
11/3/1999
version 2

INTEGRABLE SYSTEMS AND PROJECTIVE IMAGES OF
KUMMER SURFACES

LUIS A. PIOVAN AND POL VANHAECKE

Abstract. The (−1)-involution on the Jacobian JΓ of an arbitrary Riemann
surface Γ of genus two leads to a singular surface KΓ which after desingu-
larization defines a K-3 surface K̃Γ. We consider ample line bundles on K̃Γ

coming from the even or odd sections of [nΘ] with prescribed vanishing at the
2-divison points of JΓ (Θ is the theta divisor of JΓ). We use an integrable
system to show that in the cases we study the linear system is base-point-free,
to determine which curves are contracted to singular points and to compute
an explicit equation for the surface in projective space. Our explicit meth-
ods apply to the K-3 surface of any Abelian surface, given as the fiber of the
moment map of an algebraic completely integrable system.
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1. Introduction

When studying quartic surfaces in three-space with sixteen nodes, Kummer dis-
covered a very beautiful geometry, relating such a surface on the one hand to the
Jacobian of a hyperelliptic curve (of genus 2) and on the other hand to the singular
surface of a quadratic complex (for a modern account of this, see [8, Chapter 6]).
These singular surfaces, which form a three-dimensional family, are called (singular)
Kummer surfaces. They reappeared recently in the compactification of the moduli
space of stable rank 2 bundles (of fixed determinant) on a Riemann surface (see
[18]) and as the singular locus of a natural Poisson structure on a moduli space of
flat SU(2) connections on a Riemann surface (see [11]).

The easiest way to obtain abstractly the Kummer surface KΓ which is associated
to a compact Riemann surface Γ of genus 2 is as the singular quotient JΓ/(−1)
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of the Jacobian JΓ of Γ by the (−1)-involution x "→ −x (recall that JΓ is a two-
dimensional complex torus). As such the Kummer surface has an obvious general-
ization to other Jacobians (i.e., to Riemann surfaces of higher genus) and to other
complex algebraic tori (Abelian varieties) (see [14, Section 4.8]). To obtain the
Kummer surface concretely, i.e., as an algebraic surface in projective space, one
considers the image of the regular map

φ[2Θ] : JΓ → PH0(JΓ, [2Θ])∗

yielding a quartic surface in P3; the divisor Θ which appears in this map is the
divisor of Riemann’s theta function, and the 2 : 1 map φ[2Θ] assigns to any point
P ∈ JΓ the hyperplane of sections of the line bundle [2Θ] that vanish at P . For
higher dimensional Jacobians the image of φ[2Θ] also provides a projective image
of its Kummer varieties (see [14, Section 4.8]), but for other Abelian varieties,
even for Abelian surfaces, the situation is more complicated (see [5]). Getting
explicit equations for Kummer surfaces is still a different matter and relies in all
situations that have been considered on arguments that depend heavily on the
specific geometry of the Kummer surface at hand (for higher dimensional Kummer
varieties no such equations are known at present). One classical computation of
the equation of the Kummer surface KΓ as a surface in P3 for example relies on the
symmetries of the Heisenberg group (a central extension of the group of half periods
(2-division points) of JΓ) (see [10, Chapter 8]); it is not clear how to adapt this
approach to other Kummer surfaces. The other classical computation relies on the
above mentioned fact that KΓ is the singular surface of the quadratic complex (see
[12, Sect. 82]) and is thus even more dependent on the specifics of the geometric
situation.

The purpose of this paper is to show how equations for projective images of
Kummer surfaces can be obtained in a systematic way. Although our techniques
are valid for other Abelian varieties, we will restrict ourselves here to Kummer
surfaces of two-dimensional Jacobians, but we will consider besides the classical
Kummer surface in P3 also other, less singular, projective models in P3, P4, P5

and P9. Abstractly, these Kummer surfaces are obtained by desingularizing KΓ

at some but not all of its singular points: note that on any Abelian surface the
(−1)-involution has 16 fixed points, hence the quotient KΓ has 16 singular points.
The desingularization of KΓ is a K-3 surface which is denoted by K̃Γ, and the
partial desingularizations are called intermediate Kummer surfaces. Concretely,
as algebraic surfaces in projective space, the K-3 surface and the intermediate
Kummer surfaces are obtained by constructing line bundles on the (abstract) K-3
surface K̃Γ. We construct such line bundles as follows. Let

p : J̃Γ → JΓ

be the blow-up of JΓ at its sixteen half periods. The (−1)-involution on JΓ induces
an involution on J̃Γ which leads to a non-singular quotient π : J̃Γ → K̃Γ. We pick a
symmetric line bundle L on JΓ and denote the line bundle p∗L on J̃Γ by L̃. For any
ν = (νi)i=1,...,16 we consider the space |L̃|+ν (resp. |L̃|−ν ) of even (resp. odd) sections
of L̃ which vanish at least νi times at the exceptional divisor Ei which lies over the
half period ei. These linear systems descend to complete linear systems |M+

ν | (resp.
|M−

ν |) on K̃Γ. Using standard algebraic geometric arguments we will determine the
dimension of such linear systems (Proposition 3.2), i.e., the dimension of the target
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space of the map

φM±
ν

: K̃Γ → PH0(K̃Γ,M±
ν ).(1)

The main focus of the paper is then on studying the map φM±
ν

and on obtaining
explicit equations for the image of this map. We do this by using an algebraic
completely integrable system (a.c.i. system) whose fibers of the (complex) moment
map are affine parts of genus two Jacobians. Our methods do not depend on
the particular a.c.i. system that we use and can hence be used to compute explicit
equations for other Kummer varieties, as long as the corresponding Abelian varieties
appear as the fiber of the moment of some a.c.i. system. Let us explain shortly the
role of this deus ex machina (for more information, see [3] or [25]). It was observed
by Kovalevskaya that an a.c.i. system on an n-dimensional space M must have one
or several families of Laurent solutions depending on n−1 free parameters. A careful
analysis shows that each such family Fi corresponds to an irreducible component
Di of the divisor D to be adjoined to a generic fiber µ−1(c) of the moment map

µ : M → Spec A

(A is the algebra of first integrals of the a.c.i. system) in order to complete it into
an Abelian variety. Moreover, for any function f on M the restriction f|µ−1(c) of
f to this fiber has a pole along Di which equals the pole of the Laurent series of
f , as computed from the family Fi. Since (the first few terms of) the Laurent
solutions of an a.c.i. system can be effectively computed, we have an effective way
to compute a basis for the meromorphic functions having prescribed poles at a given
divisor and hence an effective way to compute explicitly the sections of any of the
line bundles L = [

∑
niDi]. Since the (−1)-involution reverses the signs of all the

integrable vector fields of the a.c.i. system the splitting in even and odd sections can
also be determined explicitly. Finally, having these sections at hand one expresses
easily the condition that a section has a prescribed vanishing at some of the half
periods. Summarizing, starting from an a.c.i. system which has a given Jacobian
JΓ (or, more generally an Abelian variety) as one of its fibers, we can find an
explicit basis for H0(K̃Γ,M±

ν ) and hence also explicit formulas for the (non-linear)
relations which hold between those sections, i.e., for the equations that define the
projective image of K̃Γ.

The integrable system comes in handy for many other things. We use it for
example to determine the base locus of the linear system under consideration: in the
cases of interest to us, this base locus will be shown to be empty, showing that our
maps φM±

ν
are regular maps. Moreover we can use it to determine which divisors are

contracted: in our case the only possible contractions will be divisors on K̃Γ which
correspond to translates of the theta divisor or to the exceptional divisors Ei. Our
arguments have the advantage that they consist of a straightforward computation
only, in contrast with the more geometric arguments, which are specific to the
particular class of Abelian surfaces and to the linear system under consideration.

Finally, using the explicit sections we can compute the coordinates of the sin-
gular points of the image, allowing us to rewrite the equation(s) of the embedded
intermediate Kummer surface in a very symmetric form. Our equations will always
be expressed explicitly in terms of the coefficients of the curve, defining the Rie-
mann surface Γ; from the point of view of number theory these are more useful than
equations that depend on the coordinates of the Weierstrass points of the surface.



4 LUIS A. PIOVAN AND POL VANHAECKE

As far as we know such equations for Kummer surfaces do not appear in the clas-
sical or modern literature. When rewritten in a more symmetric form, depending
on the coordinates of the Weierstrass points, we recover in some cases known equa-
tions and otherwise new equations for projective images of K̃Γ. In the following
table we summarize some geometric information about the projective images that
we consider.

Table 1

L parity ν PN sing. points eq. 1 eq. 2

[2Θ] even 0 P3 16+0=16 (26) (27)

[3Θ] even 0 P3 6+0=6 (29) (31)

[3Θ] odd 0 P4 10+1=11 (32) (34)

[3Θ] odd (2,0, . . . ,0) P3 9+1=10 — (36)

[4Θ] odd 0 P5 0+0=0 (39) (40)

[4Θ] odd (0, . . . ,0,3) P3 0+6=6 (29) (31)

[4Θ] even 0 P9 0+0=0 (??) (??)

[4Θ] even (2,2,2,2,0, . . . ,0) P5 12+0=12 (??) (??)

The meaning of the first three columns is clear. In the fourth column, PN =
PH0(K̃Γ,M±

ν )∗. The first number appearing in the sum in column 5 is the number
of exceptional divisors that get contracted to a point while the second number is
the number of other divisors that get contracted; the latter come from translates of
the theta divisor. The sum in column 5 is the total number of irreducible divisors
that get contracted. In the last two columns we give a reference to the equations
for the image of the (intermediate) Kummer surface in PN , the first equation being
the one that does not involve the coordinates of the Weierstrass points explicitly,
while the second equation is more symmetric but does depend on the coordinates
of the Weierstrass points. Equations (27) and (40) appear already in [12] but all
other equations are new. Using techniques, similar to the ones described here the
second author has, in collaboration with José Bertin, obtained equations for a one-
dimensional family of generalized Kummer surfaces in P4 (see [7]).

Acknowledgements. The first author wishes to thank the Université Catholique
de Louvain for its hospitality. The second author would like to thank José Bertin
for drawing his attention to the classical paper [21] by Remy and is grateful to
Francesco Bottacin for useful discussions; he also acknowledges the Universidad
Nacional del Sur in Bah́ıa Blanca for its hospitality.

2. Abelian and K-3 surfaces.

In this section we consider some basic facts about complex Abelian surfaces and
K-3 surfaces. These surfaces are nonsingular and their canonical bundles are trivial.
For any surface X we will write OX for its structure sheaf and KX for its canonical
divisor. When X is non-singular then the line bundle L (invertible sheaf) which
corresponds to a divisor D will be denoted by [D] and the dimension of the i-th
cohomology group Hi(X,L) is written as hi(L) or hi(D). When D is an effective
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divisor we denote its complete linear system PH0(X, [D]) by |D|; for L = [D] we
also write |L| for |D|. An effective reduced divisor on X will be called a curve on
X. Linear equivalence of divisors is denoted by ∼.

For an Abelian or K-3 surface X the birational invariants are summarized in the
following table.

Table 2

invariant notation definition K-3 Abelian

irregularity q(X) h1(OX) 0 2

arith. genus pa(X) χ(OX) − 1 1 −1

geom. genus pg(X) h2(OX) 1 1

We will use line bundles on Abelian and K-3 surfaces to construct images of Kum-
mer surfaces and K−3 surfaces in projective space. Recall that to a line bundle
L = [D] there is associated a holomorphic map

φL : X \ B(L) → PH0(X,L)∗

which assigns to any point P (which is not in the base locus B(L) of L) the space
of sections of L that vanish at P . We call L (and D) very ample when φ is an
embedding and B(L) = ∅. If some positive power of L (multiple of D) provides an
embedding then we call L (or D) ample. Explicitly, if s0, . . . , sN denotes a basis of
H0(X,L) then φL is given for P ∈ X \ B(L) by

φL(P ) = (s0(P ) : s1(P ) : · · · : sN (P )).

Let us assume that the linear system |D| is without fixed components, i.e., B(L)
is a finite set, and that the image of φL is a surface. Then, by Bertini’s first
theorem (see [23, p. 21]), the general member of |L| is irreducible and smooth. If
φL contracts a curve C (φL(C) is a point p), then L·C = D ·C = 0. Indeed, we can
choose a curve D′ ∈ |D| such that φL(D′) avoids the point p and the points of the
base locus B(L). By Bertini’s second theorem ([23, p. 24]) such a curve is smooth
and it is clear that D′ does not intersect C. However, if C is not contracted then
D · C is the degree of φL(C) in PH0(X,L)∗, multiplied by the degree of φL.

