a general tendency of the RPA and HRPA models to
overestimate the excitation energies, while the SOPPA and
RPA(D) models generally underestimate singlet excitation ener-
gies. This is in complete agreement with the fact that methods
that overestimate excitation energies, tend to underestimate
response properties and vice versa.[47]

In contrast to the singlet contributions, the RPA model seems
to overestimate the triplet properties (FC-term and SD-term)
with mean deviations of 40% and 60%, while the RPA(D) model
underestimates these with mean deviations of −8% and −12%,
respectively. The HRPA and HRPA(D) models appear to underes-
timate the SD-term, while they slightly overestimate the FC-
term, the latter with mean deviations of approximately 0.2%
and 4%. The SOPPA model slightly overestimates all

contributions in agreement with the trends previously shown
for excitation energies.[34–39,52] The RPA(D) model thus behaves
differently than the RPA model, as also found in the calculations
of triplet excitation energies,[35] where the RPA model underes-
timated the results, while the RPA(D) model overestimated
them, in agreement with the relationship between response
properties and excitation energies.[47] As previously mentioned,
the RPA and hence RPA(D) models are prone to triplet instabil-
ities leading to a wrong description of the properties. Such
results are considered unstable, and when all these results
obtained for the RPA model, were removed, the RPA(D) model
was concluded to slightly underestimate the excitation energies
in Haase et al.[35] The reference was however, the CC3 model
compared to which the CCSD model underestimated the results
even more. Thus, compared to the CCSD reference used in this
study, the RPA(D) model would overestimate triplet excitation
energies, and hence be expected to underestimate the triplet
linear response properties which is indeed the case. In the same
study of triplet excitation energies, the HRPA model also

(a) (b)

(c) (d)

Figure 2. Relative deviations of individual contributions (a–c) and full isotropic coupling constant (d) from CCSD results. The relative deviation was
determined as JCCSDi −JModel

i

� �
=JCCSDi , where i is the total isotropic coupling constant or one of its contributions. All results were obtained using the ccJ-pVTZ

basis set. Several RPA results are outside of the shown frame. (a) Relative deviation of PSO contribution from CCSD PSO contribution result. (b) Relative
deviation of SD contribution from CCSD SD contribution results. For RPA CH4(C-H), NH4

+(N-H) and HF (F-H) are outside of the shown frame. (c) Relative
deviation of FC contribution from CCSD FC contribution result. For RPA H2F

+(H-H), CH3NH2(C-N) and F2H2(F-F) are outside of the shown frame. (d) Relative
deviation of isotropic nuclear spin-spin coupling constant from CCSD calculated isotropic nuclear spin-spin coupling constant. H2F

+(H-H) and H2N
−(H-H) are

outside of the shown frame for RPA. [Color figure can be viewed at wileyonlinelibrary.com]
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significantly overestimated the results. Hence, the HRPA model
would be expected to underestimate both triplet properties;
however, this is only the case for the SD-term, while the FC-
term is overestimated. This might be due to a difference in the
chosen reference model or the different basis sets used. It could
however, also be caused by too large differences between the
types of molecules in the chosen benchmark sets.

From Figure 2d, it can be seen that the results for the total cou-
pling are over or underestimated in accordance with the over or
underestimation of the FC-term indicating that the dominating
term is in fact the FC-term. Observe that relative deviations are con-
sidered, and thus the relative deviation of the total isotropic nuclear
spin–spin coupling constant shown in Figure 2d is not the sum of
the relative deviations of the contributions shown in Figures 2a–c.

To better investigate the models and understand the outliers,
the couplings are split into three types and investigated sepa-
rately in the following; XY couplings, one-bond XH couplings
and two-bond HH couplings.

