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a b s t r a c t

In this work we estimate the state of charge (SOC) of NiMH rechargeable batteries using

a robust optimal filter based on a simplified electrochemical model. The robust filter

guarantees that the supremum of the error variance - difference between real and esti-

mated SOC - with respect to all admissible uncertainties be minimum. The results are

compared with those obtained using the linear Kalman filter. We conclude that both

estimations have similar performance, although the robust filter is easier to tune. Exper-

imental results with commercial batteries are provided to illustrate the estimation

procedure and it performance.

Copyright ª 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
1. Introduction over time. By considering the casewhere the battery current is
For good quality of service and to sustain a longer life of

NiMH rechargeable battery it is needed to develop a battery

management system (BMS). For an efficient BMS it is

extremely important to have an accurate estimation of SOC in

real-time and this topic is the main purpose of this paper.

By assuming the charge current is equal to the current

through the battery terminals Ibat, the SOC can be obtained by

performing the integral of such current, known as coulomb-

counting technique. However, due to the presence of

secondary reactions in the battery, the charge current could

be different to the battery current and, even being slightly

different, due to the integration process the differences

between real and estimated SOC can be unacceptably large
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zero, Ibat ¼ 0 e open circuit- and after reaching the steady-

state, the measured potential at the battery terminals, Ebat,

is related with SOC through the electro-motive force (EMF)

curve Ebat(N) ¼ fE(SOC). Then, a simple and effective strategy

to correct the errors of coulomb-counting consists in opening

the battery circuit and waiting until the system relaxes to

Ebat(N) known as open circuit voltage (OCV). The procedure is

well described in [1] and the references therein. The main

disadvantage of this method is, in addition to the accumula-

tive error of integration, the long time needed for the rest

period which hinders their use in real-time.

In order to overcome this difficulties model based

observersmethods become an interesting strategy to estimate

SOC. The idea consists in using the measured current Ibat as
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input of the battery model to obtain, by simulation, the

potential Êbat. The error between both the real and the esti-

mated potential Ebat � Êbat is used to correct the internal

model variables (states). Thus, if the model is exact and the

correction is optimal, in the sense that the states of both

coincide, the SOC can be optimally estimated.

The battery can be modeled as a cascade of a linear system

with a static nonlinearity. This kind of structure is called

Wiener model [5]. A convenient approach is to linearize the

static nonlinearity at every sample time around the estimated

state variables and using a linear Kalman filter. In this way the

nonlinear model is transformed into a linear one with time-

varying parameters. When the Kalman filter is used with

this kind of model, the type of observer is called Extended

Kalman Filter (EKF). In [2] (Part 1, 2, and 3) this approach was

used in lithium-ion polymer battery packs for hybrid vehicles.

In [3] an observer for linear time-variant systems was used to

estimate the open circuit voltage (OCV) from an empirical

battery model. Assuming observability of an extended model

formulation, both parameters and state of charge are esti-

mated at once. One drawback of theses approaches is that

they require an explicit formulation of the static nonlinear

structure, equations and parameters.

Instead of using the electrochemical model, which is very

complex and difficult to obtain, in this paper we assume the

battery as a simple integrator affected by dynamic uncer-

tainties in series with a static nonlinearity. Since the inverse

function exists it can be used as a software sensor. With this

approach, instead of linearizing the system equations and

dealing with nonlinear observers, it is possible to use linear

estimators. However, the precision of the measurement

depends on the misidentification of the static nonlinearity,

which increases the uncertainties. In this paper, we propose

a simple integrator with additive dynamical uncertainty as

a battery model. Thus, we will derive a robust liner filter that,

using the signal obtained from the software sensor, allows to

obtain the SOC of the battery with very acceptable accuracy.
2. Theory

2.1. Model formulation and robust filter design

The SOC in the battery is determined by integrating the

current as follows:

SOCðtÞ ¼ 1
Qmax

�
Q0 þ

Z t

0

IbatðsÞds
�
; (1)

where Q0, and Qmax are the initial and maximum electrode

charge. The quantity Qmax is called capacity of the battery and

it is defined as the product of the constant current and the

time required to reach the maximum charge, starting with

battery completely discharged, Q0 ¼ 0. Thus, SOC is the unity

for battery completely charged and zero for completely dis-

charged. In order to be able to estimate the SOC, we need first

to model the battery behavior.