The adjunction formula for nonsingular curves on a surface implies that the
(virtual) genus of a curve C on an Abelian or K-3 surface is given by

g(C) =
C2

2
+ 1.

On the other hand, the Riemann-Roch formula

χ(D) =
1
2
D · (D − KX) + 1 + pa(X)

simplifies for a curve C on an Abelian or K-3 surface to

h0(C) =
1
2
C2 + 1 + pa(X) + h1(C)

because KX = 0 and the Euler characteristic of [C] is given by χ(C) = h0(C) −
h1(C) + h0(KX − C) = h0(C) − h1(C). In classical terminology h1(C) is called
the superabundance of C and is computed by using a theorem by Kodaira (see [13,
Theorems 2.2 and 2.3]).
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Theorem 2.1. Let m be the number of connected components of a curve C on a
surface X. Then h1(K +C) = m−1+k, where the integer k denotes the dimension
of the kernel of the homomorphism

H1(X,OX) → H1(C,OC).

In the case in which X is K-3, we have from Table 2 that q(X) = h1(OX) = 0
so that k = 0 and h1(C) = m − 1, leading to the final formula

h0(C) =
1
2
C2 + m + 1 = g(C) + 1.(2)

In this case conditions for an ample line bundle to lead to a birational map were
given by Saint-Donat (see [22, Theorem 5.2]).

Theorem 2.2. Let L be a line bundle on a K-3 surface X such that L2 ≥ 4. If
the linear system |L| = PH0(X,L) has no fixed components then L = [C] for an
irreducible curve C of genus g(C) = 1

2L
2 + 1 and the map

φL : X → PH0(X,L)∗ = Pg(C),

is regular. Moreover, φ is birational unless X contains an irreducible curve C ′ such
that g(C ′) = 1 and C ′ · C = 2 or such that g(C ′) = 2 and C ∼ 2C ′.

In fact [22] also shows that under the above assumptions with L2 = 2 the map
φ is regular and exhibits X as a double cover of P2. The following result, which is
also due to Saint-Donat (see [22, Theorems 6.1 and 7.2]), gives some information
about the equations which define the image.

Theorem 2.3. Let L = [C] be a line bundle on a K-3 surface which satisfies the
conditions of Theorem 2.2, excluding the exceptional cases, i.e., φ is birational.
Then the natural map

ψ : S∗H0(X,L) −→
⊕

n≥0

H0(X,Ln)

is surjective. If L2 = 4 then the kernel of ψ is generated by an element of degree 4
while if L2 = 6 it is generated by a pair of elements of degrees 2 and 3. If L2 ≥ 8
then the kernel of ψ is generated by its elements of degree 2 unless X contains an
irreducible curve C ′ such that g(C ′) = 1 and C ′ · C = 3 or X contains a pair
of irreducible curves C ′, C ′′ such that g(C ′) = 2, g(C ′′) = 0, C ′ · C ′′ = 1 and
C ∼ 2C ′ + C ′′.

3. Projective images of Kummer surfaces

A natural class of K-3 surfaces appears as follows. Let A be an Abelian sur-
face. The (−1)-involution on A (reflection with respect to the origin), which will
be denoted by (−1)A, leads to a singular quotient KA = A/(−1)A which is called
the (singular) Kummer surface of A. It has 16 singular points which correspond
to the half periods e1, . . . , e16 of A. The desingularization of KA can be described
as follows. Let p : Ã → A be the blow-up of A at all its half periods and de-
note the corresponding exceptional divisors by Ei. (−1)A extends to an involution
(−1)Ã on Ã and the quotient K̃A = Ã/(−1)Ã is a K-3 surface (see [6, Proposition
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VIII.11]) which is called the K-3 surface of A. K̃A is the desingularisation (minimal
resolution) of KA and we have the following commutative diagram.

Ã A

K̃A KA

✲p

❄
π

❄
✲

Associated to A there are also several intermediate Kummer surfaces which are
desingularizations of KA at some but not all singular points.

We will be interested in projective embeddings of smooth, singular and interme-
diate Kummer surfaces. Therefore we need to know how to construct ample line
bundles on K̃A. Let L be a symmetric line bundle on A, (−1)∗AL ∼= L. Then (−1)A

lifts uniquely to an involution (−1)L on the total space of L which is C-linear on
the fibers of L and which is identity on the fiber over the origin of A (see [14,
Lemma 4.6.3]). Since the involution which (−1)L induces on the fiber over each
half period is linear it is either identity or multiplication by −1. If it is identity
the corresponding half period is called even, otherwise it is called odd ; in particular
the origin is always an even half period. The induced involution s → (−1)Ls(−1)A

on H0(A,L) leads to a splitting of H0(A,L) into (+1) and (−1) spaces, whose
elements are called even sections and odd sections,

H0(A,L) = H0(A,L)+ ⊕ H0(A,L)−.

A divisor is called even resp. odd if it is defined by an even resp. odd section. It
is easy to see that an even (resp. odd) divisor has even (resp. odd) multiplicity
precisely at the even half periods (in particular at the origin). Everything can be
pulled back using p: we have a line bundle L̃ = p∗L on Ã with an induced involu-
tion (−1)L̃ and an induced splitting of H0(Ã, L̃); clearly p∗ realizes isomorphisms
between the even resp. odd sections of L̃ and those of L. Most importantly, these
even and odd sections of L̃ correspond to the sections of two line bundles on K̃A:
the rank 2 sheaf π∗L̃ splits under the action s → (−1)L̃s(−1)Ã into (+1) and (−1)
spaces

π∗L̃ = M+ ⊕M−,

and there are isomorphisms [5, Proposition 1.1]

H0(Ã, L̃)± ∼= H0(K̃A,M±).

So, we can realize odd (even) sections of L on the Abelian variety A as sections of
M− (M+) on the smooth Kummer surface K̃A. Notice that the above construction
can be generalized by defining for any non-negative integers νi, (i = 1, . . . , 16) the
line bundle L̃ by

L̃ν = p∗L⊗
[∑

(−νi)Ei

]
.(3)

We think of sections of L̃ν as sections of L with prescribed vanishing at the half
periods ei. The corresponding two line bundles on K̃A will be denoted by M+

ν and
M−

ν .
When working out concrete examples it is useful to know in advance the dimen-

sion of H0(K̃A,M±
ν ), to know whether the map to projective space, given by the
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sections, is birational and whether some divisors (exceptional or not) are contracted
by this map. Since the symmetric line bundles L which we will consider come from
symmetric divisors we will state the result in the language of divisors. A divisor
(or curve) D on A is called symmetric if (−1)∗AD = D. Working with symmetric
divisors is just as general as working with symmetric line bundles because any sym-
metric divisor is an even or an odd section of its line bundle (which is symmetric)
([14, Lemma 4.7.1]). Let us pick a symmetric divisor D on A and let us denote the
multplicity of D at the half period ei by µi(D). By passing to a linearly equivalent
divisor (if necessary) we may assume that the chosen numbers νi satisfy νi ≤ µi(D)
for any i because if a divisor with the required vanishing at the half periods does
not exist then L̃ν has no sections and is not of interest for our purposes. Let us
define for i = 1, . . . , 16 an integer ρi by ρi = νi if µi(D)−νi is even and ρi = νi +1.
Since the multiplicity of an even divisor is even at the even half periods and odd
at the half periods (and similarly for an odd divisor) we may assume that all ρi

have the same parity. Moreover we may assume that the νi are either all even
or all odd: the multplicity of an even (resp. odd) divisor is even precisely at the
even (resp. odd) half periods; therefore, if we want there to exist a divisor with the
prescribed vanishing the parity of µi − νi must be the same as that of µi for all i
or it must be the opposite for all i. If we denote the proper transform of D by D̂
then p∗D = D̂ +

∑
µiEi so that

L̃ν =
[
D̂ +

∑
(µi(D) − νi)Ei

]
.

Let1

C =
1
2
π∗

(
D̂ +

16∑

i=1

[µi(D) − νi]2Ei

)
=

1
2
π∗D̂ +

16∑

i=1

[
µi(D) − νi

2

]
Bi,(4)

where Bi = π∗Ei and [µ]2 is a shorthand for the largest even number not bigger
than µ. The curves Bi are called (−2)-curves because

B2
i =

1
2
(π∗Bi)2 = 2E2

i = −2.

Lemma 3.1. Let L̃ν = [D′] where D′ = p∗D −
∑

νiEi. Then, [C] = M+
ν in case

D is even and µi(D)−νi ≡ µi(D) (mod2), i = 1, . . . , 16, or D is odd and µi(D)−νi

has the opposite parity as that of µi(D), i = 1, . . . , 16. Moreover, [C] = M−
ν in

case D is odd and µi(D) − νi ≡ µi(D) (mod2), i = 1, . . . , 16, or D is even and
µi(D) − νi ≡ −µi(D) (mod2), i = 1, . . . , 16.

Proof. Let s be the section that vanishes at D′ = D̂ +
∑16

i=1(µi(D)− νi)Ei . Then,
s is even if D is even and µi − νi has The same parity as that of µi, or in case D is
odd and µi − νi has opposite parity as that of µi. We want to see how s descends
to the Kummer surface K̃A. Assume s ∈ H0(Ã, L̃ν)+ is an even section (a proof for
an odd section goes along similar lines). The inverse of s = ϕ(s) = (−1)L̃ν

s(−1)Ã

locally generates the OK̃A
-module M+

ν .
We have that the group G = {1, (−1)∗

Ã
} acts on π∗OÃ, and there is an isomor-

phism π♯ : OK̃A
→ (π∗OÃ)G between OK̃A

and the elements of π∗OÃ invariant by

1Notice that since D̂ is symmetric each irreducible component of its direct image π∗D̂ appears
an even number of times.
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G ([17, page 66]). Via the canonical map π♯ : OK̃A
→ π∗OÃ, we have, by taking

direct limit over neighbourhoods of q ∈ Ã, a map

πq : OK̃A,π(q) → π∗OÃ,q → OÃ,q.

If q ∈ Ã does not belong to an exceptional curve and x, t are local coordinates
at q, then x, t are also local coordinates at π(q). The map πq is the isomorphism
C[[x, t]] ≃ C[[x, t]] that sends the local equation of C to that of D′, i.e. sπ(q)(x, t) →
sq + s(−1)Ã(q) → sq(x, t).

If q belongs to an exceptional curve and x, t are local coordinates at q, then
u = x2, t are local coordinates at π(q). The map πq is the immersion C[[u, t]] =
C[[x2, t]] → C[[x, t]] and sends the equation of C = {h(u, t) = 0} to that of D′ =
{h(x2, t) = 0}. In terms of these local coordinates, a section for D′ about the point
q is s = f(x, t) = xmg(x, t); where g is a local equation for the proper transform
D̂ and m = µi(D) − νi. The local section g is even ([5, Proposition 1.2]), so that
g(x, t) = g̃(x2, t) and ϕ(s)(−1)L̃ν

s(−1)Ã = ϕ(xmg) = (−1)mxmg = αf(x, t), where
α is +1 at q over an even half-period and (−1) at q over an odd half-period.

Now, 1
f is a generator of the OÃ,q-module L̃q and the map s "→ (−1)L̃ν

s(−1)Ã

splits the rank 2 OK̃A
-module L̃q into (±1) spaces M±

π(q).
Then, for this generator

ϕ(
1
f

) = α
1
f

, ϕ(
x

f
) = −α

x

f
.

It follows that for an s even 1
f is a generator of M+

ν at q over an even period
and x

f is a generator of M+
ν at q over an odd period. Hence, translating the

corresponding equations in terms of the coordinates u, t we obtain our statement.
Namely, for q over an even half period the equation for the divisor of M+ is f(x, t) =
x2kg̃(x2, t) = ukg̃(u, t) = 0. For q over an odd half period the equation for the
divisor is f(x, t)/x = x2k+1g̃(x2, t)/x = ukg̃(u, t) = 0. This divisor coincides with
C as defined.

In the following proposition we use Kodaira’s Theorem to compute h0(C). We
also compute the intersection of C with other curves (in particular the (−2) curves)
because this allows to see which curves are contracted by the map φ : K̃A →
PH0(K̃A, [C]) and to compute the degree of the image curve.