XY couplings

Seven of the thirty-two couplings are of the one-bond XY type
as well as four two-bond XY couplings across a hydrogen bond.
These are all collected in a single plot for XY couplings, and
thus yield the plots shown in Figure 3. From this figure it can
be seen that most of the outliers are caused by N-F or F-F cou-
plings. As N and F both give rise to large correlation
contributions,[14] it is hardly surprising that the models have
larger problems describing these particular couplings. Other
outliers are observed, for example, the C-C coupling in C2H6

(PSO-term) and the C-N coupling in CH3NH2 (FC-term). While
the first is only an outlier in the RPA and HRPA models, the sec-
ond is an outlier for all but the SOPPA model, however it seems
to be more difficult for the RPA and HRPA models than for the
other models to describe this coupling, indicating the impor-
tance of the double excitation part for the linear response func-
tion. For these XY couplings, the models are seen to follow the

(a) (b)

(c) (d)

Figure 3. Relative deviations of individual contributions (a–c) and full isotropic coupling constant (d) of XY couplings from CCSD reference results. The
relative deviation was determined as JCCSDi −JModel

i

� �
=JCCSDi , where i is the total isotropic coupling constant or one of its contributions. All results were obtained

using the ccJ-pVTZ basis set. Note that some RPA results are outside of the shown frame. (a) Relative deviation of PSO contribution from CCSD PSO
contribution result. (b) Relative deviation of SD contribution from CCSD SD contribution result. (c) Relative deviation of FC contribution from CCSD FC
contribution result. The contributions from F2H2(H-H) and CH3NH2(C-N) for the RPA model are outside of the shown frame. (d) Relative deviation of isotropic
nuclear spin-spin coupling constant from CCSD calculated isotropic nuclear spin-spin coupling constant. [Color figure can be viewed at
wileyonlinelibrary.com]
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same trends with respect to over/underestimation of the prop-
erties compared to CCSD as for all couplings. Note, that due to
the outlier of the RPA(D) model the mean deviation for the
PSO-term is negative, although only at −0.9%. Observe that for
this set of XY couplings the HRPA model appears to underesti-
mate all contributions, and so for triplet properties the HRPA
and RPA(D) models behave in accordance with the behavior of
the triplet excitation energy calculations in Haase et al.[35] The
HRPA(D) model seems to underestimate all the terms, though
less so for the triplet property results.

Collecting all the linear response contributions of the cou-
pling constant, that is, not the DSO-term, as well as the total
isotropic nuclear spin–spin coupling constant in one plot yields
Figure 4 and Table 3. Figure 4 and Table 3 leads to the same
conclusions as for all couplings together. Thus, the RPA(D)
model performs significantly better than the RPA model and
surprisingly also the HRPA model, while still not being as accu-
rate as the SOPPA model. The HRPA(D) model on the other
hand is close to the SOPPA model in accuracy. For these XY-
couplings it should be noted that the improvement the
HRPA(D) model offers on the HRPA model, is larger than that
offered by the RPA(D) model on the RPA model. This differs
from the conclusions in the previous section, where all

couplings were considered. While HRPA(D) for the XY-couplings
decreases the absolute mean deviation with approximately a
factor of 4 from HRPA, the RPA(D) model only decreases this
value with approximately a factor of 2.5 from RPA. The standard
deviation however, is decreased about a factor of 2.5 by a dou-
bles correction in both models.

The larger increase in accuracy for the HRPA(D) model might
be due to a partial cancellation of the two corrections in the
RPA(D) model. Due to the fairly small set of investigated XY-
couplings, however, it might not be a general trend for all cou-
plings of this type.

Furthermore, it should be observed that the outliers
observed for both doubles corrected models, and in particular
for HRPA(D), in Figure 4, seem to be among the largest
observed in Figure 1. It should therefore be considered that the
doubles corrected models seem to be ill-suited to describe cou-
plings to fluorine cf. the section “Computational Details”.

One-bond XH couplings

Of the thirty-two couplings, fourteen are from one-bond XH cou-
plings. Recall that three of these couplings are one-bond XH cou-
plings across a hydrogen bond; the (F-H) couplings in FHF−, F2H+

3 ,
and NH3F

−. Analyzing the contributions from all these one-
bond XH couplings yields Figure 5. Again, it can be seen that
the outliers mainly result from couplings with fluorine. In addi-
tion, the recurring coupling in question (NH3F(F-H)) is across a
hydrogen bond.

