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Abstract
Different living mammals have developed a carnivorous habit (e.g., Carnivora, Dasyuridae, Thylacinidae, some Didelphidae). They
exhibit different specializations for carnivory; however, they share some characters such as a carnassial molar. Previous studies have
correlated the shape of molars with diet using morphometric indices or surface scans. In this work, we used 3D geometric morpho-
metrics to explore the shape of the lower carnassials of 235 specimens corresponding to 71 extant species of Carnivora and six extant
species ofMarsupialia, bothDidelphimorphia andDasyuromorphia.We statistically estimated the effect of size, diet, and phylogeny on
molar shape. All the analyses indicated a higher correlation between diet andmolar shape, and a better correlation betweenmolar shape
and the position of each species on the phylogeny. Therefore, if we take into account the phylogenetic pattern, we can use molar
morphology to infer diet of fossil species. Finally, this work evaluates for the first time, in a quantitative way, which of the lowermolars
of the Metatheria (m3 or m4) is the best analogue to the m1 of Carnivora; our results indicated the m4 is the best analogue.

Keywords Canonical phylogenetic ordination . Diet classification . Dietary proxies . Evolutionary constraints . Geometric
morphometrics

Introduction

Carnivorous animals are considered an important component of
ecosystems; in fact some authors have proposed that predators
are regulators of herbivore biomass (Hairston et al. 1960).
Within living mammals, different taxa have developed a car-
nivorous diet: within both Placentalia (e.g., some members of
Carnivora and Cetacea; Flynn and Wesley-Hunt 2005) and
Marsupialia (e.g., Dasyuridae, Thylacinidae, and some
members of Didelphidae; Jones 2003; Goin et al. 2016).

Associated with this dietary habit, we can find different mor-
phological specializations in the dentition, jaw morphology,
senses, and musculature, among others (e.g., Savage 1977;
Werdelin 1987; Biknevicius and Van Valkenburgh 1996; Van
Valkenburgh 2007). In terrestrial carnivorous mammals, the
molars are used to process meat, functioning as cutting and
grinding tools (Van Valkenburgh 1989). The anterior half of
the lower molar, the trigonid, equipped with a cutting blade
(the paracristid connecting the paraconid to the protoconid),
cuts when contacting the metacrista of the upper molar; where-
as the posterior half, the talonid, acts as grinding platform when
contacting the protocone of the upper molar (Biknevicius and
Van Valkenburgh 1996; Evans and Sanson 2006). However,
there is great variation in tooth morphology between species,
which is at least partly related to dietary habits (e.g., Goin et al.
1992; Hogue and Ziashakeri 2010; Ungar 2010).

Most carnivorous placental mammals are grouped into the
Order Carnivora. Carnivorans are equipped with a distinctive
P4/m1 carnassial pair, named the carnassial shear, restricted to
this tooth locus only, which distinguishes this clade from other
groups of Mammalia (Van Valkenburgh 1989; Ungar 2010).
Nevertheless, this is a plesiomorphic character for Carnivora,
which is present in all carnivoramorphans (i.e., Carnivora,
BMiacidae,^ and Viverravidae; Flynn and Wesley-Hunt 2005).

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10914-018-9448-7) contains supplementary
material, which is available to authorized users.

* Sergio D. Tarquini
starquini92@gmail.com

1 Centro Regional de Investigaciones Científicas y Transferencia
Tecnológica de La Rioja (CRILAR – Provincia de La Rioja,
UNLAR, SEGEMAR, UNCa, CONICET), Entre Ríos y Mendoza s/
n (5301), Anillaco, La Rioja, Argentina

2 Departamento de Ciencias Exactas, Fisicas y Naturales, Universidad
Nacional de la Rioja (UNLaR), Av Luis M. de la Fuente s/n (5300),
La Rioja, La Rioja, Argentina

Journal of Mammalian Evolution
https://doi.org/10.1007/s10914-018-9448-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s10914-018-9448-7&domain=pdf
https://doi.org/10.1007/s10914-018-9448-7
mailto:starquini92@gmail.com


The present success of Carnivora is owing, to a large extent, to
the evolutionary versatility related to this dental specialization
(Butler 1946; Werdelin 1987; Van Valkenburgh 1989, 2007);
that is, we can find a gradient from the more carnivorous species
with bladelike carnassials (e.g., felids) to the least carnivorous
species with generalized molars (e.g., bears; Ewer 1973;
Biknevicius and Van Valkenburgh 1996; Ungar 2010).

On the other hand, within marsupials there are some clades
with mostly carnivorous species (i.e., Dasyuromorphia).
Some species feed exclusively on vertebrate prey, such as
the thylacine (Thylacinus cynocephalus), the Tasmanian devil
(Sarcophilus harrisii), and the spotted-tailed quoll (Dasyurus
maculatus), while others feed on arthropods, such as the little
agile antechinus (Antechinus agilis) (Lee and Cockburn 1985;
Jones 2003; Baker 2015). Their Neotropical counterparts are
mostly generalist species; however, we can discern a continu-
um from basically frugivorous species (e.g., Caluromys
philander) to mainly carnivorous ones (e.g., Lutreolina
crassicaudata) (Lee and Cockburn 1985; Vieira and Astúa
de Moraes 2003; Astúa 2015). Unlike placental carnivores,
marsupials have molars with a similar morphological pattern
(with the exception of the last upper molar), with differences
in size and no specialization to an exclusive function such as
slicing or grinding. Consequently, each marsupial molar re-
tains a cutting blade and a grinding area in the lower molars,
forming three pairs of carnassials (M1-M3/m2-m4; Savage
1977; Muizon and Lange-Badré 1997; Jones 2003).
However, while three pairs of carnassials are present in adults,
each pair has a preponderant function in different ontogenetic
stages (i.e., M2/m3 in subadults and M3/m4 in adults;
Werdelin 1987; van Nievelt and Smith 2005; Macedo et al.
2006; Ceotto et al. 2009; Forasiepi and Sánchez-Villagra
2014). This is related to this exceptional pattern of molar
growth, given that every time a molar erupts, it is in an advan-
tageous position of the jaw, optimizing bite force (i.e., average
distance between the condyle and the canine; Werdelin 1987).
Thus, the jaw grows at the posterior end of the ramus and a
new molar erupts in this position, with the posteriormost mo-
lars the ones that occupy the most advantageous biomechan-
ical position in adults, and usually are the largest molars
(Butler 1946; Werdelin 1986, 1987). In view of the above,
some authors (Werdelin 1986; Prevosti et al. 2012a) consid-
ered the m4 of marsupials as analogous to the carnassial of
Carnivora (m1), while others (Jones 2003) considered both
m3 and m4 to be important for shearing meat.