Proposition 3.2. Let D a symmetric curve on an Abelian surface A which induces
a polarization of type (δ1, δ2). Suppose that ν1, . . . , ν16 are non-negative integers
such that 0 ≤ νi ≤ µi(D) and let C be the curve on K̃A defined by (4). Assume
that |C| has no fixed components. Then

C2 = δ1δ2 −
1
2

16∑

i=1

ρ2
i ,(5)

h0(C) =
δ1δ2

2
− 1

4

16∑

i=1

ρ2
i + m + 1,(6)

where ρi = νi if µi(D) − νi is even and ρi = νi + 1 otherwise; the integer m is the
number of connected components of C. If C ′ is any curve in K̃A which does not
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contain any of the curves Bi as one of its irreducible components, then

C · C ′ =
D · D′

2
− 1

2

16∑

i=1

ρiµi(D′),(7)

where D′ is the symmetric divisor on A such that π∗C ′ = p∗D′ −
∑16

i=1 µi(D′)Ei.
Also C · Bi = ρi for any i.

Proof. We know from Formula (2) that

h0(C) =
C2

2
+ m + 1,(8)

where m is the number of connected components of C. Since π is of degree 2 we
get from (4) that

2C2 =

(
D̂ +

16∑

i=1

[µi(D) − νi]2Ei

)2

=

(
p∗D −

16∑

i=1

ρiEi

)2

.

Using the fact that (p∗D)2 = D2 = 2δ1δ2 we find the announced formula (5).
Combined with (8) this gives the right number for h0(C). The verification of (7) is
similar:

C · C ′ =
1
2

(
D̂ +

16∑

i=1

[µi(D) − νi]2Ei

)
·
(

p∗D′ −
16∑

i=1

µi(D′)Ei

)

=
1
2

(
p∗D −

16∑

i=1

ρiEi

)
·
(

p∗D′ −
16∑

i=1

µi(D′)Ei

)

=
D · D′

2
− 1

2

16∑

i=1

ρiµi(D′).

Finally,

C · Bi =
1
2

(
D̂ +

16∑

i=1

[µi(D) − νi]2Ei

)
· 2Ei = ρi.

Our formula for h0(C) generalizes the formula given in [5, Theorem 3.1]. In the
latter formula all νi are zero which implies m = 1 because at any half period which
belongs to 2 irreducible components of D we have µi(D) ≥ 2. If D is even (resp.
odd) then ρi = 1 for the odd (resp. even) half periods and ρi = 0 for the even (resp.
odd) half periods. Thus our formula specializes to Bauer’s formula,

h0(C) =
δ1δ2

2
− n

4
+ 2(9)

where n is the number of even half periods if D is odd and n is the number of odd
half periods if D is even.
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4. The Mumford system

In this section we introduce an integrable system and we use it to compute
explicit bases for the sections of different natural line bundles on the Jacobian as
well as parametrizations of the divisors that are cut out by these sections. In the
next section we will use these sections to compute several projective images of its
Kummer surface.

Consider a hyperelliptic curve of genus 2, given by the equation

µ2 = f(λ) where f(λ) =
5∏

i=1

(λ − λi) =
5∑

i=0

σiλ
5−i(10)

and assume that it is smooth, i.e., all λi are different. This curve can be completed
into a non-singular complete curve (compact Riemann surface) Γ by adding a single
point which we will denote by ∞. The map Γ → P which is given on the affine
part Γ \ {∞} by (λ, µ) "→ λ expresses Γ as a two-sheeted cover of P. It has 6
ramification points ωi (i = 0, . . . , 5) which are called Weierstrass points. They
are the fixed points of the hyperelliptic involution ı which is given on Γ \ {∞} by
(λ, µ) "→ (λ,−µ). At ∞ the Riemann surface is described in terms of a uniformizing
parameter t by

λ = t−2, µ = t−5

(
1 +

σ1

2
t2 +

4σ2 − σ2
1

8
t4 + O(t6)

)
,(11)

showing that ∞ is one of the Weierstrass points; we will always label these points
such that ∞ = ω0 and such that λ(ωi) = λi for 1 ≤ i ≤ 5. At ωi the curve is
parametrized by

λ = λi + t2, µ =
√∏

j ̸=i

(λi − λj)
(
t + O(t3)

)
.(12)

(the particular choice of square root is irrelevant because we can replace t by −t).
We denote the Jacobian of Γ (its group of divisors of degree zero modulo linear
equivalence; equivalently its group of line bundels of degree zero) by JΓ and we
denote the element of JΓ that corresponds to a divisor D of degree 0 on Γ by
[D]. It is a fundamental fact that JΓ is an Abelian surface and that the map
P "→ [P −∞] is an embedding of the curve in its Jacobian. We denote the image
of this map by Θ and call it the theta divisor; Θ is indeed a divisor and Θ2 = 2.

The hyperelliptic involution ı on Γ extends linearly to an involution on the group
of divisors on Γ which in turn descends to the (−1)-involution on JΓ. It follows that
the 16 half periods on JΓ are given by eij = [ωi − ωj ] and their group structure is
governed by the formulas

eij + ejk + eki = 0, for any i, j, k,

eij + ekl + emn = 0, for i, j, k, l, m, n all different,

(for the proof of the second formula, use the meromorphic function (λ − λi)(λ −
λk)(λ− λm)/µ to realize the linear equivalence ωi + ωk + ωm ∼ ωj + ωl + ωn). We
also introduce the 16 translates Θij = Θ+eij of the theta divisor which we will call
theta curves. The theta curves Θij are symmetric, the odd ones are the 6 curves
Θ0i which pass through the origin and the remaining ones are even.
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To every point of JΓ we can uniquely associate a matrix of polynomials (in λ)
⎛

⎝ v(λ) u(λ)

w(λ) −v(λ)

⎞

⎠ =

⎛

⎝ v1λ + v2 λ2 + u1λ + u2

λ3 + w0λ2 + w1λ + w2 −v1λ − v2

⎞

⎠(13)

whose characteristic polynomial equals µ2−f(λ) as follows (see [16]). Every element
of JΓ is of the form [P + Q − 2∞] for some P, Q ∈ Γ and the unorderd pair (P, Q)
is unique if and only if P ̸= ı(Q). In this case, if both P and Q are different form
∞ we take the entries of the matrix (13) to be given by (note that w(λ) is indeed
a polynomial because v(λ(P )) = µ(P ) and v(λ(Q)) = µ(Q))

u(λ) = (λ − λ(P ))(λ − λ(Q)),

v(λ) =
µ(P ) − µ(Q)
λ(P ) − λ(Q)

λ +
λ(P )µ(Q) − λ(Q)µ(P )

λ(P ) − λ(Q)
,(14)

w(λ) =
f(λ) − v2(λ)

u(λ)
.

For example, for the 10 half periods eij = [ωi − ωj ] (1 ≤ i < j ≤ 5) we get
⎛

⎝ 0 (λ − λi)(λ − λj)
∏

k ̸=i,j(λ − λk) 0

⎞

⎠ .(15)

The above formula for v(λ) is to be interpreted in the right way when P = Q:
taking the limit Q → P in the above formula for v(λ) we find the following formula
for v(λ) when P = Q,

v(λ) =
f ′(λ(P ))(λ − λ(P )) + 2f(λ(P ))

2µ(P )
.(16)

Note that the denominator does not vanish because P ̸= ıP , i.e., P is not a Weier-
strass point. Still assuming that P ̸= ı(Q), if Q = ∞ then the matrix is given
by

⎛

⎜⎝
µ(P ) λ − λ(P )

∏5
i=1(λ − λi) −

∏5
i=1(λ(P ) − λi)

λ − λ(P )
−µ(P )

⎞

⎟⎠ .(17)

For example, for the five half period ei0 = [ωi −∞] we have
⎛

⎝ 0 λ − λi
∏

j ̸=i(λ − λj) 0

⎞

⎠ .

The divisors P + ı(P )− 2∞ form a linear system that corresponds to the origin of
the Jacobian; its matrix is given by

⎛

⎝ 0 1
∏5

i=1(λ − λi) 0

⎞

⎠ .(18)

For future use we will now compute the set of matrices which correspond to the
divisors Θij ; more precisely we will give a parametrization of all of the divisor minus
one point. In order to make our formulas more compact we introduce the following
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expressions in the λi which generalize the elementary symmetric polynomials σi

(introduced in (10)),

σ̄k,i1...in = σk|λi1=···=λin=0, (1 ≤ n + k ≤ 5),
σk,i1...in = σ̄k,j1...j5−n , ({j1, . . . , j5−n} = {1, . . . , 5} \ {i1, . . . , in}).

For example σ1,12 = −λ1 − λ2 and σ̄3,12 = −λ3λ4λ5.
Clearly, a parametrization for the theta divisor Θ = Θ00 is given by all matrices

(17) where P runs over Γ. For the other divisors Θ0i we get
⎛

⎜⎝
µ(P )

λ − λi

λ(P ) − λi
(λ − λ(P ))(λ − λi)

⋆i −µ(P )
λ − λi

λ(P ) − λi

⎞

⎟⎠ ,(19)

where ⋆i is found by expressing that the characteristic polynomial of the matrix is
equal to µ2 − f(λ),

⋆i = λ3 + λ2(σ̄1,i + λ(P )) + λ(σ̄2,i + λ(P )σ̄1,i + λ(P )2)

− 1
λ(P ) − λi

[
σ̄4,i + λiσ̄3,i + λiλ(P )σ̄2,i + λiλ(P )2σ̄1,i + λiλ(P )3

]
.

The formulas for computing the other Θij (with 0 < i < j ≤ 5) require some more
work. The points on Θij are of the form [P + ωi + ωj − 3∞], which we first need to
rewrite in the standard form [Q + R − 2∞] (Q and R will depend on P ). Consider
for fixed P the following meromorphic function on Γ,

ϕP (λ, µ) =
µ + µ(P )

(λ − λi)(λ − λj)
(λ(P ) − λi)(λ(P ) − λj)

(λ − λ(P ))(λ − λi)(λ − λj)
.

It realises the linear equivalence P + ωi + ωj ∼ Q + R + ∞, the points Q and R
being given as the non-trivial zeros of the numerator. To find these zeros, multiply
this numerator by

µ − µ(P )
(λ − λi)(λ − λj)

(λ(P ) − λi)(λ(P ) − λj)
to find the following equation in λ whose solutions are λ(Q) and λ(R),

5∏

k=1

(λ − λk)(λ(P ) − λi)2(λ(P ) − λj)2 =
5∏

k=1

(λ(P ) − λk)(λ − λi)2(λ − λj)2.

Note that we are not required to solve this for λ(Q) and λ(R) individually: we can
solve it linearly for λ(Q) + λ(R) and λ(Q)λ(R) and this is enough to determine
the polynomial u(λ) which is associated to an arbitrary point on Θij , in fact these
are precisely the coefficients of u(λ) since u(λ) = (λ − λ(Q))(λ − λ(R)). Solving
linearly we get

u1 =
λ2(P )σ1,ij + λ(P )(σ2 − 2σ̄2,ij) + σ2,ij σ̄1,ij − σ̄3,ij

(λ(P ) − λi)(λ(P ) − λj)
,

u2 =
λ2(P )σ2,ij + λ(P )(σ2,ij σ̄1,ij − σ̄3,ij) + σ2,ij σ̄2,ij − σ1,ij σ̄3,ij

(λ(P ) − λi)(λ(P ) − λj)
.(20)
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In order to find the polynomial v(λ) which is associated to an arbitrary point on
Θij we use the vanishing of the numerator of ϕP to find

µ(Q) − µ(R)
λ(Q) − λ(R)

= −µ(P )
λ(Q) + λ(R) − λi − λj

(λ(P ) − λi)(λ(P ) − λj)
,

λ(Q)µ(R) − λ(R)µ(Q)
λ(Q) − λ(R)

= µ(P )
λ(Q)λ(R) − λiλj

(λ(P ) − λi)(λ(P ) − λj)
.

The right hand side only involves λ(P ) + λ(Q) and λ(P )λ(Q) hence it suffices to
plug in the expressions (20) for these to find the polynomial v(λ) associated to
[P + ωi + ωj − 3∞],

v1 = µ(P )
u1 + λi + λj

(λ(P ) − λi)(λ(P ) − λj)
,

v2 = µ(P )
u2 − λiλj

(λ(P ) − λi)(λ(P ) − λj)
.(21)

The corresponding polynomial w(λ) is found from w(λ) = (f(λ) − v2(λ))/u(λ).
The above formulas for the divisors give a parametrization but do not describe

the sections which cut them out. Nor do we have, at this point, a way to com-
pute a basis for the odd or even sections of [nΘ] which lead to projective images
of the Kummer surface. To get these we consider the (two-dimensional) Mum-
ford system (see [16]), which consists of a pair of commuting vector fields on the
seven dimensional affine space M of matrices (13). Coordinates on M are given by
u1, u2, v1, v2, w0, w1 and w2.