Once again, an outlier from another coupling is found, in this case
an N-H coupling in NH+

4 for the SD-term. This appears to affect
all models except the RPA(D) model. It could be speculated that
the only reason, it is not an outlier for the RPA(D) model, is
error cancellation of the two corrections in this model.

For the investigated one-bond XH couplings the performance
of each model seems stable, in the sense that the variance in
the deviations of the results is fairly small for all models.

(a) (b)

Figure 4. Relative deviation of XY couplings from CCSD reference results. All the full isotropic coupling constants as well as the PSO, SD and FC contributions
have been included in the figure yielding a total of 44 values. The relative deviation was determined as JCCSDi −JModel

i

� �
=JCCSDi , where i is the total isotropic

coupling constant or one of its contributions. All results were calculated using the ccJ-pVTZ basis set. Note that, the FC contributions of F2H2(H-H) and
CH3NH2(C-N) for the RPA model are outside of the shown frame in (a). [Color figure can be viewed at wileyonlinelibrary.com]

Table 3. Absolute mean deviation and standard deviation of the relative
deviations from the CCSD model of the investigated models using the
ccJ-pVTZ basis set for 7 one-bond XY couplings and 4 two-bond XY
couplings over a hydrogen bond.

Model Abs. mean dev. Mean dev. Std. dev.

RPA 0.5764 0.1863 0.8271
RPA(D) 0.2146 −0.1069 0.3340
HRPA 0.4080 −0.3049 0.5028
HRPA(D) 0.1171 −0.0740 0.2057
SOPPA 0.0803 0.0317 0.1229

All the full isotropic coupling constants as well as the PSO, SD, and FC contributions
have been included in the statistics.
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The largest variance is found, not for the FC-term as seen for all
couplings together, but rather for the SD-term. As this is gener-
ally not the dominating term for one-bond couplings, the
results for the isotropic coupling constants show very little vari-
ance in the deviation for each model.

A possible explanation for the SD-term showing the most
variance for these couplings could be that the values of this
term is small compared to the remaining contributions as well
as compared to the SD-terms of the XY-couplings.

As also observed for the XY-couplings, the RPA and HRPA
models perform significantly worse than the remaining models,
which here appear to be of similar accuracy compared to CCSD.
The doubles corrected models thus perform particularly well for
this type of coupling.

The trends in over and underestimating the properties can
be observed to be the same as previously noted.

If all contributions are investigated together, Figure 6 and
Table 4 are obtained. One can conclude from Table 4 as well as

Figure 6 that once again, the HRPA(D) model is comparable in
accuracy to the SOPPA model for these couplings. In addition,
the RPA(D) model also comes close to the SOPPA model in
accuracy compared to the CCSD model. Whereas the HRPA(D)
model has a standard deviation about 1.5 times larger than that
of the SOPPA model, the standard deviation of the RPA(D)
model is only about 2.5 times as large as the one obtained for
the SOPPA model. Both doubles corrected models have an
absolute mean deviation approximately twice that of the
SOPPA model. Thus, the RPA(D) model gives rise to a standard
deviation of about 25%, while the SOPPA and HRPA(D) models
give rise to standard deviations of approximately 10% and 15%,
respectively. Likewise, the absolute mean deviation is found to
be 11% for the RPA(D) model, 6% for the SOPPA model, and
10% for the HRPA(D) model.