A battery is basically a system conformed by two elec-

trodes immersed in an electrolytic media with an adequate

porous separator. During discharge, the negative electrode is
oxidized, while the positive electrode is reduced, being this

global process responsible for delivering energy. The process

is reversed during charge. The goal in the present section is to

derive a simple, yet general model to describe the charge/

discharge processes of different batteries in order to be used in

the derivation of a robust SOC estimator algorithm. For this

purpose we assume that secondary reactions, which usually

take place at extreme values of SOC, shall be disregarded in

the model, these, shall be considered as disturbances as

explained below.

In the energy accumulation process, two important stages

can be distinguished, one corresponding to the charge trans-

fer processes at the electrochemical interface of the elec-

trodes, including electrochemical reactions and double layer

charging, and another one corresponding to mass transfer,

either in the electrolyte or in the electrode active material.

Thus, the NiMH battery can be modeled as a cascade of

a linear dynamic system followed by a static nonlinearity

which it is know as Wiener model [4,5]. The linear dynamic

system is related to the transport of the reacting substances in

the active material, theses processes are governed by Fick’s

law. The static nonlinearity is due to the electrochemical

reactions at the electrode interfaces and it is governed by

a ButtlereVolmer type equation. In [5] is demonstrate that the

model equations can be written as follows:

_XðtÞ ¼ AXðtÞ þ BIbatðtÞ (2)

x0ðtÞ ¼ CXðtÞ (3)

EbatðtÞ ¼ gEðx0; IbatÞ (4)

A ¼ a

2
66664

�d0 d0 0 / 0 0 0
1 �ð1þ d1Þ d1 / 0 0 0
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0 0 0 / 1 �ð1þ dN�1Þ dN�1
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3
77775;

B ¼ ½b;0;/;0�T;C ¼ ½10/0�;
XðtÞ ¼ ½xðz0; tÞ; xðz1; tÞ;/; xðzN; tÞ�T;
where a a constant, b is the inverse of the battery capacity,

x(zi,t) means concentration of hydrogen at distance zi from the

electrode surface, x0(t) is a short notation of x(z0,t), and

di ¼ ziþ1/zi, for 1� i�N.N in the number of slides of the spatial

discretization of the electrode. gE(x0,Ibat) is the static nonline-

arity which is a nonlinear function of the battery current Ib a t

and concentration at the surface x0(t).

An important property is that the static nonlinearity has

inverse, ie it is possible to obtain the concentration from

a nonlinear function x0 ¼ gx(Ebat,Ibat), where Ebat is the poten-

tial of the battery. For the static nonlinearity we need an

explicit expression that relates the concentration x0 with the

current and potential of the battery. Instead of that, we

propose to represent the static nonlinearity as an interpo-

lating function based on experimental data. The static

nonlinearity is a soft function that can be well approximated

by using different approaches. Basically, any 2-D interpolation

method could be suitable. In [5] it is detailed a procedure to

identify this nonlinear function using a Taylor series repre-

sentation. However, any 2-D interpolation procedure of the

experimental data can be used to estimate the concentration
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Fig. 2 e Robust filter problem.
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x0, that we call xm0 , given pairs (Ebat, Ibat). It is interpreted as the

true value, x0, corrupted by measurement, errors due to the

imperfect interpolation, and possible unmodeled dynamics.

Using the measured concentration xm0 , and the linear set of

equations (2) and (3), linear observers can be used to estimate

the SOC. However, the linear model has two main drawbacks,

first the dimension N which can be extremely high, and

second the parameters di are difficult to know. Then, instead

of considering all the equations, we assume the battery can be

reduced to an imperfect accumulator, ie a system integrator

plus a relaxation system [2]. Then, we can consider a simple

linear equation to use in estimating the SOC. The model

consists of an integrator but with additive uncertainty con-

taining secondary reactions and relaxing dynamics not

considered. The system equation, in discrete-time, is deter-

mined as follows:

sðkþ 1Þ ¼ sðkÞ þ bIbatðkÞ (5)

xm
0 ðkÞ ¼ ĝxðEbatðkÞ; IbatðkÞÞ (6)

xm
0 ðkÞ ¼ SðkÞ þ DrðkÞ þ eðEbatðkÞ; IbatðkÞÞ (7)

where s stand for SOC, Dr is the relaxing dynamics, ĝxðEbat; IbatÞ
is themeasured quantity by the software sensor, e ¼ gx � ĝx is

the error in the interpolation. In Fig. 1 the problem is sche-

matically depicted where the system S represent the inte-

grator given by equation (5).