Let H denote the map

H : M → C[λ, µ] : A(λ) "→ |A(λ) − µI|,(22)

which associates to such a matrix A(λ) its characteristic polynomial. Then the
fiber of H over a polynomial µ2 − f(λ) (f monic of degree 5 and irreducible) is
isomorphic to the affine variety JΓ \ Θ where Γ is the curve defined by µ2 = f(λ);
explicitly the isomorphism is given by (14). Equations for this affine variety thus
follow from the equations of the fiber,

u1 + w0 = σ1,

u2 + u1w0 + w1 = σ2,

u2w0 + u1w1 + w2 + v2
1 = σ3,(23)

u2w1 + u1w2 + 2v1v2 = σ4,

u2w2 + v2
2 = σ5,

where we denoted the coefficients of the curve µ2 = f(λ) by σi, as in (10). Two
independent commuting vector fields on M are given by
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u̇1 = v1, u′
1 = v2,

u̇2 = v2, u′
2 = u1v2 − u2v1,

v̇1 = − 1
2 (w1 + u2

1 − u1w0 − u2), v′1 = − 1
2 (w2 + u1u2 − u2w0),

v̇2 = − 1
2 (w2 + u1u2 − u2w0), v′2 = − 1

2 (u1w2 + u2
2 − u2w1),

ẇ0 = −v1, w′
0 = −v2,

ẇ1 = u1v1 − v1w0 − v2, w′
1 = u2v1 − v2w0,

ẇ2 = u1v2 − v2w0, w′
2 = u2v2 + v1w2 − v2w1.

Mumford shows that these vector fields restrict to linear vector fields on the Jaco-
bians which appear as fibers of the map H (it is easy to check that these vector
fields are indeed tangent to the fibers of H). Fixing the section which cuts out nΘ,
the sections of [nΘ] can be described by the meromorphic functions with a pole of
order at most n at infinity, i.e., at Θ. To find these meromorphic functions one
looks for Laurent solutions to the differential equations which describe one of the
linear vector fields (see [25, Chapter 5.3]), more precisely one looks for all fami-
lies of Laurent solutions of the maximal dimension (i.e., containing the maximal
number of free parameters). In the case at hand we pick the first vector field (the
Laurent solutions for this vector fields are easier to find because that vector field
is weight homogeneous, see [25, loc. cit.]) and we find that there is precisely one
such family of Laurent solutions, its dimension being 6. We display here precisely
as many terms of the Laurent solutions as we need for our computations below;
moreover we only display them for u1 and u2 because the Laurent solutions for the
other affine variables follow at once from them by using the differential equations
(e.g., v1 = u̇1, etc.).

u1 =
1
t2

(
−4 + at2 + 2ct4 + 40dt5 + et6 + 3d(a + 2b)t7 + ft8 + · · ·

)
,

u2 =
1
t2

(
4b − b(a + b)t2 − 240dt3 − 2bct4 + 8d(3a + b)t5 + (18f + 6c2 − be)t6 + · · ·

)
.

A basis for the functions with a pole of order 2 at most at Θ is given by

z0 = 1, z1 = u1, z2 = u2, z3 = u1u2 − w2.

To see that the restriction of z3 to JΓ is linearly independent of the other functions
it suffices to compute the leading term of z3, which is given by 4b(3a + 2b)/t2. The
corresponding sections embed the singular Kummer surface into P3 (see the next
section). A basis for the functions with a triple pole along Θ is given by adding the
following 5 functions

z4 = v1, z5 = v2, z6 = u1v2 − u2v1, z7 = (w1 + u2
1)v2 − (w2 + u1u2)v1,

z8 = u1w2 + u2w1 + 2u1u2w0.

Their leading terms are given by

(z4, z5, z6, z7, z8) =
8
t3

(
1,−b, b2, b2(3a + 2b), 1440d

)
,(24)

showing their independence. These 9 functions allow to embed the Jacobian into
projective space P8. Finally, to get a basis for the space of functions with a pole of
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order at most 4 along Θ, one also adds the following functions:

z9 = u2
1, z10 = u1u2, z11 = u2

2, z12 = v1w2 + u1w0v2,

z13 = u1u2v2 − v2w2 − u2
2v1 − u2v2w0, z14 = u2(u1u2 − w2),

z15 = (u1u2 − w2)2.

Their leading terms are given by

(z9, z10, . . . , z15) =
16
t4

(
1,−b, b2,−720d,−720bd, b2(3a + 2b), b2(3a + 2b)2

)
,(25)

hence these sections are also independent (on the Jacobian of any smooth curve
Γ). Since the hyperelliptic involution on Γ is given by (λ, µ) "→ (λ,−µ) the (−1)-
involution on JΓ is given by

(u1, u2, v1, v2, w0, w1, w2) "→ (u1, u2,−v1,−v2, w0, w1, w2),

so that we find the following table for the functions which represent the even and
odd sections of [2Θ], [3Θ] and [4Θ]. An explicit basis for the even and odd sections
for [nΘ] with n ≥ 5 are obtained in a completely analogous way but will not be
used here.

Table 3

line bundle even sections odd sections

[2Θ] 1, z1, z2, z3 no

[3Θ] z4, z5, z6, z7 1, z1, z2, z3, z8

[4Θ] 1, z1, z2, z3, z8, z9, z10, z11, z14, z15 z4, z5, z6, z7, z12, z13

5. Kummer surfaces of Jacobians

In this section we will use the results of the previous section to compute different
projective images of the Kummer surface KΓ of JΓ. The linear systems which we
will use consist of the even or odd sections of [nΘ] (with n = 2, 3, 4) with prescribed
vanishing at the half periods. Recall from Section 3 that we denote the line bundle
p∗L⊗ [

∑
(−νi)Ei] on J̃Γ by L̃ν and that we denote the line bundles on K̃Γ which

correspond to the even and odd sections of L̃ν by M±
ν . In order to compute these

induced linear systems on K̃Γ we will use divisors in |nΘ| which consist entirely
of translates Θij of Θ. We will call such divisors totally reducible divisors. These
divisors have the convenient property of having large multiplicity at several half
periods and it is for these divisors easy to figure out its multiplicity at any half
period. The following lemma will tell us which divisors in |nΘ| are totally reducible.

Lemma 5.1. The divisor Θij + Θkl + Θmn + Θpq is in |4Θ| if and only if eij +
ekl + emn + epq = 0.

⌈Do you have a short proof? Shall we put it?⌋(?) We will in every case con-•
—? sidered below show that the linear systems M±

ν have no base points, so that the
corresponding map φM±

ν
is regular, we will compute an equation of its image and

we will determine which curves are contracted (leading to a singular point of the
image). We will denote the image of the (−2)-curve Bij by Eij and the image
of π∗(Θ̂ij) by Tij . These images can be points, straight lines or curves of higher
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degree. The incidence relations between the 32 objects Eij and Tij will follow eas-
ily from the incidence relations on J̃Γ (see [10, Chapter 1]) which were classically
represented in the following compact form.

Table 4

00 01 12 02

34 25 05 15

35 24 04 14

45 23 03 13

The way in which the incidence is encoded in this table is this: the divisors Eij

are pairwise disjoint as well as the divisors Θ̂kl. Every divisor Eij meets precisely
6 divisors Θ̂kl and vice versa. Eij and Θ̂kl will meet precisely when the indices ij
and kl appear in Tabel 4 either in the same row or in the same column (but not
both!).

5.1. The linear system |2Θ|. The first case is that of D = 2Θ, L = [2Θ]. Some
of the results in this paragraph are classical but the proofs that we give provide
the reader with a good illustration of our approach, which also applies to the more
complex situations studied in the subsequent paragraphs.

The divisor D has multiplicity 2 at the 6 half-periods e00, e01, . . . , e05 and has
multiplicity zero at the other half periods, in particular D is even and all half
periods are even. We picture D as follows.

0
01

02

03
04

05

By (9) every section of [2Θ] is even, in agreement with Table 3, leading to a line
bundle M+ on K̃Γ. If s denotes the section of [2Θ] that cuts out 2Θ then Table 3
tells us that θ0 = s, θ1 = su1, θ2 = su2 and θ3 = s(u1u2 − w2) span the space of
sections of [2Θ].

Proposition 5.2. The linear system |2Θ| is base-point-free hence leads to a regular
map φM+ : K̃Γ → P3. The image of φM+ is a quartic surface whose equation is
given, in terms of the coordinates θi, i = 0, . . . , 3, by

0 = (4σ3σ5 − σ2
4)θ4

0 + 2[−2σ2σ5θ1 + (σ2σ4 − 2σ1σ5)θ2 + 2σ5θ3]θ3
0

+ [4σ1σ5θ
2
1 − (2σ4 + σ2

2)θ2
2 + (4σ5 − 2σ1σ4)θ1θ2 − 2σ4θ1θ3 + 4σ3θ2θ3]θ2

0(26)

+ 2[−2σ5θ
3
1 + σ2θ

3
2 + 2σ4θ

2
1θ2 + (σ1σ2 − 2σ3)θ1θ

2
2 + 2θ2θ

2
3

− σ2θ1θ2θ3 − 2σ1θ
2
2θ3]θ0 − (θ2

2 − σ1θ1θ2 + θ1θ3)2.
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The map φM+ contracts the 16 (−2)-curves Bij and maps the 16 theta curves to 16
conics, leading to the classical 166-configuration on the Kummer surface KΓ. No
other irreducible divisor is contracted by φM+ .

Proof. Let us show that there are no points on JΓ where all sections of [2Θ] vanish.
First, if such a point X exists then s(X) = 0 hence X ∈ Θ. We know that the
points on the theta divisor are of the form [P −∞] where P ∈ Γ. Let us suppose
first that P ̸= ∞ and consider the curve X(t) = P + Q(t) − 2∞ where Q(0) = ∞
and Q(t) = (λ(t), µ(t)) is given by (11) for t small and different from zero. The
polynomials u(λ), v(λ) and w(λ) which correspond to X(t) are (for t ̸= 0) computed
from (14). The image of X = X(0) in projective space is then given by

lim
t→0

(1 : u1(t) : u2(t) : u1(t)u2(t) − w2(t)) = (0 : −1 : λ(P ) : λ(P )(σ1 + λ(P ))),

in particular not all sections vanish at X. If X is the origin then we consider a
curve X(t) = [P (t) + Q(t) − 2∞] where P (t) and Q(t) are given as Q(t) above and
we find in a similar way that the origin gets mapped to (0 : 0 : 0 : 1). This shows
that |2Θ| is base-point-free, hence |M+| is also base-point-free.(?)—?

We now indicate how the equation (26) was found. Since θ0 = 0 cannot be a
component of the image it suffices to find a relation between the functions z0, . . . , z3

(see Table 3). This is easily done from the equations (23) which define the affine part
of the Jacobian: use the first two equations of (23) to eliminate w0 and w1 linearly
from the other equations and eliminate v1 and v2 from these by expressing that the
obvious identity (v1v2)2 = v2

1v2
2 holds. The resulting equation for between u1, u2

and w2 is rewritten at once in terms of z0, . . . , z3. If we let θi = szi, i = 0, . . . , 3
then we find (26). In order to conclude from this computation that the image
is always (i.e., for all values of the parameters σi which define a smooth curve) a
quartic surface we only need to show that the quartic polynomial in equation (26) is
not a complete square, because the image is certainly irreducible and has degree 4.
Let us suppose that the right hand side Q of (26) is a complete square, Q = P 2.
Since the coefficient of θ4

1 in Q vanishes there is no term θ2
1 in P and hence no term

θ0θ3
1 in Q, i.e., σ5 = 0. But then also the coefficient of θ2

0θ
2
1 in Q vanishes, hence

the coefficient of θ0θ1 in P vanishes. This implies in turn that the coefficient 2σ4

of θ0θ2
1θ2 in Q vanishes. The two conditions σ4 = σ5 = 0 are however impossible

when Γ is smooth.
Since ρij = 0 for 0 ≤ i, j ≤ 5 we have from Proposition 3.2 that C · Bij = 0 for

any i, j, i.e., all (−2)-curves Bij are contracted, so that every Eij is a point. On
the other hand, if we denote by Cij the projection of the proper transform of any
of the theta curves Θij then C ·Cij = Θ ·Θij = 2 so the 16 theta curves map to 16
conics Tij and we get Kummer’s 166 configuration of lines and conics on KΓ ⊂ P3.
Explicit coordinates of the points Eij and the conics Tij will be computed below.

