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Abstract

Mammalian sperm acquire fertilizing capacity after residing in the female tract, where physiological changes named capacitation take place. In
animals with external fertilization as amphibians, gamete interactions are first established between sperm and molecules of the egg jelly coat
released into the medium. Since dejellied oocytes are not normally fertilized, the aim of this study was to determine if the jelly coat of the toad
Bufo arenarum promotes a “capacitating” activity on homologous sperm. We found that sperm incubation in diffusible substances of the jelly coat
(egg water) for 90—180 s is sufficient to render sperm transiently capable of fertilizing dejellied oocytes. The fertilizing state was correlated with
an increase of protein tyrosine phosphorylation and a decrease of sperm cholesterol content. Inhibition of either the increase in tyrosine
phosphorylation or cholesterol efflux affected the acquisition of fertilizing capacity. Phosphorylation and fertilization could be promoted with
NaHCO; and also by addition of beta cyclodextrin. Moreover, sperm could gain the ability to fertilize dejellied oocytes in the presence of these
compounds. These data indicate that sperm should undergo a series of molecular changes to gain fertilizing capacity; these changes are

reminiscent of mammalian sperm capacitation and take place before the acrosome reaction.

© 2007 Elsevier Inc. All rights reserved.
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Introduction

Mammalian sperm do not fertilize an egg immediately upon
ejaculation. Over 50 years ago, independent reports suggested
that ejaculated mammalian spermatozoa require a period of
residence in the female reproductive tract before being capable
of fertilization (Austin, 1952; Chang, 1951). The changes that
take place during this period confer to the spermatozoa the
ability to adhere to the zona pellucida to undergo the acrosome
reaction and initiate oocyte fusion. This process is known as
“capacitation” and includes changes in intracellular pH,
alterations in membrane lipid architecture and protein distribu-
tion and initiation of complex signal transduction pathways
(Baldi et al., 2002; Visconti and Kopf, 1998; Visconti et al.,
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2002). In animals with external fertilization as amphibians,
gamete interactions are first established between the spermato-
zoa and molecules released into the medium by the egg jelly
coat (JC) (Miceli and Cabada, 1998). This JC surrounds the
vitelline envelope (analogous to the zona pellucida of
mammals) and is formed by the oviduct secretion during
ovulation. Some molecules of the JC are released from the jelly
matrix during spawning. The solution containing the substances
that diffuse from the JC is called egg water (EW).

The requirement of the jelly coats for amphibian fertiliza-
tion was established many years ago (Kambara, 1953;
Newport, 1851). The passage of sperm through the jelly
layers has been regarded as an important step in fertilization
and was sometimes proposed to be a sperm “capacitating”
requisite, by analogy with the concept developed in mammals
(Shivers and James, 1970). EW of the toad Bufo arenarum
was reported to “activate” homologous free spermatozoa
before they penetrate into the jelly coats (Barbieri and
Cabada, 1969; Barbieri and del Pino, 1975; Barbieri and
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Raisman, 1969). Dejellied oocytes of different amphibian
species can still be fertilized after reintroduction of the
diffusible jelly components (EW) in the insemination media
(Barbieri, 1976; Barbieri and Oterino, 1972; Barbieri and
Villecco, 1966; Elinson, 1971; Katagiri, 1973). Unlike sea
urchin, a necessary condition for Bufo spermatozoa to fertilize
the oocytes is to reach the vitelline envelope with its
acrosome-intact or at least not completely reacted (Omata
and Katagiri, 1996; Raisman et al., 1980; Yoshizaki and
Katagiri, 1982). Acrosomal integrity is rapidly lost when
spermatozoa are incubated in hypotonic solutions (resembling
the osmolarity of the jelly at the time of fertilization). It was
shown that L-HGP, a component of the EW, was able to avoid
spontaneous acrosome breakdown caused by hypoosmotic
stress (Arranz and Cabada, 2000; Krapf et al., 2006). As a
consequence, acrosome integrity might be maintained until
spermatozoa contact and bind to the vitelline envelope
(Barisone et al., 2007).

The first demonstration of a physiological role for egg jelly
macromolecules in amphibian fertilization was reported by al
Anzi and Chandler (1998). Allurin, a 21 kDa protein from
Xenopus EW, exhibits sperm chemoattractant activity (Olson
et al., 2001; Xiang et al., 2004, 2005).

In this paper we report that short exposure to EW rendered
sperm transiently capable of fertilizing dejellied oocytes. The
fertilizing state was correlated with an increase of protein
phosphorylation in tyrosine residues, and with sperm choles-
terol loss. Moreover, these physiological modifications could
be mimicked in vitro with incubations in media containing
combinations of NaHCO; and the synthetic cholesterol
acceptor methyl-p-cyclodextrin. As far as we are aware, this
is the first report of sperm physiological changes induced by
the jelly coat that take place at early stages of fertilization in
amphibians.