Traditional studies of tooth function have associated vari-
ous quantitative measures of tooth shape (i.e., morphometric
ratios or angles) with the degree of vertebrate flesh consumed
by the animal (e.g., Crusafont-Pairó and Truyols-Santonja
1956; Kay 1975; Van Valkenburgh 1989; Goin et al. 1992;
Popowics 2003; Evans et al. 2005; Meloro and Raia 2010;
Asahara et al. 2016). In recent works, there are two major
morphological approaches: one uses three-dimensional

modeling to relate complexity of the molar surface with diet,
taking into account the effects of occlusion and wear on mo-
lars (Evans et al. 2007; Smits and Evans 2012; Pineda-Munoz
et al. 2017), while the other uses 2D geometric morphometric
methods to analyze molar shape, digitalizing the entire man-
dible or just the molar (Meloro et al. 2008, 2015; Chemisquy
et al. 2015; Magnus and Cáceres 2017; Echarri et al. 2017).

In spite of their morphological differences and the phylo-
genetic distance between them, Carnivora andMarsupialia are
good examples for analyzing similarities in tooth shape due to
ecological similarities (i.e., convergences and parallelisms; de
Muizon and Lange-Badré 1997; Jones 2003; Prevosti et al.
2012a; Smits and Evans 2012; Asahara et al. 2016). In this
study, we used 3D geometric morphometric methods and mul-
tivariate analyses to elucidate the relationship of the lower
carnassial shape with diet and size in a phylogenetic frame-
work, and to evaluate the existence of convergences and evo-
lutionary constraints. Additionally, this study discusses the
likelihood of the carnassial shape to represent a good proxy
for inferring dietary habits in extinct predatory mammals.

Materials and Methods

Samples

We digitized the first lower molar (m1) of 217 specimens
corresponding to 71 extant species of Carnivora and the third
and fourth lower molars (m3 and m4) of 18 specimens corre-
sponding to six extant species of Marsupialia, including both
Didelphimorphia and Dasyuromorphia (Online Resource 1).
Only adult specimens with fully erupted dentition were in-
cluded, and we selected molars with little wear. To cover the
range of morphological variation, we included six specimens
per species, trying to sample an equal number of males and
females, as well as from different provenances (see
Online Resource 2: Sexual dimorphism for more detail).
Because we analyzed in detail lower carnassial morphology,
we did not include taxa with reduced dentition, homodont
dentition, or those which have highly modified carnassials
(e.g., Myrmecobius fasciatus, Pinnipedia, Potos flavus,
Proteles cristata). Although we tried to cover most of the
shape variation and taxonomic diversity of Carnivora and
Marsupialia, some families were underrepresented (e.g.,
Dasyuridae, Herpestidae, and Viverridae) due to their limited
representation in the collections that we could visit. In the case
of Didelphimorphia, we only included the species with the
largest molars (i.e., Lutreolina, Didelphis) because of the size
limit in the precision of the available digitalizing arm (see
Online Resource 2: Molar size limit for more detail).

Based on previous papers (Taylor 1986; Padial et al. 2002;
Torre et al. 2003; Vieira andAstúa deMoraes 2003; Kruuk 2006;
Dragoo 2009; Rosalino and Santos-Reis 2009; Sillero-Zubiri
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2009; Sunquist and Sunquist 2009; Garshelis 2009; Goillot et al.
2009; Holekamp and Kolowski 2009; Kays 2009; Larivière and
Jennings 2009; Baker 2015; Helgen and Veatch 2015), we clas-
sified the species according to their diet, following the classifica-
tion proposed by Van Valkenburgh (1989) with minor modifica-
tions: Hypercarnivores —feed primarily on other vertebrates;
Mesocarnivores —feed mainly on other vertebrates, but also
plants and invertebrates; Omnivores—meat, plants, and inverte-
brates represent a similar proportion of the diet; Herbivores
—feed mostly on plant material; Insectivores —feed mostly on
insects; Piscivores—feed mostly on fish.

Institutional abbreviations. AMNH, American Museum of
Natural History, New York; FMNH, Field Museum of Natural
History, Chicago; MLP, Museo de La Plata, La Plata; MACN,
Museo Argentino de Ciencias Naturales BBernardino
Rivadavia,^ Ciudad Autónoma de Buenos Aires; MNHN,
Muséum National d’Histoire Naturelle, Paris.

Landmarks

Using a MicroScribe G2X digitizer (Immersion Corporation)
together with the MicroScribe Utility Software V.6.0.2, we
recorded nine landmarks (ldk) in three dimensions on different
anatomical structures of the molar: paraconid (ldk 1), carnas-
sial notch in the paracristid (ldk 2), protoconid (ldk 3),
metaconid (ldk 4), hypoconid (ldk 6), entoconid (ldk 7), and
the mesial and distal edges of trigonid and talonid (ldk 5, 8 and
9; Fig. 1). We also recorded a significant number of semi-
landmarks to delimit the base of the crown (Fig. 1). The ap-
plication Resample (Reddy et al. 2006) was used to resample
and slide the semi-landmark coordinates, and to reduce the
sample to ten semi–landmarks in total (Fig. 1; Perez et al.
2006). We tested all landmarks for repeatability (see
Online Resource 2: Quantification of landmark error for more
detail). In the case of species with molars with missing cusps,
we proceeded as indicated by Klingenberg (2008) and Oxnard
and O’Higgins (2009): if the metaconid was missing (ldk 4),
we placed this landmark in the protoconid position; if the
cusps of the talonid were missing (ldk 6 or 7), we placed these
landmarks on the distal edge of the tooth (Fig. 1).