2.2. Identification of the nonlinearity

The objective now is to estimate the nonlinear function

x0 ¼ gx(E,I ) of equation (6) where, for easy notation, I, E stand

by Ibat and Ebat. Taking into account that when the current is

constant and after the transient relaxation satisfies x0 ¼ s, we

propose to identify the function using N -triplets of experi-

mental data (E,I,s) which is equal to (E,I,x0) in such conditions.

The variable s is obtained by coulomb-counting of constant

current I starting from a known initial charge and knowing the

capacity of the battery. The objective is to estimate x0 ¼ gx(E,I )

at arbitrary pair of values (I,E ) by interpolation of the N

experimental data set. The procedure employed is known as

Kriging interpolation. For description and properties of the

method see [6]. There are several software package that

perform efficiently theses estimations, see for example [7].

In the next section we present a robust design to solve the

estimation problem with the reduced and uncertain model

equations (5e7).
SOC(t)

Fig. 1 e Uncertain battery model.
2.3. Robust estimation

In this sectionwe propose a polynomial approach to designing

a H2 e optimal robust SOC estimator based on measurements

of the software sensor xm0 ðkÞ ¼ ĝxðEbatðkÞ; IbatðkÞÞ. In the present

context, optimality refers to the filter ability to achieve an

estimation error variance below a certain upper bound, which

is the minimum over all admissible system uncertainties.

The SOC estimation problem, using the reduced and

uncertain model equations (5e7), can be possed in a general

structure shown in Fig. 2. In the setup of Fig. 2 we consider the

signal h1 a zeromeanGaussian stochasticwhite inputwithunit

power spectral density. The system S1z represents the

dynamics of current Ibat which is assumed to be stable and

causal uncertain system. The system S2z represents the inte-

grator and the uncertainties. Consider the error signal

eðkÞ ¼ zðkÞ � ẑðkÞ and its variance E{e(k)2}, where E denotes

expectation. The robust design can be formally written as

min
K

JðKÞ; (8)

where

sup
Siz

n
E
n
eðkÞ2

oo
� JðKÞ (9)

The supremum is taken with respect to all admissible

uncertain systems Siz for i¼ 1,2. In the appendix the stable and

causal filter K(d) that minimizes the equation (9) is derived.
Fig. 3 e Static nonlinearity by interpolation using Kriging.
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Fig. 4 e a) SOC estimations for experiment 1. b) SOC

estimation for experiment 2.
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3. Results and discussion

First, a set of constant current register were used to obtain the

static nonlinearity by Kriging interpolation shown in Fig. 3. In

the Fig. 4 the performance obtained from two experiments,

based on measurements made in rechargeable batteries

Duracell AAA/HR03/DX2400, NiMH/1,2/800 mAh, respectively,

are shown. In both cases the Kalman filter [11] and the robust

design are compared. The three parameters of the Kalman

filter (variance of disturbances, covariance between current

and measurement noise, and variance of the measurement

error) and the only one parameter of the robust design (gain of

the uncertainty) were adjust in the first experiment. It can be

noticed that both estimators behave with similar perfor-

mances. However, the Kalman filter requires the setting of

three parameters. In contrast, the robust filter requires only

the adjustment of the uncertainty gain w.
4. Conclusions

Based on a simple battery model and a software sensor, we

analyzed a robust SOC estimator. The strategy of using the

software sensor allows to fix the problem of estimating SOC in
a framework of linear estimation which is important for it

simplicity. The robust estimation method only requires

knowing the value of gain uncertainty. The upper bound of

errors was minimized and a bound of the error was derived.

The robust filter was used to estimate the SOC of commercial

NiMH battery showing a very acceptable performance.
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Appendix

In the polynomial notation used, the complex variable d ¼ z�1

for dt lti systems, where z denotes the variable of the z-

transform, see [8]. For simplicity, the argument of polynomial

matrices is sometimes omitted. The conjugate transpose of

the polynomial G(d) is denoted by G*(d) ¼ G(d�1).