It can be observed that all models seem to perform fairly
well for the one-bond XH couplings compared to the perfor-
mance for the XY-couplings. This could be a consequence of

(a) (b)

(c) (d)

Figure 5. Relative deviations of individual contributions (a–c) and full isotropic coupling constant (d) of one-bond XH couplings from CCSD reference results.
The relative deviation was determined as JCCSDi −JModel

i

� �
=JCCSDi , where i is the total isotropic coupling constant or one of its contributions. All results were

calculated using the ccJ-pVTZ basis set. The RPA results for the SD-terms of NH+
4 (N-H), HF(F-H), CH4(C-H) and CH3OH(O-H) are outside of the shown frame. (a)

Relative deviation of PSO contribution from CCSD PSO contribution result. (b) Relative deviation of SD contribution from CCSD SD contribution result. The
RPA results for NH4

+(N-H), HF(F-H), CH4(C-H) and CH3OH(O-H) are outside of the shown frame. (c) Relative deviation of FC contribution from CCSD FC
contribution result. (d) Relative deviation of isotropic nuclear spin-spin coupling constant from CCSD calculated isotropic nuclear spin-spin coupling constant.
[Color figure can be viewed at wileyonlinelibrary.com]
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the lower percentage of couplings involving fluorine, which
has already been observed to be problematic for the models
to describe.

Two-bond HH couplings

Finally, the contributions of the remaining seven two-bond HH
couplings are analyzed. This is shown in Figure 7, however as
very few points are included, the outliers have not been
marked. The outliers observed for RPA and RPA(D) are in all
cases caused by the one fluorine containing molecule investi-
gated for two-bond HH couplings.

From Figure 7, it can be seen that all models appear stable
for the SD-term and in particular the PSO-term calculations.
Slightly more variance is found in the deviations for the FC-
term calculations, which can also be seen in the full isotropic
coupling constant in Figure 7d, once again indicating that the
FC-term is the dominating contribution to the full coupling con-
stant. It should however be noted that the dominance of the
FC-term for these couplings is mainly due to the PSO and DSO-
terms being of more or less equal magnitude, but opposite
sign. Thus, the two cancel out each other as also mentioned in

Kjær et al.[22] While the trends in over and underestimation of
the properties are the same as was observed for all couplings
together, it should be noted that the RPA model vastly overesti-
mates the triplet property terms which might indicate triplet
instabilities.

Comparison of the methods for all linear response contribu-
tions and the total coupling constants are shown in Figure 8
and Table 5. Here, the RPA(D) model seems to perform worse
than the HRPA model, while the HRPA(D) model yields results
comparable to those obtained using the SOPPA model.
Table 5 also shows that the SOPPA model yields the best
results, however as also concluded from Figure 8, the
HRPA(D) model yields results of almost the same accuracy.
The standard deviation of the HRPA(D) model is only about
1/5 larger than that of the SOPPA model, and the absolute
mean deviations of the two models are almost the same.
Thus, the HRPA(D) model yields an absolute mean deviation
of 8% and a standard deviation of approximately 11%, while
the corresponding values for the SOPPA model are 8% and
9%, respectively.

It seems that for these couplings, an increase in accuracy fol-
lows from the size of the problem solved iteratively, that is, the
accuracy is improved from RPA(D) over HRPA to HRPA(D). The
RPA(D) model yields results with an absolute mean deviation
about 1.5 times larger than the value obtained with the HRPA
model. Likewise, the standard deviation is decreased with
approximately a factor of two from RPA(D) to HRPA. Bearing in
mind the few couplings investigated, this trend should be
investigated further on a larger benchmark set.

The fact that the HRPA model appears to perform better
than the RPA(D) model could indicate that the double excita-
tion part of the linear response function is of less importance
for this type of coupling than seen for the other two. How-
ever, the errors affecting the RPA model will of course also
affect the RPA(D) model, thus making these results less
reliable.

(a) (b)

Figure 6. Relative deviation of one-bond XH couplings from CCSD reference results. All the full isotropic coupling constants as well as the PSO, SD, and FC
contributions have been included in the figure yielding a total of 56 values. The relative deviation was determined as JCCSDi −JModel

i

� �
=JCCSDi , where i is the total

isotropic coupling constant or one of its contributions. All results were calculated with the ccJ-pVTZ basis set. The RPA results for the SD-terms of NH+
4 (N-H),

HF(F-H), CH4(C-H), and CH3OH(O-H) are outside of the shown frame on the left. [Color figure can be viewed at wileyonlinelibrary.com]

Table 4. Statistics on the relative deviations from CCSD results of the
investigated models calculated using the ccJ-pVTZ basis set for
14 one-bond XH couplings.