Shape Analyses of Molars of Marsupials

In the case of marsupials, we evaluated first if the morphology
of m3 and m4 had significant differences. We aligned land-
mark configurations by performing a generalized Procrustes
analysis (GPA; Goodall 1991; Rohlf 1999), and then per-
formed a Procrustes ANOVA with re-sampling to take into
account the small sample size; where the Procrustes coordi-
nates were the dependent variables, and species and the num-
ber of molars were the independent variables (Goodall 1991;
Anderson 2001; Adams and Collyer 2016). In order to incor-
porate the phylogenetic relationships, we performed a

phylogenetic ANOVA (Adams 2014a) with the same param-
eters as the previous analysis. The generalized Procrustes
analysis, the Procrustes ANOVA, and the phylogenetic
ANOVA were calculated using geomorph library (Adams et
al. 2017) for the software R 3.1.3 (R Core Team 2015).

Finally, in order to determine which molar correlated best
with the diet in marsupials and to quantify which molar was
the best analogue to the m1 of Carnivora, we performed two
last tests. In the first one, we put all the data (m1 of placentals
and m3 and m4 of marsupials) in one morphospace and then
estimated the average shape of the molars of the placentals in
each dietary category. After that, we measured the Procrustes
distances between the calculated averages and the molars of
each marsupial of the same dietary category. In addition, we
compared the measured Procrustes distances. For example, we
took a specimen ofDidelphis albiventris, which is recognized
as an omnivorous species, and compared the Procrustes dis-
tance between its m4 and the average shape of omnivorous
placentals and the Procrustes distance between its m3 and the
average shape of omnivorous placentals. We tested if the dif-
ferences between distances (m1-m3 vs. m1-m4) are

Paraconid
Metaconid

Protoconid

Entoconid

Hypoconid

Tri
Ta

1

2

3

4

5

6

7 8

9

Paracristid

Tri

ParaconidProtoconid

1 8

2

3; 43; 45

6;

7;

9

6;

7;

9

Paracristid

Labial

Distal

Lingual

Mesial

a)

b)

Fig. 1 Diagram of landmarks used in this study. Red squares, landmarks;
green circles, semi-landmarks. Landmarks: 1) paraconid; 2) carnassial
notch in the paracristid; 3) protoconid; 4) metaconid; 5) distal edge of
trigonid; 6) hypoconid; 7) entoconid; 8) mesial edge of trigonid; 9) distal
edge of talonid. a) Occlusal view of generalized molar (e.g., Didelphis
albiventris), b) Occlusal view of reduced molar (e.g., Panthera onca)
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significant by using a permutations test (1000 runs).
Procrustes distances and permutations test were calculated
using geomorph library (Adams et al. 2017) for the software
R 3.1.3 (R Core Team 2015).

In the second test, we evaluated the morphology of m3 and
m4 separately, creating two datasets: all m1 of Carnivora plus
m3 of Marsupialia (dataset m1 +m3); and all m1 of Carnivora
plus m4 of Marsupialia (dataset m1 + m4). Then we per-
formed a between–group PCA (bg-PCA) and a discriminant
analysis (DA) with the scores of the bg-PCA. Although the
problems of performing a DA with geometric morphometry
data are known (Kemsley 1996; Sheets et al. 2006), most of
these problems are reduced by first performing a bg-PCA
(Mitteroecker and Bookstein 2011). Bg-PCA leads to a better
group separation than the ordinary PCA by preserving the
original Procrustes distances in the shape space, but avoids
the overfitting achieved by the canonical variate analysis
(Klingenberg and Monteiro 2005; Mitteroecker and Gunz
2009; Strauss 2010; Kovarovic et al. 2011; Mitteroecker and
Bookstein 2011; Seetah et al. 2012). To consider the probabil-
ity of correct random reclassification, we performed a cross-
validated DA (Kovarovic et al. 2011). The discriminant power
of the DAwas estimated with the percentage of correct poste-
rior reclassification (PCPR). Bg-PCA was performed using
the software MorphoJ 1.06b (Klingenberg 2011) and discrim-
inant analyses were performed using the MASS library
(Venables and Ripley 2002) for the software R 3.1.3 (R
Core Team 2015).

Shape and Statistical Analyses of Carnivorans
and Marsupials

Using the dataset m1 +m3 and the dataset m1 +m4, we per-
formed the following analyses. First, landmark configurations
were aligned by performing a generalized Procrustes analysis
(GPA; Goodall 1991; Rohlf 1999) and the distribution of the
specimens in the shape space was analyzed by carrying out a
Principal Component Analysis (PCA) of the Procrustes coor-
dinates. Then, we ran a multivariate regression between log
centroid size and Procrustes coordinates to test allometric re-
lationships between size and shape. All analyses were done
using the software MorphoJ 1.06b (Klingenberg 2011).

The relationship between tooth morphology and diet
was explored using a bg-PCA, which projects the data onto
the principal components of the group means (Mitteroecker
and Bookstein 2011; Seetah et al. 2012). As we mentioned
above, bg-PCA leads to a better group separation than the
ordinary PCA given that it includes two steps: first, a PCA
with the centroid of groups distributions (i.e., averaging
the observations according to the dietary categories) and
then, all data are projected on the principal components
obtained (Mitteroecker and Bookstein 2011; Seetah et al.

2012). Bg-PCA was performed using the software
MorphoJ 1.06b (Klingenberg 2011).