Finally, we use the explicit sections to show that no other irreducible divisor in
JΓ is contracted by φ[2Θ]. Since such a divisor lies in the affine part JΓ \Θ we can
write it as [P (t)+Q(t)−2∞] where P (t) = (λ1(t), µ1(t)) and Q(t) = (λ2(t), µ2(t)).
If we assume that this curve is contracted by φ then u′

1 = u′
2 = (u1u2 − w2)′ = 0

where the prime denotes derivative with respect to t. Then

λ′
1(t) + λ′

2(t) = 0,

λ2(t)λ′
1(t) + λ1(t)λ′

2(t) = 0,
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so that λ′
1(t) = λ′

2(t) = 0 or λ1(t) = λ2(t). The first case does not correspond
to a divisor. In the second case we have that µ1(t) = µ2(t) because the pair of
points (P, Q) which corresponds to any point of JΓ, different from the origin, has
the property that P ̸= ıQ; from the explicit equations for φ it follows that φ does
not map such a curve to a single point.

It should be remarked that the coefficients of the quartic (26) are expressed in terms
of the coefficients σi of the equation µ2 = f(λ) for Γ and not in terms of the roots
λi of f(λ). As far as we know such an equation does not appear in the classical
literature.

In computing an equation for the quartic surface we could have used another
basis for the sections of [2Θ]; note that each such choice corresponds to the choice
of a basis for P3. We will find a more symmetric equation by using the singular
points Eij , which are the images of the sixteen (−2)-curves Bij . For 0 < i < j ≤ 5
we find from (15) that the polynomials which correspond to eij are given by

u(λ) = λ2 + u1λ + u2 = (λ − λi)(λ − λj),
v(λ) = 0,

w(λ) = λ3 + w0λ
2 + w1λ + w2 =

∏

k ̸=i,j

(λ − λk)

so that for 0 < i < j ≤ 5 the image Eij of Bij is given by the point

Eij = (1 : σ1,ij : σ2,ij : σ1,ijσ2,ij − σ̄3,ij).

The coordinates of the other six points E0i, (0 ≤ i ≤ 5) are found as follows. The
16 translations over half periods descend to 16 automorphisms of the Kummer sur-
face and of its image. Any such automorphism is induced by an automorphism
of the ambient space P3. With the 10 half periods at hand we can compute the
matrices of these automorphisms: in order to compute the matrix τ0k which goes
with translation over e0k, it suffices to express the fact that the translation inter-
changes the following 3 pairs of points: Eij ↔ Emn, Eim ↔ Ejn and Ein ↔ Ejm

(here {i, j, k, m, n} = {1, 2, 3, 4, 5}). It leads to the following formula for τ0k

τ0k =

⎛

⎜⎜⎜⎜⎜⎝

λ2
k λk 1 0

λkσ̄2,k + λ2
kσ̄1,k −λ2

k σ1 −1

σ̄4,k + λkσ̄3,k 0 −λkσ̄1,k λk

σ1(σ̄4,k + λkσ̄3,k) −σ̄4,k − λkσ̄3,k 2λ3
k + (σ2 − σ2

1)λk λkσ̄1,k

⎞

⎟⎟⎟⎟⎟⎠
.

The matrices for the other translations τkl are found from τkl = τ0kτ0l. From
τ0k(Eik) = E0i we find that E0i = (0 : 1 : −λi : −λiσ̄1,i) from which we also get
that the origin in JΓ is mapped to E00 = (0 : 0 : 0 : 1). This provides us with the
explicit coordinates of all singular points. Explicit equations for the hyperplanes
which cut out the conics T0i and Tij are found from the explicit parametrization of
these curves: using (19) we find at once that the section

fi = λ2
i θ0 + λiθ1 + θ2
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vanishes once (hence twice) on Θ0i giving the following equation for the conic T0k.

(θ1 + λkθ0)(θ3 + λkσ̄1,kθ1 − λk(λ2
k − λkσ̄1,k + σ̄2,kθ0))

+ θ0(λkθ3 + (σ̄4,k + λkσ̄3,k)θ0) = 0.

Using (20) and (21) we find that

fij = (σ2,ij σ̄1,ij + σ̄3,ij)θ0 − σ2,ijθ1 − σ̄1,ijθ2 + θ3

vanishes twice on Θij giving the following equations for the quadrics Tij , (0 < i, j ≤
5).

(σ2,ijθ1 − σ1,ijθ2)(θ1 − σ̄1,ijθ0) + (θ2 − σ2,ijθ0)(θ2 − σ̄2,ijθ0)
+ σ̄3,ijθ0(θ1 − σ1,ijθ0) = 0.

A natural way to pick coordinates which make the equation of the quartic more
symmetric is it take them such that 4 of the translations τij correspond to inter-
changing the base points of P3 in pairs. Clearly these 4 translations must form a
subgroup of the group of all translations over half periods. These subgroups come
in two types: either one picks as generators two half periods on a single theta curve
or one picks two generators on two distinct theta curves. If 4 half periods are linked
by a subgroup of the first type they are classically said to form a Rosenhain tetrad;
clearly there are 80 such tetrads. Otherwise they are said to form a Göpel tetrad;
there are 60 such tetrads. There is a significant difference between these 2 types:
if the vertices of a Rosenhain tetrad are taken as base points then each of the 4
coordinate planes contains one of the conics Tij , which is not true in the case of a
Göpel tetrad. Indeed, since each coordinate plane of a Rosenhain tetrad contains
3 points of one of the conics Tij it must contain the whole conic.

For example, the images of the half periods e00, e0i, e0j and eij form a Rosenhain
tetrad. If we take these as base points for P3 and we call z0, z1, z2, z3 the new
coordinates and we write λij = λi − λj then

⎛

⎜⎜⎜⎜⎜⎝

θ0

θ1

θ2

θ3

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 0

σ1,ij 1 1 0

σ2,ij −λj −λi 0

σ1,ijσ2,ij − σ̄3,ij −λj σ̄1,j −λiσ̄1,i 1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

a0z0

a1z1

a2z2

a0a1a2z3

⎞

⎟⎟⎟⎟⎟⎠
,

where a2
0 = λij , a2

1 = λikλimλin and a2
2 = λjkλjmλjn. The other twelve singular

points have now the following coordinates (i, j, k, m, n are all different),

E0k : (0 : −λika2 : λjka1 : λikλjka0)
Eik : (λika2 : 0 : λikλjka0 : λjka1)
Ejk : (λjka1 : λikλjka0 : 0 : λika2)
Emn : (λikλjka0 : λjka1 : −λika2 : 0)

and the equation of the quartic takes the symmetric form

a2
1(z

2
0z2

2 + z2
1z2

3) + a2
2(z

2
0z2

1 + z2
2z2

3) + a6
0(z

2
0z2

3 + z2
1z2

2)

+ 2a1a2(z0z1 − z2z3)(z0z2 − z1z3) + 2a3
0a2(z0z1 + z2z3)(z0z3 − z1z2)(27)

− 2a3
0a1(z0z2 + z1z3)(z0z3 + z1z2) + 2δz0z1z2z3 = 0,
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where δ = −2σ̄3,ij +(σ2
1,ij −6σ2,ij)σ̄1,ij +σ1,ij(σ̄2,ij −2σ2

1,ij +9σ2,ij). The equation
with respect to a Göpel tetrad, such as e00, e0k, eij , emn (all indices different) is
found in the same way.

It is clear that in the case of |2Θ| no birational images of the Kummer surface
are obtained by looking at sections which vanish at one or several half periods.

5.2. The linear system |3Θ|. In the case D = 3Θ we will find several different
projective images of the Kummer surface K̃Γ of JΓ. Since D has odd multiplicity
at the origin it is an odd section and the half periods e00, e01, . . . , e05 are even
while the other 10 half periods are odd. If follows from Lemma 5.1 that the linear
system |3Θ| contains besides 3Θ another 40 totally reducible divisors:

D+ : Θ0i + Θ0j + Θij (0 < i < j ≤ 5),
D− : Θij + Θkl + Θmn (i, j, . . . , n all ̸=),

D′
− : Θ + 2Θij (0 ≤ i < j ≤ 5).

The 10 divisors D+ are even since their multiplicity at the origin is 2, while the 15
divisors D− and the 15 divisors D′

− are odd, their multiplicity at the origin being
1 or 3. Here is a picture of a particular D+ and D−.

23

24

25

00

12

02

13

14

35

45

15

01

34

12

1445

2315

13

0005

04 01

0203

We denote their projections on K̃Γ by C+ and C−. It follows from (5) that h0(C+) =
4 and h0(C−) = 5. This leads to 2 maps φM+ : K̃Γ → P3 and φM− : K̃Γ → P4; we
will investigate later in this paragraph the subsystem defined by odd sections that
vanish at one of the half periods.

We first investigate the map φM+ . We find from Table 3 four independent even
sections in [3Θ] and accordingly we define

θ0 = sv1,

θ1 = sv2,(28)
θ2 = s(u1v2 − u2v1),

θ3 = s((w1 + u2
1)v2 − (w2 + u1u2)v1),

where s denotes the section that cuts out 3Θ. The six half periods on Θ are even
and the other 10 half periods are odd.

Proposition 5.3. The linear system |3Θ|+ has only the 10 odd half periods as base
points; however, it defines a regular map φM+ : K̃Γ → P3. Its image is a quartic
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surface whose equation is given in terms of the coordinates θi, i = 0, . . . , 3 by

0 = −σ5(σ1θ2 − θ3)θ3
0 + [(σ1σ4 + 3σ5)θ1θ2 − σ4θ

2
2 − σ4θ1θ3]θ2

0

(29)

+ [−2σ5θ
3
1 − (σ1σ3 + σ4)θ2

1θ2 + 2σ3θ1θ
2
2 − σ2θ

3
2 + σ3θ

2
1θ3 + σ1θ

2
2θ3 − θ2θ

2
3]θ0

+ σ4θ
4
1 + (σ1σ2θ2 − σ3θ2 − σ2θ3)θ3

1 − (σ2
1θ2

2 − θ2
3)θ

2
1 + (2σ1θ2 − θ3)θ1θ

2
2 − θ4

2.

φM+ contracts the (−2)-curves Bi which correspond to the six even half periods and
maps the 10 other (−2)-curves Bi to lines. The image of Θ has degree 3 while the
other theta curves map to lines. No other curves are contracted by φM+ .

Proof. If X ∈ JΓ is a half period that does not belong to Θ then (14) implies
that the corresponding polynomial v(λ) is zero, so that all sections, given by (28)
vanish and X belongs to the base locus of |3Θ|+. Suppose that we have another
affine point X where all sections vanish, X = [P + Q − 2∞]. If λ(P ) ̸= λ(Q)
then v1 = (µ(P ) − µ(Q))/(λ(P ) − λ(Q)) = 0 implies that µ(P ) = µ(Q). Fur-
ther v2 = (λ(P )µ(Q) − λ(Q)µ(P ))/(λ(P ) − λ(Q)) = 0 implies that that µ(P ) =
µ(Q) = 0, which contradicts the fact that X is not a half period. If λ(P ) =
λ(Q) then v1 = f ′(λ(P ))/(2µ(P )) = 0 implies f ′(λ(P )) = 0 and v2 = µ(P ) −
λ(P )f ′(λ(P ))/(2µ(P )) = 0 implies µ(P ) = 0, again a contradiction. In order
to see what happens to corresponding linear system M+ at Bij we take a curve
X(t) = [P (t) + Q(t) − 2∞], with P (0) = ωi and Q(0) = ωj ,

P (t) = (λi + t2, cit + O(t2)),

Q(t) = (λj + (αt)2, αcjt + O(t2)),

where c2
i =

∏
j ̸=i(λi − λj). The factor α was introduced here to represent the

different directions at eij , which become points of the exceptional divisor Eij and
of Bij . Computing (14) for these curves and taking the limit t → 0 for their image
in P3 we find

(θ0 : θ1 : θ2 : θ3) = (1 − ciα

cj
: λi

ciα

cj
− λj : λ2

j −
ciα

cj
λ2

i : ⋆),(30)

(⋆ is a finite number that is easily computed but whose value is not important
for us) so that for any α there is at least one section which is non-zero. Notice
that we don’t need to consider the value α = ∞ because of the symmetric role
of P and Q. To show that no base point of |3Θ|+ lies on Θ, proceed as in the
proof of Proposition 5.2: first consider X(t) = [P + Q(t) − 2∞] where P ∈ Γ\{∞}
and take Q(t) = (λ(t), µ(t) ∈ Γ) to be given by λ(t) = t−2 and µ(t) = t−5(1 +
σ1t2/2 + (4σ2 − σ2

1)t4/8 + O(t6)). If we evaluate the map (v1 : v2 : u1v2 − u2v1 :
(w1 + u2

1)v2 − (w2 + u1u2)v1) at X(t) and take the limit for t → 0 then we find
(1 : −λ(P ) : λ(P )2 : ⋆) (again the (finite) value of ⋆ is irrelevant). This, and a
similar verification for the origin X = 0, shows that the base locus of |M+| is
empty, showing that φM+ is regular.