Model Abs. Mean Dev. Mean Dev. Std. Dev.

RPA 0.5691 0.3070 1.1112
RPA(D) 0.1100 −0.0235 0.2464
HRPA 0.2684 −0.0264 0.4546
HRPA(D) 0.0946 0.0263 0.1520
SOPPA 0.0562 0.0366 0.0944

All the full isotropic coupling constants as well as the PSO, SD, and FC contributions
have been included in the statistics.
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(a) (b)

(c) (d)

Figure 7. Relative deviations of individual contributions (a–c) and full isotropic coupling constant (d) of two-bond HH couplings from CCSD reference results.
The relative deviation was determined as JCCSDi −JModel

i

� �
=JCCSDi , where i is the total isotropic coupling constant or one of its contributions. All results were

obtained using the ccJ-pVTZ basis set. Several RPA results are outside of the shown frame. (a) Relative deviation of PSO contribution from CCSD PSO
contribution result. (b) Relative deviation of SD contribution from CCSD SD contribution result. (c) Relative deviation of FC contribution from CCSD FC
contribution result. H2F

+(H-H) is outside of the shown frame for RPA. (d) Relative deviation of isotropic nuclear spin-spin couppling constant from CCSD
calculated isotropic nuclear spin-spin coupling constant. [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

Figure 8. Relative deviation of two-bond HH couplings from CCSD reference results. All the full isotropic coupling constants as well as the PSO, SD and FC contributions
have been included in the figure yielding a total of 28 values. The relative deviation was determined as JCCSDi −JModeli

� �
=JCCSDi , where i is the total isotropic coupling

constant or one of its contributions. All results were calculated with the ccJ-pVTZ basis set. The FC term for H2F
+(H-H) as well as the total isotropic coupling

constant of H2F
+(H-H) and H2N

−(H-H) are outside of the shown frame for RPA on the left. [Color figure can be viewed at wileyonlinelibrary.com]
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Couplings without fluorine

As the couplings to fluorine and generally in fluorine containing
molecules have proven difficult for all models to describe, the
remaining 11 molecules without fluorine will briefly be investi-
gated separately. These are shown in Figure 9. While little
improvement is seen on the purely iterative models, that is,
RPA, HRPA, and SOPPA, compared to Figure 1, the doubles cor-
rected models are improved to show no outliers with relative
deviations of 100% or more. We still, however, find deviations
of up to around 65% for the two-doubles corrected methods
and up to approximately 35% for SOPPA. These are quite large
deviations and must be kept in mind when choosing a model
for calculations. The largest deviations here are found for the
triplet contributions and it might be that these are harder to
describe using the models investigated in this study. Consider-
ing only the total indirect spin–spin coupling constant, outliers
are still seen for all models, though the largest relative devia-
tion is now at 50% for RPA(D), 40% for HRPA(D) and only 20%
for SOPPA as seen from Figure 10. Note that, none of the out-
liers in the doubles corrected models are from one-bond XH
couplings for which lower relative deviations are obtained.

Comparison with experiment

As the isotropic indirect nuclear spin–spin coupling constant is
a measurable quantity, the obtained results should also be
compared to experimental values.[53–56] The 14 available experi-
mental values are also given in the supporting information.

It must however, be considered that the theoretical results
have not taken into account neither the vibrational effects,
which can constitute up to 10% of the results,[57–62] nor solvent
effects.[63,64] One must keep this in mind when comparing the
results. This comparison is shown in Figure 11 and Table 6.