To complement the observations on the relationship be-
tween tooth morphology and phylogeny, we constructed a
chronophylomorphospace bymapping a calibrated phylogeny
onto the morphospace. The phylogenetic matrix was con-
structed from a combined phylogenetic tree, following the
same procedures as in Prevosti et al. (2012a). The combined
phylogenetic tree was built based on recently published phy-
logenies (Flores 2009; Eizirik et al. 2010; Eizirik 2012; Sato et
al. 2012; Austin et al. 2013; Kutschera et al. 2014; Li et al.
2016; Westerman et al. 2016). First appearances (FAs) of spe-
cies and minimum dates of internal nodes were taken either
from the literature or the Paleobiology Database (http://
paleodb.org) (Online Resource 3). With these data, we cali-
brated the phylogeny using the paleotree library (Bapst 2012)
for the software R 3.1.3 (RCore Team 2015). Additionally, we
calculated the Kmult, a multivariate generalization of the K
statistic of Blomberg et al. (2003), to evaluate the phylogenet-
ic signal in a dataset relative to what it is expected under a
Brownian motion model of evolution (Adams 2014b). The
significance was tested by 1000 random permutations of the
shap e da t a among th e t i p s o f t h e phy l ogeny.
Chronophylomorphospace and Kmult were estimated using
geomorph and rgl libraries (Adams et al. 2017; Adler et al.
2017) for the software R 3.1.3 (R Core Team 2015).

To evaluate statistically the effect of phylogeny, size, and
diet on the shape we used the Canonical Phylogenetic
Ordination (CPO) method following Chemisquy et al. (2015).
This method consists of the application of a redundancy or
canonical correspondence analysis including phylogenetic in-
formation, as was proposed by Giannini (2003). This method
allows us to analyze howmuch of the shape (a multidimension-
al variable) is explained by the factors mentioned above in a
variance partitioning approach. With this method, it is also pos-
sible to measure how much of each factor explains shape,
constraining the effect of other factors (i.e., how much of the
carnassial shape variance is explained by diet without the con-
tribution of phylogeny and/or size). For this method, we per-
formed a Redundancy Analysis (RDA; Legendre and Legendre
1998) using shape (i.e., the landmark configurations of the
aligned and averaged species) as the community matrix, and
centroid size, diet, and phylogeny as constraints. Phylogenetic
information was taken from the Matrix Representation using
Parsimony of the tree (MRP), which consists of a binary matrix
where the columns represent the membership of each taxon to a
clade (see Giannini 2003). In order to discard collinear variables
from the phylogeny, we used both Forward and Backward
Stepwise Regression Analysis for reducing the number of
nodes of the phylogeny and finding the model with lowest
Akaike Information Criterion (AIC) value (Legendre and
Legendre 1998; Godínez Domínguez and Freire 2003). The
resampling of the data, the RDA analyses with their
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significance, and the AIC estimations were performed using the
software R 3.1.3 (R Core Team 2015) and its package vegan
(Oksanen et al. 2015).

Bearing in mind that there are a lot of phylogenetic com-
parative methods, some authors proposed to analyze the same
dataset using more than one method to avoid their limitations
(Martins et al. 2002). Consequently, to complement the CPO,
we ran a Phylogenetic ANOVA (or D-PGLS; Adams 2014a;
Adams and Collyer 2016). This method performs a Procrustes
ANOVA in a phylogenetic framework, describing patterns of
shape variation and covariation for a set of Procrustes-aligned
coordinates (Grafen 1989; Martins and Hansen 1997; Adams
2014a). Given that this method assumes a Brownian motion
model of evolution, we included the calibrated phylogeny
(Adams 2014a). For comparison, we also performed a non-
phylogenetic evaluation using a Procrustes ANOVA (or GLS;
Goodall 1991) following Adams (2014a). We found it inter-
esting to compare methodologies that incorporate phylogenet-
ic information in two different ways: Phylogenetic ANOVA as
part of the error I and CPO as part of the model (Martins and
Hansen 1997; Raia et al. 2010). Procrustes ANOVA and
Phylogenetic ANOVA were performed using the geomorph
library (Adams et al. 2017) for the software R 3.1.3 (R Core
Team 2015).

The datasets generated during the current study are avail-
able from the corresponding author upon reasonable request.

Results

Shape Analyses of Molars of Marsupials

Procrustes ANOVA reveals a significant relationship between
shape and number of molar (m3 or m4), i.e., the shape of the
thirdmolar differs from that of the fourthmolar (Online Resource
4). In fact, when we include the phylogeny in the analysis, the
correlation increases (from 11.50 to 42.63%;Online Resource 4).
This means that the morphologies of m3 and m4 are different.

When we include all the molars in a sole dataset and mea-
sure the Procrustes distances between marsupial and
carnivoran molars, we observe that the m4 of marsupials is
the closest molar to the m1 of carnivorans in 93% of the cases
(Online Resource 4). Procrustes distances between m1-m3
(0.25 in average) and between m1-m4 (0.22 in average) are
significantly different (p-value = 0.0152; Online Resource 4).
This high percentage would indicate that, in this context, the
m4 of marsupials is a better analogue to the carnivoran m1,
than the m3. Moreover, when we separate marsupial molars in
two datasets (m1 +m3 and m1 +m4), we find similar results
in both of them, with some differences in the PCA, the bg-
PCA, and the RDA. However, when performing DA to quan-
tify which of the two marsupial lower molars is the best ana-
logue to the carnivoran m1, we observe that dataset m1 +m4

better reclassifies the diet of marsupials (dataset m1 +m3 er-
roneously reclassifies the diet of 12 of the 18 marsupials in-
cluded, whereas in dataset m1 +m4 only two specimens were
incorrectly reclassified; Online Resource 4). This is in concor-
dance with the pattern of distribution in the PCA based on
dataset m1 + m3, where marsupials are more displaced to-
wards negative values of PC1 than the same marsupials in
dataset m1 + m4 (Fig. 2 and Online Resources 4 and 5).
Therefore, m4 is more modified than m3 (i.e., m4 has a higher
protoconid, a smaller talonid, sometimes without entoconid).
All this suggests that, for this sample of marsupials, the m4
morphology is a better proxy for their diet, and it is a better
analogue to the carnivoran m1, than the m3. For this reason
we show the results of the analysis with the dataset m1 +m4.