Let A and B polynomials and consider the following spec-

tral factorization problem CC* ¼ AA* þ BB*, then the poly-

nomial solution C with stable inverse is called the spectral

factor C and can be obtained with algorithms as those shown

in [9]. The H2 norm of a dt lti and causal matrix operator j(d)

with impulse response 4(k) is

kjk22¼O
1
2pj

I
jj�dd

d
¼

XN
k¼0

4ðkÞ4TðkÞ: (10)

where
H
means integration around the unit circle jdj ¼ 1.

The SOC estimation problem, using the reduced and

uncertain model equations (5e7), can be possed in a general

structure shown in Fig. 2. In the setup of Fig. 2 we consider the

signal h1 a zero mean Gaussian stochastic white input with

unit power spectral density. The system S1z represents the

dynamics of current Ibat which is assumed to be stable and

causal uncertain system that can be bounded by

S1zS�
1z � S1S�

1 cu (11)

where S1 is a causal, stable, and known transfer function. The

uncertain system S2z is modeled by

S2z ¼ S2 þWD; (12)

where S2 and W are known stable transfer functions repre-

senting the nominal system and the weight of the uncertainty

D respectively. The stable transfer function D is unknown and

satisfies jD( ju)j � 1, cu. Notice that S2 is the integrator with

transfer function S2 ¼ bd/(1�d), that means it has a pole on the

unit circle.

Consider the following polynomial representation of

systems:

S1ðdÞ ¼ C1ðdÞ=D1ðdÞ
WðdÞS1ðdÞ ¼ C2ðdÞ=D2ðdÞ (13)

where C1, C2, D1, and D2 are given polynomials. Let the poly-

nomial P be the stable, spectral factor obtained as solution of

the following spectral factorization problem:
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PP� ¼ b2D2C1C
�
1D

�
2ð1þ aÞD1C2C

�
2D

�
1ð1� dÞð1� d�Þ�1þ a�1

�
(14)
where a is, for the moment, a scalar positive constant. The

solution to this problem is given in the following theorem:

Theorem: The stable, causal and minimal degree discrete-

time filter K(d) that minimizes the cost J(K ) is given by

KðdÞ ¼ ð1� dÞD1N� p

p
(15)

whereN,M are theminimumdegree solutionwith respect toN

of the polynomial equation

d�M�D2 þ C2C
�
2D

�
1ð1� d�Þ�1þ a�1

� ¼ NP� (16)

The minimum cost is given by

JðaÞ ¼
����C1N
D1p

����
2

2

ð1þ aÞ þ
����C2ðD1ð1� dÞN� pÞ

D2p

����
2

2

�
1þ a�1

�
(17)

The optimal robust filter K(d) is the one that minimize of J(a)

with respect to the parameter a. We only need a search

procedure with respect to a based on some 1D optimization

method.

Proof: follows from the procedure shown in [10]

Let us now apply the robust design of SOC estimation to the

case of Fig. 1. Let’s make the following assumptions: i). The

dynamic of S1 is given by a constant for all frequencies equal

to the unity, which corresponds to C1 ¼ D1 ¼ 1. ii) The uncer-

tainty weightW is a scalarw, which corresponds to C2 ¼w and

D2 ¼ 1. The first step is to obtain the spectral factor of equation

(14) which gives

b2ð1þ aÞ þw2
�
1þ a�1

��� d�1 þ 2� d
�

The spectral factor is first order with structure p ¼ p0 þ p1d.

The second step is to compute the diophantine equation (16)

as follows:

md� þw2ð1� d�Þ�1þ a�1
� ¼ nðp0 þ p1d

�Þ

where m and n are scalars. The solution for n is obtained

by equating coefficients of same order which gives

np0 ¼ w2(1 þ a�1). The filter finally can be written as
K ¼ ðn� p0Þ � ðnþ p1Þd
p þ p d

(18)

0 1

The final step is, from the equation (17), to minimize

numerically the following cost with respect to a:

JðaÞ ¼
����bnp

����
2

2

ð1þ aÞ þ
����ðð1� dÞn� pÞ

p

����
2

2

�
1þ a�1

�
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