Interestingly, while the relative deviation of the RPA, HRPA,
HRPA(D) and SOPPA results for approximately 60% of the cou-
plings are increased compared to the values obtained with the
CCSD model as a reference, only 50% are increased for the
RPA(D) model. This might reflect that the RPA(D) model is the
only model expected to underestimate these couplings based
on the findings of the previous sections; as most of the
included couplings are not of the XY-type, the HRPA model is
not expected to underestimate the results. The general increase
in the relative deviations is due to the fact that the CCSD model
is expected to overestimate at least the triplet property contri-
butions to the coupling constant.[35] As the FC-term is the dom-
inating term for this set of couplings, the CCSD model is thus
expected to overestimate these couplings, consequently yield-
ing too large relative deviations for the RPA(D) model. It might
therefore be advantageous to further evaluate the models
using a more accurate model, such as the CC3 model,[11,14] as a
reference. One can however still get a general idea of the
model performances compared to one another using these
results.

When considering the experimental values it is found that it
is a coupling with fluorine that yields the outlier for RPA(D),
SOPPA, and HRPA(D), while an additional outlier from the C-N
coupling in CH3NH2 is observed for HRPA and RPA as well as

Table 5. Statistics on the relative deviations from CCSD results of the
investigated models for 7 two-bond HH couplings.

Model Abs. mean dev. Mean dev. Std. dev.

RPA 0.9636 0.9625 1.3675
RPA(D) 0.2401 −0.2301 0.4203
HRPA 0.1698 0.0911 0.2374
HRPA(D) 0.0789 0.0648 0.1124
SOPPA 0.0763 0.0663 0.0932

All results were calculated using the ccJ-pVTZ basis set. All the full isotropic coupling
constants as well as the PSO, SD, and FC contributions have been included in the
statistics.

(a) (b)

Figure 9. Relative deviations of all linear response properties from CCSD results calculated with the ccJ-pVTZ basis set for 18 couplings, that is, all the full
isotropic coupling constants as well as the PSO, SD, and FC contributions yielding a total of 72 values. The relative deviation was determined as
JCCSDi −JModel

i

� �
=JCCSDi , where i is the total isotropic coupling constant or one of its contributions. The SD-terms of CH4(C-H) and NH+

4 (N-H), the FC-term of
CH3NH2(C-N) and the total isotropic coupling constant of H2N

−(H-H) are outside of the shown frame for RPA in (a). [Color figure can be viewed at
wileyonlinelibrary.com]
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HRPA(D), as also seen with CCSD as a reference for the FC-term.
This would thus again indicate the importance of the double
excitation part of the linear response function. Finally, the
HRPA(D) model again seems to perform with an accuracy very
close to that of the SOPPA model, for this sample of couplings,
with both models yielding an absolute mean deviation and a
standard deviation of approximately 13% and 19%, respectively,
as can be seen in Table 6. The RPA(D) model also performs
rather well for these couplings, though it is not as accurate as
either the SOPPA or HRPA(D) model in comparison with experi-
mental values. From Table 6, it can be observed that the
RPA(D) model yields a standard deviation and an absolute
mean deviation both about 1/4 larger than the values obtained
for the HRPA(D) and SOPPA models.

It should be observed that the absolute mean deviation and
standard deviation are larger for all models, except the RPA(D)

and HRPA models, compared to the results obtained with the
CCSD model as a reference in Table 2. This might be a result of
the missing vibrational effects; however, it could also be caused
by the sample of couplings investigated in Figure 11 and
Table 6 as opposed to all couplings in Figure 1 and Table 2.

The RPA model performs poorly compared to the experimen-
tal values with absolute mean deviation and standard deviation
about six times larger than those obtained using the SOPPA
model. The HRPA model performs better than the RPA model,
with an absolute mean deviation about 1.5 times larger than
for the SOPPA model and a standard deviation about 1.6 times
larger. As the RPA(D) model still performs better, the impor-
tance of the double excitation part of the linear response func-
tion, can once again be noted.

Furthermore, it is observed that for this sample of couplings,
the HRPA(D) model offers only a small improvement on the
HRPA model compared to the improvement on the RPA model
by a doubles correction. The doubles correction does however,
in both cases increase the accuracy of the model significantly.
Table 6 shows that the absolute mean deviation and standard
deviation are decreased by approximately a third from HRPA to
HRPA(D), while the decrease is approximately 4/5 from RPA
to RPA(D).