General Approach of the Relationship between Tooth
Morphology and Diet

The first principal component (PC1) explains 55.78% of the
total variance. Specimens at the positive end of PC1 have a
molar with longer trigonid, without metaconid, with the
paracristid parallel to the mesiodistal axis, and the talonid is
reduced or absent (Fig. 2). On the negative end of PC1, spec-
imens have molars with a shorter trigonid and a longer and
wider talonid. The cusps of the trigonid and talonid of these
specimens have a similar height, and the paracristid is oblique
or even transversal to the mesiodistal axis (Fig. 2). PC2 ex-
plains 8.68% of the total variance. Specimens at the positive
end of PC2 have wider molars, without an entoconid and with
a short protoconid (Fig. 2). Specimens at the negative end of
PC2 exhibit the opposite tendency (Fig. 2).

A clear pattern is found along PC1, from negative to positive
values showing a continuum between herbivores, omnivores,
mesocarnivores, and hypercarnivores (Fig. 3). Along PC2,
these categories widely overlap and only piscivores are partially
separated towards the positive values (Fig. 3). Hypercarnivores
have mostly positive values for PC1, the most positive being
the Felidae. Some other hypercarnivorous species (certain
herpestids, mustelids, and canids) overlap along PC1 with
mesocarnivores, and insectivores, and marginally with omni-
vores (Figs. 2 and 3). On the other hand, the hypercarnivorous
ursid, Ursus maritimus, is placed in the morphospace near the
rest of the bears, which is shared by herbivores, omnivores,
mesocarnivores and insectivores. Most of the mesocarnivores
possess negative values of PC1 (although close to zero), and
only the mesocarnivorous hyaenas and dasyurids have positive
values (Figs. 2 and 3). The remaining mesocarnivores (i.e.,
mesocarnivorous didelphids, viverrids, mustelids, and canids)
share the morphospace with hypercarnivores, omnivores, and
insectivores (Figs. 2 and 3). Omnivores have solely negative
values in PC1 (Fig. 3). Omnivorous canids and didelphids over-
lap with mesocarnivores and insectivores; omnivorous
mustelids overlap with hypercarnivores, mesocarnivores, and
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piscivores; while omnivorous mephitids, procyonids, and
ursids overlap with herbivores and piscivores (Figs. 2 and 3).
Herbivores also have negative values along PC1. In particular,
the herbivorous procyonids show the most extreme negative
values, while herbivorous ursids are close to other bears, shar-
ing the morphospace with herbivores, omnivores,
mesocarnivores, and insectivores (Figs. 2 and 3). Insectivores
are widely dispersed along PC1, thus overlapping with herbiv-
orous, omnivorous, mesocarnivorous, and hypercarnivorous
species (Fig. 3). Finally, piscivores (only represented by
Lutrinae) are well grouped in the negative quadrant for the
PC1 and positive for the PC2, marginally sharing the
morphospace with mesocarnivores and omnivores (Fig. 3).

The bg-PCA does not provide any clear improvement of
the results obtained by the PCA. It shows a similar distribution
pattern among diet categories along the bg-PC1 (explaining
64.89% of the total variance; Fig. 4). Bg-PC2 explains
17.14% of the total variance, and piscivores are located on
the positive end of PC2, separated from the remaining catego-
ries (Fig. 4). Bg-PC3 explains 10.69% of the total variance
and separates insectivores towards the positive values, which
are limited to a well-defined portion of the morphospace, al-
though they have similar values to some omnivores and
mesocarnivores (Fig. 5). Finally, bg-PC4 explains 6.59% of
the total variance and discriminates the hypercarnivores, with
negative values (except for the hypercarnivorous canids and

ursids), from the mesocarnivores with positive values (except
for the mesocarnivorous hyaenids) (Fig. 5).

General Approach of the Relationship between Tooth
Morphology and Phylogeny

When the taxonomy of the studied specimens is taken into
account into the PCA (Figs. 2 and 6), the plot shows how
the different taxa occupy different areas of the morphospace.
Some of them are superimposed, and others do not overlap
with other groups. For example, the Caniformia tend to be
separated on PC1 from the Feliformia (Fig. 2). Within the
taxonomic groups, it is possible to observe certain order ac-
cording to diet. For example, in hyaenas, Crocuta crocuta
(with hypercarnivorous habits) has higher positive values than
Hyaena hyaena (with mesocarnivorous habits, Fig. 6).
Moreover, at a higher taxonomic level it is noteworthy that
bone-crushing hyaenas (higher positive values of PC2) are
well discriminated from meat-slicing felids (lesser and nega-
tive values of PC2) among Feliformia (Figs. 2 and 6). Among
Caniformia, in turn, canids exhibit negative values of PC2,
with higher and sharper carnassials than mustelids (higher
positive values of PC2). Also, marsupials occupy a middle
position along PC1, but Dasyuromorphia has higher values
than Didelphidae (Fig. 2). Even if we incorporate time and
include phylogenetic relationships, we can observe better the
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Fig. 2 Morphospace defined by the first two principal components (PC1
and PC2) from the PCA of dataset m1 +m4, showing the distribution of
taxonomic groups. Change in molar morphology in occlusal and labial
view, consensus shape (grey) and extreme shape of each PC (dark red). In
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distribution of taxa (Online Resource 6). The optimized shape
of the ancestor of marsupials tends to be separated on the PC2
from the optimized shape of the ancestor of carnivorans. Then
the PC1 separates at the suborder level: Caniformia from
Feliformia and Didelphimorphia from Dasyuromorphia
(Online Resource 6). At the family level, such ancestor oc-
cupies a different position of the morphospace and then some
descendants maintain the same morphology (such as Felidae)
and others explore diverse morphology (such as Canidae or
Mustelidae) (Online Resource 6). Finally, we observe how
within each family, the separation of the species does not
always agree with the phylogenetic relationships and responds
to another factor (such as diet), meaning that there are several
branches phylogenetically distant that cross or approximate. A
clear example is Speothos venaticus, a hypercarnivorous ca-
nid, which is closer in the morphospace toCuon alpinus (other
hypercarnivorous canid) than to his sister species,Chrysocyon
brachyurus (an omnivorous canid) (their Procrustes distances
are 0.35 and 0.52, respectively; Online Resource 6).