An equation for the image of φM+ is computed as follows. Use the first 3
equations in (23) to eliminate all wi linearly and use the first 3 equations of (28) to
eliminate v1, v2 and u2. From the remaining equations in (23) and (28) eliminate
first s to obtain 2 equations in u1 one of which is linear. Elimination of u1 gives the
announced equation for the quartic. It can be shown as in the proof of Proposition
5.2 that this quartic is not a complete square; this will be however most obvious
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after we have rewritten the equation in a more symmetric form, so we will not do
this verification at this point.

We have that ρi = 0 at the 6 even half periods eoi and ρi = 1 at the 10 odd half
periods so,using Proposition 3.2, we find that the image of φM+ will have 6 singular
points and will contain 10 disjoint lines, coming from the (−2)-curves. Since Θ does
not contain any of the odd half periods, Formula (7) implies that the image of Θ
under φM+ is a cubic curve; the other theta curves all contain precisely 4 odd half
periods so these curves map to 15 lines.

Finally, suppose that some irreducible curve, which is different from the (−2)
curves, is contracted. Since it is different from the theta divisor it intersects the
affine part JΓ \ Θ and can be written as X(t) = [P (t) + Q(t) − 2∞] where P (t) =
(λ1(t), µ1(t)) and Q(t) = (λ2(t), µ2(t)). As in the proof of Proposition 5.2 we may
assume that λ1(t) ̸= λ2(t) and µ1(t) ̸= µ2(t). Let us assume that the whole curve
is mapped to the single point (1 : c1 : c2 : c3). Solving for λ2 and µ2 we find that

λ2(t) = −c1λ1(t) + c2

λ1(t) + c1
µ2(t) =

c2
1 − c2

(λ1(t) + c1)2
µ1(t).

Since µ2
i (t) = f(λi(t)) for i = 1, 2 we find that λ1(t) satisfies an algebraic equation

of degree 8 with leading term (c2 − c2
1)λ8

1(t). Then c2 = c2
1 because otherwise

λ1(t) and hence also µ1(t), λ2(t) and µ2(t) are constant. However, if c2 = c2
1 then

µ2(t) = 0 so that the curve corresponds to one of the theta curves. As we have
seen, these theta curves map to lines, not to points. Therefore no such curve is
contracted by φM+ .

We will now construct coordinates for P3 with respect to which the equation of the
quartic takes a completely symmetric form. First we show that any 4 of the singular
points E00, E01, . . . , E05 can be taken as base point for P3. Since T00 is a cubic curve
and passes through all six singular points it will be planar as soon as four of the
singular points are coplanar. Then all six points singular are coplanar and hence
also the 15 lines Tij , 0 ≤ i < j ≤ 5, which join these singular points. This would
lead to intersection points between these lines different from the singular points,
which is impossible. We will take the points E01, . . . , E04 as base points for P3,
so we need to find the coordinates of these points. Notice that they are given by
E0i = Tij ∩ Toj . Let us first compute the sections which cut out the divisors D+. If
we express that a section

αθ0 + βθ1 + γθ2 + δθ3

vanishes on Θ0i and Θ0j (using the parametrization (19) of Θ0i) then we find

α = λiβ − λ2
i γ = λjβ − λ2

jγ, δ = 0,

and we obtain that

f−
ij = σ2,ijθ0 − σ1,ijθ1 + θ2

is (up to a constant) the only odd section that vanishes on Θ0i and Θ0j . Since
we know that there exists an odd section which vanishes in addition on Θij this
section must also vanish on Θij . The latter fact can of course also be verified
directly using (20) and (21). If we intersect the quartic surface with the hyperplane
θ2 = σ1,ijθ1 − σ2,ijθ0 then we find the equations for the four lines T0i, T0j , Tij and
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Eij . From it we get that a parametrization for T0i is given by (t ∈ P)

T0i : (1 : −λi : λ2
i : t).

The other two equations give the equation for Tij and Eij but it is not clear which
equation corresponds to which. Therefore, use (20) and (21) to find that Θij maps
to

Tij : (1 : t − λi : λ2
i + σ1,ijt : λ2

i σ̄1,i + t(σ1,ij σ̄1,ij + σ2,ij)).

coordinates So we find E0i = T0i ∩ Tij = (1 : −λi : λ2
i : λ2

i σ̄1,i). If we take the
points E01, . . . , E04 as base points and call the corresponding coordinates t1, . . . , t4
then the quartic takes the following symmetric form

4∑

i=1

∑

1≤j<k≤4
j,k ̸=i

γijkt2i tjtk = 0,(31)

where

γijk = λ2
ijλ

2
jkλ2

kiλimλin,

and i,j,k,m,n=1,2,3,4,5. Since all terms in the new equation of the quartic are of
the form t2i tjtk this equation can never be an exact square providing a simple proof
for our earlier claim that the image of φM+ is a quartic. With respect to the new
basis for P3 the singular points E00 and E05 have the following coordinates:

E00 : (λ23λ34λ42 : λ31λ14λ43 : λ41λ12λ24 : λ13λ32λ21),

E05 :
(

1
λ12λ13λ14λ15

:
1

λ21λ23λ24λ25
:

1
λ31λ32λ34λ35

:
1

λ41λ42λ43λ45

)
.

Using the coordinates of E00, . . . , E05 the new equations of the lines are immediately
computed because Tij passes through E0i and E0j .

We now investigate the map φ−. Table 3 gives us five independent sections of
[3Θ]. Still denoting by s the section that cuts out 3Θ, we define θ0 = s, θ1 =
su1, θ2 = su2, θ3 = s(u1u2 − w2) and θ4 = s(u1w2 + u2w1 + 2u1u2w0)/2.

Proposition 5.4. The linear system |3Θ|− is base-point-free, hence φM− : K̃Γ →
P4 is a regular map. The image of this map is a complete intersection of a quadric
and a cubic hypersurface whose equations are given, in terms of the coordinates
θi, i = 0, . . . , 4 by

0 = 2θ0θ4 + θ1θ3 − (σ2θ0 + σ1θ1 − θ2)θ2,(32)

and

0 = (4σ3σ5 − σ2
4)θ3

0 − 4(σ2σ5θ1 + σ1σ5θ2 − σ5θ3 − σ4θ4)θ2
0

+ 4(σ1σ5θ
2
1 + (σ5 − σ1σ4)θ1θ2 + σ3θ2θ3 − θ2

4)θ0(32)

− 4(σ5θ
2
1 − σ4θ1θ2 + σ3θ

2
2)θ1 + 4θ2(σ1θ2 − θ3)(σ2θ1 − θ3).

The theta divisor Θ and the 10 (−2)-curves Bij , 1 ≤ i < j ≤ 5 corresponding to
the even half periods are the only divisors which are contracted by φM− , while the
other 6 exceptional divisors B0i, 0 ≤ i ≤ 5, map to lines and the other theta curves
map to conics.
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Proof. The proof that the linear system |2Θ|− is base-point-free applies verbatim
to the present case because the sections θ0, . . . , θ3 are defined in exactly the same
way. The defining equation of θ4 is easily rewritten in terms of the other θi giving
the above equation of the quadric. Now obviously the quartic equation (26) holds
between the sections, but that does not mean that the homogeneous ideal of the
image is generated by the quadratic and the quartic polynomials. Indeed, if we add
the quadratic polynomial in (32), multiplied with −σ1θ1θ2 + θ1θ3 + θ2

2 + 2σ4θ2
0 −

σ2θ0θ2 − 2θ0θ4, to the left hand side of the quartic (26) then the result is divisible
by θ0 and we are left with the cubic equation (32). Since the degree of the image
is 6 the image is the complete intersection of the quadric and cubic hypersurface.
Moreover, since φ[2Θ] does not contract any curves besides the curves Bi we can at
least conclude that besides the Bi no curve that intersects the affine part JΓ \ Θ
is contracted. In this case ρij = 0 for 1 ≤ i < j ≤ 5 (corresponding to the even
half periods) and ρ0i = 1 for 0 ≤ i ≤ 5 (corresponding to the other half periods).
(7) shows that Θ is contracted by φM− and the same is true for the exceptional
divisors Bij , 0 ≤ i < j ≤ 5. The remaining theta curves and exceptional divisors
map to 15 conics and 6 lines respectively. Notice that all these conics and lines
pass through a single singularity of the image.

Again a more symmetric equation is obtained by choosing some of the singular
points as base points, namely we choose E12, E23, E34, E45 and E15 as base points.
Using (15) we find that the old coordinates of Eij are given by

Eij : (1 : σ1,ij : σ2,ij : σ1,ijσ2,ij − σ̄3,ij :
1
2
σ1,ij σ̄3,ij + σ2,ijσ1,ij σ̄1,ij +

1
2
σ2,ij σ̄2,ij).

(33)

If we define ti to be the coordinates with respect to these five points then the
equation of the quadric becomes

λ24λ25t1(λ2
13t2 + λ14λ15t4) + cycl (1, 2, 3, 4, 5) = 0,(34)

while the equation of the cubic becomes

(At2 + Bt3 + Ct4 + Dt5)t21 + (Et3 + Ft4)t1t2 + cycl (1, 2, 3, 4, 5) = 0.(34)

Although the equations have a very symmetric form, the constants A, . . . , F are
quite complicated when expressed in terms of the λi; we do not record their expres-
sions here. Finally, let us compute the sections that cut out image of the divisors
D−. This is done as in the case of D+: such a section must be of the form

α + βu1 + γu2 + δ(u1u2 − w2) + ϵ(u1w2 + u2w1 + 2u1u2w0),

and it should vanish on Tij , T0k and Tmn, where {i, j, k, m, n} = {1, 2, 3, 4, 5}. If
we normalize ϵ = 1 then we get by using (20) and (21)

α = 2λ2
k(σ2,ij + σ2,mn) − λkσ̄3,k − σ̄4,k,

β = 2λk(σ2,ij + σ2,mn),
γ = −2σ̄1,ij σ̄1,mn,

δ = −2λk,

ϵ = 1.

In the case of |3Θ|− we can restrict ourselves to the sections with prescribed van-
ishing at the half periods. Every section of |3Θ|− vanishes an odd number of times
at the half periods so that a prescribed vanishing at one of these half periods
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would imply that we consider M−
ν for ν = (0, . . . , 3, . . . , 0). Then formula (3.2)

leads to dim |M−
ν | = 9/2 + 1 − 14/4 = 2, so the corresponding map can never be

birational. Therefore we consider an even half period eij , 1 ≤ i, j ≤ 5 and de-
fine ν = (0, . . . , 2, . . . , 0) (the 2 being at position ij). Formula (3.2) now leads to
dim |M−

ν | = 3, hence φM−
ν

maps to P3. Using the fact that u1 = −λi − λj = σ1,ij

and u2 = λiλj = σ2,ij at eij we find from Table 3 that the following four indepen-
dent sections vanish at eij .

θ0 = s(u1 − σ1,ij),
θ1 = s(u2 − σ2,ij),
θ2 = s(u1u2 − w2 − σ1,ijσ2,ij + σ̄3,ij),(35)
θ3 = s(u1w2 + u2w1 + 2u1u2w0 − σ1,ij σ̄3,ij − σ2,ij σ̄2,ij − 2σ1,ijσ2,ij σ̄1,ij).

We describe φM−
ν

and its image in the following proposition.

Proposition 5.5. The linear system |M−
ν | is base-point-free, hence φM−

ν
: K̃Γ →

P3 is regular. It contracts 10 divisors, to wit the nine exceptional divisors Bkl

corresponding to the even half periods, but not Bij, and the theta divisor Θ. The
image is a quartic which contains six lines E0i (0 ≤ i ≤ 5) which are collinear at T
and it contains 16 conics, one of which is the image E of B00.

Proof. Using (12) for the half period eij it follows at once that the image of Bij

is a conic; alternatively this is seen from ρij = νij = 2. Then (35) implies that
the only possible base points coorespond to s = 0, the theta divisor. Using (11)
we see that the theta divisor gets mapped to the single point (0 : 0 : 0 : 1); using
(12) for any of the other 9 even half periods it follows that each gets contracted.
The verification that the odd half periods map to lines and that the other theta
curves map to conics is similar. A proof that the image is a quartic and an explicit
equation for it will be given below.