Time requirements

After investigating the accuracy of the models compared to
CCSD it is necessary to also consider the calculation time
required for the new models. Figure 12 shows the calculation
time of the two doubles corrected models in percentage of
SOPPA calculation time for the investigated molecules. It is
clear that the savings in time are significantly larger for the
RPA(D) model compared to the HRPA(D) model. Furthermore,
while an RPA(D) calculation can generally be expected to take
approximately 25% of the time required for a SOPPA calcula-
tion, an HRPA(D) calculation might take anything from 30%–

90% of the time required for a SOPPA calculation. The large

Figure 10. Relative deviation of the 18 total isotropic indirect nuclear spin–
spin coupling constant from the 11 molecules containing no fluorine atoms
calculated with the ccJ-pVTZ basis set. The relative deviation was
determined as JCCSDi −JModel

i

� �
=JCCSDi , where i is the total isotropic coupling

constant. H2N
−(H-H) is outside of the shown frame for RPA. [Color figure can

be viewed at wileyonlinelibrary.com]

(a) (b)

Figure 11. Analysis of relative deviation of isotropic nuclear spin–spin coupling constants from experimental values determined as

Jexperiment
i −JModel

i

� �
=Jexperiment

i , where i is the total isotropic nuclear spin–spin coupling constant. A total of 14 couplings are included. All results were obtained

using the ccJ-pVTZ basis set. [Color figure can be viewed at wileyonlinelibrary.com]
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variation for HRPA(D) might to some extent be due to the
uncertainties caused by the lack of control with other calcula-
tions running simultaneously with the ones reported here.

Considering some statistics of the findings in Figure 12, we
see that, while the minimum time requirement for the HRPA(D)
model for the investigated molecules is comparable to the time
requirements of the RPA(D) model, both the mean time require-
ment and the maximum time requirement are significantly
larger than what is found for the RPA(D) model.

Considering the timings for three different molecules, we
find, that for the RPA(D) model the savings in time seem to
decrease with increasing molecule size, though the savings in
all three cases are very similar. For the HRPA(D) model the sav-
ings for the medium sized molecule seems largest and as
expected from Figure 12a, there is a large variation in the time
savings for the different molecules.

This large variation of time reduction might be investigated
further by considering also the number of iterations necessary
for the zeroth-order problems (i.e., RPA and HRPA) to be solved
as well as the absolute SOPPA calculation time. This is shown in
Figure 13.

Clearly, when the iteration count is increased the general
trend in Figure 13a is that the reduction in calculation time is

lowered for HRPA(D), while it remains almost constant for
RPA(D). This indicates that the main difference in the calcula-
tion time of the two models is caused by the need to solve the
larger HRPA problem, which includes the second-order contri-
butions to the A and B matrices, in the case of HRPA(D).

From Figure 13b it can be seen that as the number of itera-
tions required for the HRPA(D) (and hence HRPA) model
approaches the number of iterations required for a SOPPA cal-
culation, the reduction in calculation time is decreased as antici-
pated in section “Computational cost of doubles corrected
methods.” Actually, it appears that three different trends can be
seen for HRPA(D); one trend shows a large time reduction (cal-
culations taking 30%–40% of a SOPPA calculation) almost inde-
pendent of the savings in iterations, another showing
calculation times of 60%–80% of the SOPPA time and only
some dependency on the iteration reduction, and finally a
trend is shown for a dramatic dependency of the time reduc-
tion on the iteration count compared to SOPPA. The time
reduction given by the RPA(D) model, however, seems unaf-
fected by the required number of iterations compared to those
needed for the SOPPA calculation.