These results are consistent with the significant phyloge-
netic signal found when estimating Blomberg’s K (Kmult =
0.26; P = 0.001) and highlight the importance of taking into
account the phylogeny. However, the value of Kmult < 1 indi-
cates that sister species are more different than what would be
expected under Brownian model, and so, besides the phylog-
eny there are other variables that need to be considered.

Allometry

Although the regression between shape and size is significant
(p-value <0.0001), the variance explained by the correlation is
very low (3.91%) and there is no clear pattern in the distribu-
tion of the taxa (Online Resource 7). Regarding taxonomy, the
smallest taxa are specimens of Didelphidae, which do not
have any size equivalent among the Carnivora of our study,
in spite of their similar morphology (Online Resource 7).
Concerning the distribution of diets, the largest sized taxa
are hypercanivores (except for one herbivore, the panda bear)
but there is no clear pattern for the medium and small taxa
(Online Resource 7).

Relationship between Carnassial Morphology,
Phylogeny, Size, and Ecology

The final model chosen by the AIC value by the forward
stepwise regression analysis contains 35 phylogenetic vari-
ables for a total of 72 nodes (AIC = −325.08), whereas the
model selected by the backward analysis possesses only 34
nodes (AIC = −325.74); for that reason we displayed the
resulting model of the backward stepwise regression analysis
(Online Resource 8). The CPO method reveals that the model
using three factors as constraints (diet, size, and phylogeny)
explains 93.83% of the total shape variation (Table 1).
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Centroid size represents 3.44% of the total variation, against
0.42% when using the remaining factors as conditioning ma-
trix (Table 1). Diet explains 46.71% of the variance, but when
the remaining factors are considered as conditioning matrix,
the percentage falls down to 1.90% (Table 1). Finally, phylog-
eny explains 91.49% of the variation, against 46.71%with the
remaining factors used as conditioning matrix (Table 1). All
the models are significant (p-value <0.05).

The Phylogenetic ANOVA and Procrustes ANOVA reveal
similar results to CPOmethod. The former shows a significant
relationship between diet and size and molar shape (46.38 and
3.46%, respectively; Table 2). However, when this relation-
ship is examined in a phylogenetic context, the association is
still significant, but diet and size explain little of the variation
in molar shape (16.52 and 5.01%, respectively; Table 2).

Discussion

Carnassial Molars in Marsupials

Previous works have searched for differences and conver-
gences between the dentition of carnivorous marsupials and
placentals (e.g., de Muizon and Lange-Badré 1997; Jones
2003; van Nievelt and Smith 2005). Adult placentals are char-
acterized by only one lower carnassial (m1), which erupts in
its final position at the midpoint of the jaw, and remains there
during growth (Werdelin 1987; Van Valkenburgh 1989;
Biknevicius and Van Valkenburgh 1996). Conversely, in adult
marsupials the three posterior molars can slice meat, but really
each molar has a preponderant function in different ontoge-
netic stages (Werdelin 1987; Ceotto et al. 2009; Forasiepi and
Sánchez-Villagra 2014). Our results show that m4 is more

Table 1 Results of the redundancy analyses of molar morphology, diet
size and phylogeny

% P

Total 93.83 0.001

Diet 46.71 0.001

Diet (Bpartial var.^) 1.90 0.003

Size 3.44 0.037

Size (Bpartial var.^) 0.42 0.013

Phylogeny 91.49 0.001

Phylogeny (Bpartial var.^) 44.00 0.001

%, percentage of variance explained by each analysis; P, probability for
each analysis (all are significant at P < 0.05); partial var., partial variance
explained by one factor (e.g., diet) but not by the others (i.e., size and
phylogeny)
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specialized to carnivory than m3, and the m4 morphology
correlates better with the observed diet of adults than m3 mor-
phology (Online Resource 4). It is noteworthy that when mar-
supials are subadults, their m3 is located in the position of the
jaw that optimizes bite force (the m4 has not erupted yet;
Werdelin 1987; Macedo et al. 2006; Ceotto et al. 2009), and
some carnivorous marsupials present differences in their diets
between adults and subadults (Jones 1995; Jones and Barmuta
2000; Thompson et al. 2003; Ceotto et al. 2009). The differ-
ence in molar morphology (m3 vs. m4) observed in our anal-
yses could be a possible explanation to this change in diets
through ontogeny.

Relationship between Tooth Morphology and Diet

Previous studies have shown that there is a correlation be-
tween the morphology of the lower molars and the diet of
animals, which is expected as carnassials are directly used to
process food. Those studies were based either on morphomet-
ric indices that consider, e.g., the cutting blade length of
trigonid with respect to the grinding area of talonid (RGA;
Van Valkenburgh 1989; Van Valkenburgh and Koepfli 1993;
Prevosti et al. 2013) or the shear crest length (Strait 1993;
Hogue and Ziashakeri 2010), or morphometric angles, e.g.,
between the paracristid and the mesiodistal axis (Lower
angle, AI; Goin et al. 1992) or the relationship between the
height of the protoconid and the length of the talonid (Angle
α; Crusafont-Pairó and Truyols-Santonja 1953, 1956; Meloro
and Raia 2010). In the present study, such correlation is cor-
roborated, first visually in the PCA and bg-PCA graphs
(where a continuum is observed between diet categories
along the first axis; Figs. 3 and 4), and secondly quantitatively
in the RDA and Procrustes ANOVA results (47% of the molar
shape variation can be explained by the diet; Tables 1 and 2).
We observed that hypercarnivorous species have molars with
long and high cutting blades, reduced talonids, paracristids
arranged parallel to the dental axis (observable at the positive
end of the first axis), whereas the morphology inverts as the
percentage of meat in the diet of these animals decreases (ob-
servable at the negative end of the first axis).