Since the roots λi of f will appear explicitly in the equation of the quartic we
will not write down the equations in terms of the θi but we pass at once to a set
of natural coordinates, which will give the equation of the quartic a symmetric
form. The conic Eij intersects the lines T0i, T0j and Tij in three points (which are
not collinear) and these points are independent of the image T of Θ (which is a
singular point). We will take these points as basis points for P3. To do this we first
need to find their coordinates, which is done in this case as follows. We use (19) to
compute the images of Θ0i and we take the limit for λ → λj (i ̸= j). This gives us
the following coordinates:

Eij ∩ T0i : (λij : −λiλij : λi(λ2
i + λiλj − λ2

j ) + σ2,ij σ̄1,ij + λiσ̄2,ij + σ̄3,ij

: 2λi[λ2
i λj − (λ2

j − λiλj − λ2
i )σ̄1,ij + λj σ̄2,ij + σ̄3,ij ]).

Using (20) and (21) we find the image of Θij and the limit for λ → ∞ gives the
following intersection point:

Eij ∩ Tij : (−σ̄2,ij + σ1,ij(σ̄1,ij − σ1,ij) + σ2,ij : −σ̄3,ij + σ2,ij(σ̄1,ij − σ1,ij)

: −σ̄3,ij σ̄1,ij + σ2,ij(σ̄2
1,ij − σ̄2,ij − σ2

1,ij + σ2,ij)

: 2[−σ̄3,ij(σ̄2,ij + σ2
1,ij − σ2,ij) + σ̄1,ijσ1,ijσ2,ij(σ̄1,ij − σ1,ij)])
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Also recall that Θ is mapped to (0 : 0 : 0 : 1). If we take the following points as
base points for P3 (in that order)

T , Eij ∩ T0i, Eij ∩ T0j , Eij ∩ Tij

and we denote the corresponding coordinates (properly scaled) by t0, . . . , t3 then
we find the following equation for the quartic:

(t1t2 + t2t3 + t3t1 − t20)[αjt
2
1 − αit

2
2 + αt23 + (αj − αi + α)(t1t2 + t2t3 + t3t1)]

(36)

+ t0(t1t2 + t2t3 + t3t1 + t23)[α(t1 − t2) + β(t1 + t2)]
(37)

− 2t0t3[αjt
2
1 + αit

2
2 − γt1t2 − δ(t1 + t2)t3] = 0

(38)

where

α = λ3
ij ,

αl =
∏

k ̸=i,j
λlk,

β = 4(σ̄3,ij + σ2,ij σ̄1,ij) + σ2,ij(σ2
1,12 − 2σ̄2,ij − 6σ2,ij),

γ = σ1,ij(σ̄2,ij − σ2,ij) + 2σ̄3,ij + (λ2
i + λ2

j )(σ1,ij − σ̄1,ij),

δ = −(λ2
i + λ2

j )σ̄1,ij − 2σ3,ij + σ1,ij(σ2,ij + σ2
1,ij + σ2,ij).

Now we can easily see that φ′
− is birational: if the equation of the quartic is a

square then the coefficient in t0 of degree 0 is a square hence αjt21 − αit22 + αt23 +
(αj −αi +α)(t1t2 + t2t3 + t3t1) and t1t2 + t2t3 + t3t1 are proportional. In particular
α = 0 so that λi = λj which is impossible since Γ is non-singular.

5.3. The linear system |4Θ|. In this case all half periods are even and Lemma
5.1 implies that up to a translation over a half period the only totally reducible
divisors in |4Θ| are the following

D+ : Θ + Θij + Θkl + Θmn (i, j, . . . , n all ̸=),
D− : Θ + Θ0i + Θ0j + Θij (0 < i < j ≤ 5),

D′
+ : 2Θ00 + 2Θij (0 ≤ i < j ≤ 5).

Below we give a picture of particular divisors D+ and D−. One sees that the 4
curves in D+ intersect in 12 nodes while the curves in D− intersect in 4 triple
points. The divisors D+ and D′

+ are even while the divisors D− are odd.
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We denote by C− the projection of p∗D− on K̃Γ and we write φ− for φ[C−]. By
(3.2) we have that h0(X̃, C) = 6. We denote by s the section that cuts out [4Θ].
and we find from Table 3 that the following sections θ0, . . . , θ5 provide a basis for
the odd sections of 4Θ.

θ0 = sv1

θ1 = sv2

θ2 = s(u1v2 − u2v1),

θ3 = s((w1 + u2
1)v2 − (w2 + u1u2)v1),

θ4 = s(v1w2 + u1w0v2),

θ5 = s(u1u2v2 − v2w2 − u2
2v1 − u2v2w0).

In this case we easily find

Proposition 5.6. The map φ− : X̃ → P5 is an isomorphism onto its image. The
images Eij and Tij form 2 groups of 16 disjoint lines, each line intersecting 6 lines
of the other group.

Proof. Comparing the section θ0, . . . , θ5 to the sections that were used in the case
of φ+ for 3Θ we see that no affine point can be a base point. We will compute below
an equation for the image of theta, which is a line since ρi = 1 for all i. In view of
our proof that Since ρi = 1 for all i, all (−2) curves are mapped to (disjoint) lines;
there equations will be computed below. Also C · Θij = 4 − 6/2 = 1 so all theta
curves are mapped to 16 disjoint lines. Since |C| is basepoint-free and birational it
is an isomorphism: the only divisor which was contracted by φ+ is the case of 3Θ
was Θ which is not contracted in this case.

We will find the relations between the θi by expressing the fact that the image
contains a whole configuration of lines, coming from the theta curves Θij and the
(−2)-curves Bi. The lines Tij (where i and j are not both zero) can be computed
explicitly using the parametrizations for the divisors Θij . For T0i (i ̸= 0) we find
(using (19) the following parametrization (t ∈ P):

(
1 : −λi : λ2

i : t : −t − λi(σ2 + λ2
i ) : −λit − λ2

i (λ
2
i + σ̄2,i)

)
.

For Tij (i, j ̸= 0) use (20) and (21) to find

(t : 1 : σ1,ij − σ2,ijt : σ2,ij + σ1,ij σ̄1,ij − σ̄1,ijσ2,ijt : σ1,ij σ̄1,ij + σ̄3,ijt :

σ2,ijσ1,ij − σ2,ij σ̄1,ij − σ̄3,ij − σ2
2,ijt)

Note that we cannot compute the lines Eij in this way because all the functions vi

vanish at the half periods. However, any quadric which vanishes at the lines Tij

must also vanish at the lines Eij because every line Eij has 6 points lying on the lines
Tij . It is now easy to find and solve the (linear) conditions on αij for

∑
i≤j αijvivj

to vanish on the lines Tij : we get the following set of independent quadrics:

θ2
2 − σ1θ1θ2 + θ1θ4 + θ0θ5 = 0,

σ5θ
2
0 + σ3θ

2
1 − σ4θ0θ1 − σ2θ1θ2 + θ1θ5 + θ2θ4 = 0,

σ4θ
2
1 + σ2θ

2
2 + θ2

3 − 2σ5θ0θ1 + (σ1σ2 − 2σ3)θ1θ2(39)
− σ1θ2θ3 + θ3θ4 + σ4θ0θ2 − σ2θ1θ3 − σ1θ2θ4 − θ2θ5 = 0.
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Note that again these equations do not involve the roots λi of f(λ) explicitly. We
will see that by using the λi explicitly we can make the equations much more
symmetric. Before we can do this we need to compute the equations for the other
lines (T00 and all Eij) and the 96 intersection points of the configuration. The
following lemma provides an effective way to do this.

Lemma 5.7. The hyperplane section which vanishes on the lines T00, T0i, T0j and
Tij also vanishes on the lines E00, E0i, E0j and Eij

Proof. The points e00, e0i, e0j and eij are triple points of the divisor Θ00 + Θ0i +
Θ0j + Θij hence the lines E00, E0i, E0j and Eij have 3 points in common with the
hyperplane that vanishes on T00, T0i, T0j and Tij .

In fact, since the degree of φ−(K̃Γ) is 8 the hyperplane section must consist exactly
of these 8 lines. It is now easy to do the computation: since this hyperplane section
is given by f−

ij = 0 it suffices to intersect the quadrics with the plane

θ2 = σ1,ijθ1 − σ2,ijθ0

which amounts to solving the equations of the quadrics linearly for the remaining
variables. Besides the lines T0i, T0j and Tij for which we gave the equations above
we also find the following lines

T00 : (0 : 0 : 0 : 0 : 1 : t)
E00 : (0 : 0 : 0 : 1 : −1 : t)

E0i : (1 : −λi : λ2
i : λ2

i (s1 + λi) : t : λit − λ3
i (s1 + λi))

E0j : (1 : −λj : λ2
j : λ2

j (s1 + λj) : t : λjt − λ3
j (s1 + λj))

Eij : (t : 1 : σ1,ij − σ2,ijt : σ2
1,ij + σ̄2,ij − (σ1,ijσ2,ij + σ̄3,ij)t : σ1,ij σ̄1,ij + σ̄3,ijt :

σ2,ijσ1,ij − σ2,ij σ̄1,ij − σ̄3,ij − σ2
2,ijt).

We have added the right labels already: to identify which is which one may consider
different values of i and/or j, identifying the last 3 lines; to distinguish T00 from
E00 it suffices to check that T00 does not intersect any of the lines Tij .

Our next task is to find the coordinates of the 96 intersection points of the
configuration. We will need them to simplify the equations of our quadrics. If we
denote

pkl
ij = Eij ∩ Tkl
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then we find for any indices such that {i, j, k, l, m} = {1, 2, 3, 4, 5}
p00
00 = (0 : 0 : 0 : 0 : 0 : 1),

p00
0i = (0 : 0 : 0 : 0 : 1 : λi),

p0i
00 = (0 : 0 : 0 : 1 : −1 : −λi),

p0i
0i = (−1 : λi : −λ2

i : −λ2
i σ̄1,i : λi(λ2

i + σ̄2,i) : λ2
i (σ̄2,i + λiσ̄1,i + λ2

i )),

pij
0i = (1 : −λi : λ2

i : λ2
i σ̄1,i : σ̄3,ij + σ2,ij σ̄1,ij + λ2

i σ̄1,ij :
λi(σ̄3,ij + σ2,ij σ̄1,ij + λiσ2,ij)),

p0i
ij = (−1 : λi : −λ2

i : λ3
i + λi(σ2,ij + σ̄2,ij) + σ̄3,ij : −σ̄3,ij − σ2,ij σ̄1,ij − λ2

i σ̄1,ij :
− λi(σ̄3,ij + σ2,ijλi + σ2,ij σ̄1,ij)),

pij
ij = (σ1,ij σ̄1,ij − σ̄2,ij − σ2

1,ij + σ2,ij : −σ̄3,ij − σ1,ijσ2,ij + σ̄1,ijσ2,ij :

− σ2
2,ij + σ2,ij σ̄2,ij − σ1,ij σ̄3,ij : σ2,ijσ1,klσ1,kmσ1,lm − σ1,ijσ

2
2,ij − σ̄3,ijσ1,ij σ̄1,ij

σ̄3,ij(σ2,ij − σ̄2,ij − σ2
1,ij) + σ1,ijσ2,ij σ̄1,ij(σ̄1,ij − σ1,ij) :

σ̄2
3,ij − σ2

2,ij(σ̄
2
1,ij − σ̄2,ij − σ1,ij σ̄1,ij + σ2,ij)),

pkl
ij = (σ1,kl − σ1,ij : σ2,kl − σ2,ij : σ1,ijσ2,kl − σ2,ijσ1,kl :

σ2,kl(σ2,kl − σ2,ij + σ2
1,ij) − σ1,ijσ1,klσ2,ij − λm(σ1,ijσ2,kl − σ2,ijσ1,kl) :

(σ1,ijσ2,ij − σ1,klσ2,kl)λm + σ1,ijσ1,kl(σ2,kl − σ2,ij) :

(σ2
2,kl − σ2

2,ij)λm + σ2,ijσ2,kl(σ1,ij − σ2,kl)).