Materials and methods
Reagents

Tyrphostin A1, A25 and genistein were purchased from Calbiochem (San
Diego, CA) (kindly provided by Dr Patricia Miranda). H89 (N-[2-(p-
bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide), chelerythrine, dibu-
tyryl cAMP and IBMX were obtained from Sigma. Methyl-p-cyclodextrin
(MBCD) was from Aquaplex, Cyclodextrin Technologies Development
(Gainesville, Fl) (kindly provided by Dr Luis S. Mayorga). Anti-phosphotyr-
osine antibody (clone 4G10) was obtained from Upstate (Lake Placid, NY). All
other reagents were of the highest analytical grade.

Animals

B. arenarum sexually mature specimens (150 g) were collected in the
neighborhood of Rosario city and maintained in the dark in a moist chamber
between 15 and 17 °C until used. Experiments were performed in accordance
with the guide for the care and use of laboratory animals of Facultad de Ciencias
Bioquimicas y Farmacéuticas, UNR.

Preparation of gametes
Sperm suspensions were obtained as described by elsewhere (Valz-Gianinet

etal., 1991). After washing, spermatozoa were suspended in ice cold Ringer ST
medium to a final concentration of 1-1.4x10® cells/ml and used within 3 h.

Uterine oocytes (referred to as oocytes) were obtained according to Barisone
et al. (2007). Oocytes were dejellied as described (Barisone et al., 2007).

Egg water

EW was obtained as described (Diaz Fontdevila et al., 1991). Final protein
concentration was 0.3 mg/ml (Arranz and Cabada, 2000). EW solutions were
referred to as percentages of EW (30—-80% EW), instead of stating the EW
protein concentration since its chemical composition includes glycoproteins,
inorganic ions and lipids (Diaz Fontdevila et al., 1991; Ishihara et al., 1984;
Katagiri, 1973).

Assessment of tyrosine phosphorylation of sperm proteins

Sperm suspensions were diluted to 1.4x 107 cells/ml in the appropriate
media depending on the experiment performed. Osmotic pressure of media was
in all cases similar to Ringer ST. When the effect of NaHCO; was analyzed, a
modified Ringer media was used (80 mM NacCl instead of 110 mM, 25 mM
HEPES, pH 7.6) adding NaCl to maintain constant osmolarity. It is important
to notice that addition of NaHCOj; did not significantly change the pH. After
the incubation period, sperm were concentrated by centrifugation at 650xg for
5 min (4 °C), the sperm pellet resuspended in 10 pul of ice cold lysis buffer (1%
Triton X-100, 1 mM NaVOs;, 1 mM PMSF, 5 mM EDTA, 150 mM NaCl,
10 mM Tris pH 7.6) and stored 10 min on ice with 3 x5 s vortexing. Samples
were then centrifuged at 18,000xg for 5 min (4 °C), the supernatant mixed with
sample buffer containing 50 mM DTT, incubated 10 min at 70 °C and then
subjected to SDS—PAGE (Laemmli, 1970) in 8% gels. Each lane was loaded
with 7x10° cells. Proteins were transferred to nitrocellulose membranes
(Hybond-ECL, Amersham Biosciences, UK) at 250 mA (constant) for 2 h at
4 °C. Immunodetection was performed using a dilution 1/2000 (0.5 pg/ml final
concentration) of a monoclonal antibody against anti-phosphotyrosine (clone
4G10) following manufacturer’s directions and a dilution 1/5000 of a
secondary HRP labeled antibody provided with the enhanced chemilumines-
cence detection kit (ECL, Amersham Biosciences, UK). For specificity
controls, 10 mM phosphotyrosine was added to the antibodies solution and
incubated with constant rotation for 30 min at 20 °C prior to use in the
immunoblots.

Cholesterol measurements

Aliquots (8 x10° cells) of B. arenarum spermatozoa were incubated for
15 min at 22 °C with the specified MBCD or EW concentration in Ringer ST
(500 pl final volume) and concentrated by centrifugation at 650xg for 5 min at
4 °C. Pellets and supernatants were individually lyophilized for 6 h. Free
cholesterol was determined basically as described by Gamble et al. (1978). In
brief, to each tube was added 20 pl of a solution of 20 mM sodium desoxycholate
and 1% Triton X-100 followed by 25 ul of 95% ethanol and stored at 4 °C for
30 min. Cholesterol was measured by the method of cholesterol oxidase/
peroxidase (Wiener, Rosario, Argentina) in a final volume of 1 ml and analyzed
in a Gilford Response spectrophotometer at 505 nm (Allain et al., 1974).