It is noteworthy that we did not obtain a good separation
between diet categories, and there were different degrees of

overlap among them. This might be in part related to the intrin-
sic definition of diets. The choice among the categories used is
not trivial, given that this will determine how species are ex-
pected to cluster. Some authors classify mammals based on
classic trophic relationships (herbivores, carnivores, and omni-
vores), while others use feeding categories (Kay et al. 1978;
Langer and Chivers 1994; Ungar 2010; Pineda-Munoz and
Alroy 2014). A disadvantage common to all categories is the
discretization of a continuous variable such as diet into classes,
whose chosen limits are questionable (Van Valkenburgh 1989;
Van Valkenburgh and Koepfli 1993; Prevosti et al. 2012b;
Echarri et al. 2017). In addition, several species show signifi-
cant geographic and seasonal variation in their diet (e.g.,
Steinmetz et al. 2013; Lanszki et al. 2015; Graw and Manser
2016; Krawczyk et al. 2016), and would therefore be classified
into different categories if their populations were analyzed sep-
arately (Kay et al. 1978; Van Valkenburgh 1989; Van
Valkenburgh and Koepfli 1993; Prevosti et al. 2012a; Echarri
et al. 2017). Finally, it is necessary to take into account that the
different methodologies for the study of diet of species are a
proxy, and the different tools are actually registering different
evidence of the items consumed, and perhaps ignoring other
items, thus adding to the problem of the complexity of working
with different sources of diet inferences (Kay and Hylander
1978; Evans 2013; Christensen 2014; Calandra and Merceron
2016; Davis and Pineda Munoz 2016; Krawczyk et al. 2016;
Pineda-Munoz et al. 2017).

Some of these problems could be exemplified with the
omnivore category. First, omnivores include some species
whose diet is little known. So although they are considered
omnivores, they might have some unknown main food re-
sources in their diet, which has not yet been described.
Second, there are animals without main items in their diets,
also called generalists in others works (Pineda-Munoz and
Alroy 2014), but in some cases, they must face the same
biomechanical constraints as specialist animals (Kay et al.
1978; Ungar 2010; Figueirido et al. 2013). For example, the
consumption of arthropods might create a structural constraint
because of the exoskeletal chitin, shaping the molars more in
accordance with an insect-based diet, even when the insects
are not the main item in the diet of the animal (Kay et al.
1978). Therefore, within omnivores, we may include species
without main items, but with different proportions of items.
As a consequence, species classified as omnivorous have a
wide variety of molar morphologies, and therefore a great
dispersion in the morphospace (both in the present and in
previous works; Van Valkenburgh 1989; Van Valkenburgh
and Koepfli 1993; Prevosti et al. 2012a; Pineda-Munoz and
Alroy 2014; Echarri et al. 2017).

Another problematic category is the insectivores, because
they have a large dispersion in the morphospace (0.03; Figs. 3
and 4). Additionally, this category has a low number of repre-
sentatives (only three species) due to several reasons: (i)

Table 2 Results of the procrustes ANOVA and phylogenetic ANOVA

PROCRUSTES ANOVA PHYLOGENETIC ANOVA

R2 F P R2 F P

Diet 0.4638 12.2036 0.001 0.1652 2.7798 0.001

Size 0.0346 4.5528 0.008 0.0501 4.2126 0.007

R2 , coefficient of determination for each model term; P, probability for
each analysis (all are significant at P < 0.05)
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insectivorous didelphids (e.g., some species of Monodelphis
and Thylamys; Vieira and Astúa deMoraes 2003; Astúa 2015)
could not be included because of their molar size, i.e., smaller
than the size limit of the digitizing arm that we used; (ii) for
other clades with insectivorous habits, such as Suricata
suricatta, Fossa fossana, or Melursus ursinus (Garshelis
2009; Gilchrist et al. 2009; Goodman 2009), there were no
materials available in the studied collections; (iii) finally, there
are other insectivorous taxa that have highly modified or re-
duced molars, as the hyena Proteles cristata or the
dasyuromorph Myrmecobius fasciatus, which could be not
included in our analyses due to the lack of anatomical land-
marks in common with our sample (Cooper 2005; Holekamp
and Kolowski 2009; Ungar 2010; Friend 2015). Additionally,
although the three included species have an insectivorous diet
(i.e., insects are their main food resource), they have different
overall dietary habits. Galerella sanguinea and Dasyurus
viverrinus supplement their diet with meat of vertebrates
(micromammals, small birds, and carrion) while the consump-
tion of vertebrate meat in Otocyon megalotis is incidental
(Petter 1969; Blackhall 1980; Gilchrist et al. 2009; Sillero-
Zubiri 2009; Baker 2015; Graw andManser 2016). This could
explain why G. sanguinea and D. viverrinus are closer to the
mesocarnivores and hypercarnivores, whereas O. megalotis is
closer to species whose diets include a lower percentage of
meat of vertebrates (Fig. 3).

Relationship between Tooth Morphology
and Phylogeny

In addition to the relationship with diet, a strong correlation
between molar morphology and phylogenetic relationships
was also found. In the PCA graphs (Figs. 2 and 6 and
Online Resource 6) we can observe how the different clades
occupy a well-delimited morphospace, consistent with the
Kmult statistic, which shows significant phylogenetic signal.
Also in the RDA, the phylogeny explains a high percentage
of the total variance (91.49% of the variationwith the remaining
factors as conditioning matrix, and 46.71% of the shape varia-
tion by itself; Table 1) and is the main factor that explains
carnassial variation. In the case of diet, the percentage of vari-
ance explained was reduced when we excluded what is ex-
plained by phylogeny, both in the RDA and Phylogenetic
ANOVA (size always explained a low percentage of molar
variance in the multivariate regression, RDA, and
Phylogenetic ANOVA, so its contribution can be left out;
Tables 1 and 2 and Online Resource 7). This means that diet
and phylogeny are correlated, but that phylogeny has a greater
impact on the shape of these molars, and that the dietary vari-
ation in our sample is phylogenetically structured.