Figure 13c shows the calculation time in percentage of
SOPPA calculation time vs. the absolute SOPPA calculation time,
which scales with the size of the molecule considered. For short
SOPPA calculation times the computationally cheaper models
are of less interest, and so the trends for the longer lasting cal-
culations over 120 min is of greatest interest here. Also, the
shorter calculations are expected to be more affected by other
calculations running simultaneously. It is observed for the lon-
ger running calculations shown in Figure 13c that, while the
time reduction of RPA(D) is almost constant with increasing
SOPPA calculation time, the HRPA(D) model shows an almost
linear increase in calculation time. As only few molecules are
considered here, this should be investigated further as this con-
clusion might not apply for all systems. However, the results
here seem already to indicate that the time savings offered by

Table 6. Absolute mean deviation and standard deviation of the relative
deviations from the 14 experimental values of the total isotropic
coupling constants of the investigated models.

Model Abs. mean dev. Mean dev. Std. dev.

RPA 0.8141 0.8141 1.0652
RPA(D) 0.1654 −0.0806 0.2438
HRPA 0.1968 0.1785 0.3174
HRPA(D) 0.1357 0.1323 0.1930
SOPPA 0.1318 0.1168 0.1917

The ccJ-pVTZ basis set was used for the calculations.

(a) (b)

Figure 12. Calculation time of the two doubles corrected models in percentage of SOPPA calculation CPU time for the investigated molecules. Calculation
times for a small (OH−) medium sized (H2O) and larger (C2H6) molecule has been shown explicitly on the right. NF3 has not been included as convergence for
the SOPPA model for this molecule could not be obtained under the same conditions as for the doubles corrected models. [Color figure can be viewed at
wileyonlinelibrary.com]
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HRPA(D) even for larger molecules will be less significant than
those offered by the RPA(D) model.

Thus, while the HRPA(D) model may yield results of higher
accuracy than RPA(D) compared to the CCSD model, the time
saved is difficult to predict and can be quite small. The RPA(D)
model on the other hand generally yields a large reduction in
calculation time as well as results of good accuracy compared
to the CCSD model.

Concluding Remarks

The RPA(D) and HRPA(D) models for linear response properties
have been derived and successfully implemented in the DAL-
TON program, and both seem to offer a substantial improve-
ment on the RPA and HRPA models, respectively, for the
properties investigated in this study. For the coupling types
investigated here the HRPA(D) model was shown to be compa-
rable in accuracy to the SOPPA model, but the time reduction
was not impressive. The RPA(D) model on the other hand was
shown to reduce the calculation time substantially for all mole-
cules as well as yielding results of good accuracy, although it
might have issues with triplet instabilities, which is not seen for

HRPA(D). While the RPA(D) results were not of quite as high
accuracy compared to the CCSD model as the HRPA(D) model,
the time reduction more than makes up for that. Hence, the
RPA(D) model is recommended as a cheap alternative to the
SOPPA model for large molecules.

Bearing in mind the small test set, further investigations of
the trends observed here should be carried out on a larger
benchmark set without couplings to fluorine, as both the RPA
and HRPA models, as well as the doubles corrected models,
were observed to have trouble describing couplings of
this type.

For a better idea of the overall quality of the models, investiga-
tions of model performance could also be carried out using a
more accurate model than the CCSD model as a reference.

Furthermore, studies of model performance on different types
of nuclear spin–spin coupling constants as well as different prop-
erties should be carried out for all models, as the encouraging
results obtained for the indirect nuclear spin–spin coupling con-
stants and its contributions in this study might not be representa-
tive of the overall performance of the new models.

Finally, it should be noted that the efficiency of the calcula-
tions could be further improved for all models if the resolution

(a) (b)

(c)

Figure 13. The calculation time in percentage of SOPPA calculation time versus (a) the total number of iterations required for a calculation with the given
model, (b) the fraction of iterations required compared to the number required for SOPPA, and (c) the absolute SOPPA calculation time. (a) Calculation time
versus iteration count for the doubles corrected models. (b) Calculation time of the doubles corrected models versus iteration fraction. (c) Calculation time of
the doubles corrected models versus SOPPA calculation time from 120 min to 1000 min. [Color figure can be viewed at wileyonlinelibrary.com]
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of identity approximation was used, or other techniques for
atomic integral calculations were implemented.
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