These points are used to compute the 16 projective tranformations τij which come
from the 16 translations on JΓ over half periods; it actually suffices to compute the
τ0i. The transformation τ01 should map the following 7 points

p00
00, p01

00, p00
01, p01

01, p02
02, p03

03, p04
04

to

p01
01, p00

01, p01
00, p00

00, p12
12, p13

13, p14
14

(in that order), and similar for the other τ0i. If we introduce the following abbre-
viation

χk
ij =

k∑

l=0

σ̄j+l,iλ
k−l
i ,

then we find that the matrix for τ0i is given by
(

Ai Bi

)
, where

Ai =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ2
i χ

2
io λiχ1

i1 −λiχ1
i0

λiχ1
i3 λ4

i + χ1
i3 λ2

i χ
1
i0

−λ2
i χ

1
i3 λ3

i χ
1
i1 χ2

i2

−σ̄1,iλ2
i χ

1
i3 2λ4

i σ̄
2
1,i + σ2χ4

i0 σ1χ2
i2 − χ1

i0λ
4
i

λiχ1
i3 −λ2

i χ
1
i1(λ2

i + σ̄2,i) λ2
i χ

1
i0(λ2

i + σ̄2,i)

−
(
χ1

i3

)2
λiχ1

i3χ
1
i1 −λiχ1

i3χ
1
i0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Bi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λi −1

0 −λ2
i λi

0 λ3
i −λ2

i

−χ4
i0 −λ4

i − χ2
i2 −σ̄1,iλ2

i

0 σ̄1,iλ3
i + χ1

i3 λi(λ2
i + σ̄2,i)

0 λiχ1
i3 λ2

i χ
2
i0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrices τij commute pairwise so they can be simultaneously diagonalized.
The eigenvalues of τi are given by ±ϕi where ϕi =

∏
j ̸=i(λij) and a complete set

of common eigenvectors for all τij is given by

W0 = (0, 0, 0, 1, 0, 0),

Wi = (1,−λi, λ
2
i , σ1,iλ

2
i ,−λi(λ2

i + σ2,i), σ4,i + λiσ3,i)

where i = 1, . . . , 5. If we let W denote the matrix whose columns are the vectors
Wi and define X = W−1V then then equations of the 3 quadrics V T QiV = 0 take
the following symmetric form.

ϕ1t
2
1 + ϕ2t

2
2 + ϕ3t

2
3 + ϕ4t

2
4 + ϕ5t

2
5 = 0,

ϕ1λ1t
2
1 + ϕ2λ2t

2
2 + ϕ3λ3t

2
3 + ϕ4λ4t

2
4 + ϕ5λ5t

2
5 = 0,(40)

ϕ1λ
2
1t

2
1 + ϕ2λ

2
2t

2
2 + ϕ3λ

2
3t

2
3 + ϕ4λ

2
4t

2
4 + ϕ5λ

2
5t

2
5 = t20.

Of course one can get rid of all factors ϕi but we will not do this because it makes
the coordinates of the 96 points more complex. It is easy to compute that these
points have now the following coordinates.

(0 : ±1 : ±1 : ±1 : ±1 : ±1)
(1 : ±(λ1 − λi) : ±(λ2 − λi) : ±(λ3 − λi) : ±(λ4 − λi) : ±(λ5 − λi))

where the plus signs correspond to the origin resp. the points p0i
00. For the other

points pkl
ij the i-th and j-th coordinates get a minus sign; notice that in this way

all possible signs appear! The translation over a half period ωi + ωj is now just
given by flipping the sign of the i-th and j-th coordinates. This fact is useful in
computing the new parametrizations of the 32 lines: one easily finds that E00 and
Θ00 are given by

E00 : (u : λ1u + r : λ2u + r : λ3u + r : λ4u + r : λ5u + r),
Θ00 : (−u : λ1u + r : λ2u + r : λ3u + r : λ4u + r : λ5u + r),

and for the other lines Eij and Θij it suffices to add a minus sign in the i-th and
j-th coordinates. In particular we have the following proposition:

Proposition 5.8. The involution (t0, t1, t2, t3, t4, t5, t6) "→ (−t0, t1, t2, t3, t4, t5, t6)
restricts to an automorphism of the K-3 surface which interchanges the two families
of 16 lines.

For comparison we also give a more conceptual (but longer) proof of the fact that
φ− is an isomorphism and that its image is the complete intersection of 3 quadrics.
This proof is based on Saint-Donat’s theorem 2.2 and works only in the generic
case (generic in the sense of footnote 1).
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Proposition 5.9. If A = JΓ is generic then the linear system |C−| has no base
points and leads to a regular map φ− : K̃Γ → P5.

Proof. It follows from (5) that C2
− = 8 so it suffices to show, according to The-

orem 2.2, that |C−| has no fixed components. None of the curves Bi can belong
to the base locus because, if we increase one of the νi to 3 then the number of
sections drops. If some other divisor is a fixed component of |C−| then there is a
symmetric divisor D on A such that every odd section of H0([D−]) vanishes on D.
Since D is actually totally symmetric it is linearly equivalent to Θ, 2Θ, 3Θ or 4Θ
and we have a basis {ss1, . . . , ss6} of H0([D−]), D being cut out by s. Then the
sections {s1, s2, s3, s4, s5, s6} represent a linearly independent set of sections with
the same parity (either even or odd) in either H0(3Θ), H0(2Θ) or H0(Θ). Which
is impossible.

Proposition 5.10. If A = JΓ is a generic Jacobi surface then the map φ− : K̃Γ →
P5 is birational.

Proof. We show that we are not in one of the exceptional cases of Saint-Donat’s
Theorem (Theorem 2.2). Let us first assume that K̃Γ contains an irreducible curve
C ′ for which g(C ′) = 1 and C ′ · C− = 2. Then there is a symmetric divisor D′ on
A such that

p∗D′ = π∗C ′ +
16∑

i=1

µi(D′)Ei.(41)

Since C ′2/2 + 1 = g(C ′) = 1 we get C ′2 = 0 and D′2 =
∑16

i=1 µi(D′)2. Then
Formula (7) implies (for D = D− ∼ 4Θ) that the intersection Θ · D′ is given by

Θ · D′ = 1 +
1
4

16∑

i=1

µi(D′).(42)

The Hodge inequality (see [9, p. 368]) Θ2D′2 ≤ (Θ · D′)2 and the Cauchy-Schwarz
inequality (

∑16
i=1 µi(D′))2 ≤ 16

∑16
i=1 µi(D′)2 then lead to

2
16∑

i=1

µi(D′)2 = Θ2D′2 ≤ 1 +
1
2

16∑

i=1

µi(D′) +
16∑

i=1

µi(D′)2,(43)

an equality, which is easily rewritten as
16∑

i=1

(
µi(D′) − 1

4

)2

≤ 2.(44)

This means that each of the µi(D′) must be either 0 or 1; if n of them are equal to
1 and the other ones are equal to 0 then (44) reduces to n ≤ 2. Then Θ ·D′ is only
an integer for n = 0 in which case Θ ·D′ = 1, an impossibility if A is generic. This
excludes the first case of the Saint-Donat Theorem.

We now assume that K̃Γ contains a divisor C ′ such that g(C ′) = 2 and C− ∼ 2C ′.
Then C− · C ′ = 2C ′2 = 4. If we define D′ as in (41) then we find as before

D′2 = 4 +
16∑

i=1

µi(D′)2, Θ · D′ = 2 +
1
4

16∑

i=1

µi(D′).(45)
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and proceed as in the first part of the proof: we apply the Hodge and Cauchy-
Schwarz inequalities to get

2

(
4 +

16∑

i=1

µi(D′)2
)

= Θ2D′2 ≤ 4 +
16∑

i=1

µi(D′) +
16∑

i=1

µi(D′)2.(46)

This inequality is easily rewritten as
16∑

i=1

(
µi(D′) − 1

2

)2

≤ 0,(47)

which has no solution. Thus, both exceptional cases of Theorem 2.2 are excluded
and φ− is birational.

Proposition 5.11. If A = JΓ is generic then the birational map φ− : K̃Γ → P5 is
an embedding of the smooth Kummer surface K̃Γ in P5.

Proof. Since we know from the previous proposition that φ− is birational it suffices
to show that no curve is contracted. If Bj = π∗(2Ej) were contracted then

0 = C− · Bj =
1
2

(
p∗D− −

16∑

i=1

Ei

)
· (2Ej) = 1,(48)

a contradiction. Assume now that an irreducible divisor C ′ on K̃Γ, different from
the curves Bj , is contracted. There exists a symmetric divisor D′ on A such that
π∗(C ′) = p∗(D′) −

∑16
i=1 µi(D′)Ei. This leads to the following contradiction:

2

(
16∑

i=1

µi(D′)

)2

≤ 32
16∑

i=1

µi(D′)2 ≤ 32D′2 ≤ (D− · D′)2 =

(
16∑

i=1

µi(D′)

)2

.(49)

In the first inequality in (49) we used the Cauchy-Schwarz inequality and in the
second one we used that C ′2 ≥ 0. The third inequality follows from Hodge’s
inequality (cfr. supra) and the equality in (49) follows from

0 = C− · D =
1
2

(
D− · D′ −

16∑

i=1

µi(D′)

)
.(50)

This shows that no curve is contracted hence φ− is an isomorphism onto his image.

We finally show that the image is of φ− is defined by quadratic equations.

Proposition 5.12. If A = JΓ is generic then the image of φ− in P5 is given by
an intersection of quadrics, in particular it is a complete intersection.

Proof. We exclude the exceptional cases of Theorem 2.3. First, assume that there
exists an irreducible curve C ′ such that g(C ′) = 1 and C ′ · C− = 3. There exists a
symmetric divisor D′ on A such that π∗(C ′) = p∗(D′)−

∑16
i=1 µi(D′)Ei and we find

C ′2 = 0, H2 =
∑16

i=1 σ2
i and Θ · D′ = 3

2 + 1
4

∑16
i=1 µi(D′), leading to the following

inequality for the µi(D′)
16∑

i=1

(
µi(D′) − 3

8

)2

≤ 9
2
.(51)
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Since every term is at least equal to 9/64 all µi(D′) must be equal to 0 or 1. If
we assume that n of them are equal to 1 and the others are zero then (51) reduces
to n ≤ 9 which gives only integer solution for Θ · H when n = 2 or n = 6. If
n = 6 then Θ · D′ = 3 which is impossible on a generic Jacobian. If n = 2 then
Θ · D′ = 2 so that D′ is algebraically equivalent to Θ, so D′ is a translate of Θ.
Since D′ is symmetric it must be a translate of Θ over a half period. Now the
equation p∗H = π∗D + E1 + E2 tells us that H has even multiplicity at all half
periods except at 2 half periods, which is impossible, excluding the first exceptional
case.

Second, let us assume that K̃Γ contains 2 curves C ′ and C ′′ such that g(C ′) =
2, g(C ′′) = 0, C ′ · C ′′ = 1 and C− ∼ 2C ′ + C ′′. Then

C− · C ′′ = (2C ′ + C ′′) · C ′′ = 2 − 2 = 0(52)

implying that C ′′ is a contracted curve for φ−. We have seen however in Proposition
5.11 that no curve is contracted, excluding the second exceptional case.

In the case of the odd sections of [4Θ] one can ask for higher vanishing at one of
the half periods eij and find a quartic in P3. It is easy to very that in this case the
image has 6 singular points which come from the 6 theta curves passing through
that point. The exceptional divisor Eij maps to a curve of degree three and all
the theta curves and exceptional divisors are mapped to lines. Compare this to the
case of φ+ for 3Θ: it is exactly the “dual”. Computing the image one finds exactly
the same image as in the latter case. The reason for this is that, as we have seen,
the K-3 surface carries an automorphism which interchanges the two families of 16
lines.
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7. José Bertin and Pol Vanhaecke, The even master system and generalized Kummer surfaces,
Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 1, 131–142.

8. Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John
Wiley & Sons], New York, 1978, Pure and Applied Mathematics.

9. R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in
Mathematics, No. 52.

10. R. W. H. T. Hudson, Kummer’s quartic surface, Cambridge Mathematical Library, Cambridge
University Press, Cambridge, 1990, With a foreword by W. Barth, Revised reprint of the 1905
original.

11. J. Huebschmann, Poisson structures on certain moduli spaces for bundles on a surface, Ann.
Inst. Fourier (Grenoble) 45 (1995), no. 1, 65–91.

12. C. M. Jessop, A treatise on the line complex, Chelsea Publishing Co., New York, 1969.
13. K. Kodaira, On compact complex analytic surfaces. I, Ann. of Math. (2) 71 (1960), 111–152.



PROJECTIVE IMAGES OF KUMMER SURFACES 35

14. H. Lange and C. Birkenhake, Complex abelian varieties, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag,
Berlin, 1992.

15. D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354.
16. , Tata lectures on theta. II, Progress in Mathematics, vol. 43, Birkhäuser Boston Inc.,
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Departamento de Matemática, Universidad Nacional del Sur, 8000 Bah́ıa Blanca,
Argentina

E-mail address: impiovan@criba.edu.ar

Université de Poitiers, Mathématiques, SP2MI, Boulevard 3 - Téléport 2 - BP 179,
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