The correlation between themorphology of the lowermolars
and phylogeny has been previously described by many authors
(Crusafont-Pairó and Truyols-Santonja 1953, 1956; Van

Valkenburgh 1989; Van Valkenburgh and Koepfli 1993;
Meloro et al. 2008; Meloro and Raia 2010; Chemisquy et al.
2015), and is highlighted in our results in the separation of the
two clades of Carnivora: Feliformia and Caniformia (Fig. 2 and
Online Resource 6). It is noteworthy that Viverridae and
Herpestidae share the morphospace with the Caniformia, in-
stead of the other Feliformia (Fig. 2 and Online Resource 6).
The same pattern was observed using morphometric angles of
the molars (Crusafont-Pairó and Truyols-Santonja 1956;
Meloro and Raia 2010) and some authors described this as
the convergence in carnassial morphology between the feliform
Viverridae and Hespestidae from Africa and southern Eurasia
and the small Caniformia from North America (Meloro and
Raia 2010). However, it is necessary to reconstruct shape in
an explicit phylogenetic context, based on the optimization of
shape on a phylogeny, to analyze the evolution of the characters
and to be able to determine which state is plesiomorphic and
which one is derived. Other authors stated that the
hypercarnivore morphotype is the derived state, so that the
Viverridae and Hespestidae from Africa and southern Eurasia
and the small Caniformia from North America would have a
plesiomorphic state (Holliday 2010; Solé and Ladevèze 2017).

Regarding Caniformia, it is interesting to note that
Mustelidae, the family with most of the species within
Carnivora, is the one with the most morphological disparity
in the carnassial molar (Crusafont-Pairó and Truyols-Santonja
1953, 1956; Wilson 2009). Figure 2 showed how Mustelidae
are clustered in the morphospace because of their similar
values in the second axis, but still, they occupy a large range
of values within the first axis. This morphological disparity
made some authors of the last century propose to separate
Mustelidae into different families (Crusafont-Pairó and
Truyols-Santonja 1956), and more recently into several sub-
families, withMustelidaemaintained at a family rank (Koepfli
et al. 2008; Sato et al. 2012). Each subfamily has a peculiar
molar morphology, and for this reason occupies a well-defined
portion of the morphospace in our analyses (Fig. 6).

The case of Ursidae is worth mentioning, given that this
group has only eight living species, which occupy very differ-
ent ecological niches, including for example Ursus maritimus
(polar bear) that feeds almost exclusively on seals, Ailuropoda
melanoleuca (giant panda) whose diet is based on bamboo,
and Melursus ursinus (sloth bear) that basically consumes
termites (Garshelis 2009; Wilson 2009). However and in spite
of the ecological diversity, the variation in the morphology of
the carnassial molar is insignificant with respect to the varia-
tion that was seen in the other clades (Crusafont-Pairó and
Truyols-Santonja 1953; Van Valkenburgh 1989; Van
Valkenburgh and Koepfli 1993), and for this same reason
ursids occupy a limited range of values of PC1 (Fig. 2).
Sacco and Van Valkenburgh (2004), using morphometric in-
dexes of the mandible and m1 of ursids, showed a separation
between the dietary categories. However, they used a different
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classification of diets from the one used in the present study
(e.g., they considered the brown bear and polar bear, both as
carnivorous bears), so they reached completely different con-
clusions. Given our classification of diets, we did not find a
clear pattern of distribution of the shape of the molars on the
morphospace according to the diet of bears.

Regarding the potential use of carnassial shape to infer diet
of fossil and extinct mammals, it is necessary to consider that
molar morphology is not only influenced by the diet of the
animals, but is also affected by the evolutionary trajectories
that bias the inferences (Kay and Hylander 1978; Chemisquy
et al. 2015; Davis and Pineda Munoz 2016). Continuing with
the example of the bears, all the species have similar carnassial
molars, but different feeding habits. At first sight we could
invoke a phylogenetic constraint, but phylogeny is the study
of evolutionary changes over time; in itself, phylogeny cannot
act as a constraint (Blomberg and Garland 2002; Losos 2011;
Shanahan 2011). Actually, in response to various evolutionary
processes (e.g., developmental or genetic constraints; Asahara
et al. 2016; Solé and Ladevèze 2017), the resulting molar
morphology of a living species may possess traits that are
retained from the ancestral morphotype, the diets of which
were slightly different. As a result, the morphology of the
molar does not correlate perfectly with the diet of the current
animal, but may be influenced by the diet of the shared ances-
tors (this is supported by the results of the RDA and
Phylogenetic ANOVA), somehow evidencing not only the
main food resource of the current diets, but also the items that
they are capable of processing. In any case, taking into ac-
count the phylogenetic pattern, the molar morphology repre-
sents an efficient proxy to infer diet of fossil species.

Conclusions

This work evaluates for the first time, in a quantitative way,
which of the lower molars of the Marsupialia (m3 or m4) is the
best analogue to the m1 of Carnivora. Although marsupials have
three pairs of carnassial molars (M1-M3/m2-m4; Savage 1977;
de Muizon and Lange-Badré 1997; Jones 2003), the m4 is more
similar to a placental carnassial (i.e., a Carnivora m1), and due to
its position relative to the condyle in adults, some authors
(Werdelin 1986; Prevosti et al. 2012a) have already suggested
m4 as the best analogue to the Carnivora carnassial. This hypoth-
esis is supported by the analyses performed in this contribution.

As teeth are the principal structure involved in the break-
down of food in mammals, the morphology of cusps and
crests is expected to show different levels of correlation with
diet (Van Valkenburgh 1989; Van Valkenburgh and Koepfli
1993). On the other hand, our analyses showed that other
factors are more important, and that the correlation between
shape and diet departs from optimality in several ways.
Phylogeny is the main factor that explains carnassial shape

variation. Therefore, in a robust phylogenetic framework the
correlation between molar morphology and diet is best fitted,
and so inferences can be made on fossil species.

Carnivory has a long evolutionary history across a broad
range of mammals, with multiple cases of convergence be-
tween eutherians (Carnivora and Creodonta) and metatherians
(Dasyuromorphia, Didelphidae, Thylacoleonidae,
Sparassodonta). A better understanding of the evolution of
their diets in a phylogenetic and ecological framework would
allow to a better comprehension of the decline and extinction
of some carnivore guilds.
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