In vitro fertilization

In vitro fertilization was carried out at 20 °C, inseminating jelly-intact oocyte
strings (110—170 oocytes) with 1x10* sperm/ml or jelly free oocytes with
1x10° sperm/ml in 10% Ringer medium (0.1x Ringer/10 mM Tris pH 7.6).
When the effect of NaHCO; was analyzed, NaCl was added to maintain constant
osmolarity, using modified Ringer medium as stated above for the assessment of
tyrosine phosphorylation. After 15 min, oocytes and embryos were transferred
to fresh 10% Ringer. Fertilization was evaluated with a stereomicroscope by
recording two- or four-cell embryos.

Statistical analysis
Statistical analyses were performed with the ANOVA test. Models were

further tested according to Nagarsenker (1984), and Shapiro and Wilk (1965).
Significance (p) and sample size (1) were indicated in each figure legend.
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Results
Effect of EW on the fertilizing capacity of sperm

Studies in a number of amphibian species suggest that
diffusible factors that are released from the jelly coat play a
role in fertilization (Cabada, 1975; Katagiri, 1973, 1986;
Olson and Chandler, 1999; Shivers and James, 1971). EW has
a direct effect on sperm and may increase their ability to
penetrate the oocyte’s surface by an increase in sperm
motility or other mechanisms. If these mechanisms corre-
spond to a “capacitating” activity of EW, its presence would
no longer be necessary once sperm have undergone capacita-
tion. Thus, it should be possible to expose spermatozoa to
EW and fertilize dejellied oocytes in EW free media. To test
this hypothesis, sperm suspensions were incubated in 80%
EW (since it is the maximum concentration achievable after
addition of Ringer St medium) before inseminating jelly free
oocytes. When sperm were not previously exposed to EW,
only 4.3% of oocytes were fertilized (Fig. 1). However, the
effect on fertilization was especially pronounced when sperm
were incubated in EW for 1.5 or 3 min (48 and 43% of
fertilization respectively). Longer incubation periods pro-
moted a lowering in the fertilization rates, down to zero. Due
to the technical procedure, EW concentration in the in-
semination media was 10% in all the conditions assayed. The
fact that fertilization could proceed without the further
participation of EW suggests that the jelly components pro-
mote a change in sperm physiology.

Effect of EW on sperm cholesterol content

Capacitation of mouse sperm requires the presence of BSA
in the incubation medium (Visconti et al., 1995a). The role of
BSA in capacitation of mammalian sperm has been postulated
to involve the removal of cholesterol from the plasma
membrane (Suzuki and Yanagimachi, 1989; Visconti et al.,
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Fig. 1. Effect of sperm incubation in EW on fertilization rates of dejellied eggs.
Sperm were incubated in Ringer ST media containing 80% EW for the indicated
periods before inseminating dejellied oocytes. Fertilized oocytes were observed
at 2- or 4-cell stage embryos. Data represent the mean+SEM (n=3). The means
of groups that have different letters differ significantly (» <0.05).

1999a,b). As EW has a number of proteins potentially capable
of binding cholesterol, cholesterol loss could play a role in the
acquisition of fertilizing capacity of B. arenarum sperm upon
contact with the jelly coat. To test this hypothesis, we incubated
Bufo sperm in Ringer ST media (110 mM NaCl, 2 mM KCI,
1.4 mM CaCl,, 10 mM Tris pH 7.6) with or without EW and
measured sperm cholesterol content. The use of Ringer ST
medium would prevent an acrosome breakdown and a
consequent membrane loss induced by hypotonic stress (Arranz
and Cabada, 2000). Cholesterol content of untreated sperm
(freshly prepared and stored on ice for no longer than 1 h) was
0.80+0.025 pg/sperm (mean+SEM, n=6). As observed in Fig.
2A, an EW concentration-dependent efflux of cholesterol was
observed. Maximal cholesterol removal was achieved with the
maximum EW concentration tested.

Cholesterol efflux may represent a sperm regulatory step for
the acquisition of fertilizing capacity. If sperm cholesterol loss
was a key element for acquisition of sperm fertilizing capacity,
this process could be impaired by preincubation with the
cholesterol analogue, cholesterol-SO4. Preincubation with
cholesterol-SO4 would block cholesterol-binding sites in the
egg jelly, lowering their ability to bind cholesterol from sperm.
As shown in Fig. 2B, preincubation of gametes with increasing
concentrations of cholesterol-SO, lowered fertilization rates of
intact oocytes, suggesting that the cholesterol efflux from B.
arenarum sperm is necessary for acquisition of fertilizing

capacity.

Time and concentration dependence of protein tyrosine
phosphorylation on EW incubation

While the molecular bases underlying the capacitating
events in mammalian sperm are not fully understood, they are
consistent with the activation of signal transduction cascades.
Among them, capacitation is associated with an increase in
tyrosine phosphorylation of a subset of proteins in sperm
from several mammalian species, including the mouse
(Visconti et al., 1995a), cow (Galantino-Homer et al., 1997),
human (Leclerc et al., 1996; Osheroff et al., 1999), pig (Kalab
et al., 1998) and hamster (Devi et al., 1999; Kulanand and
Shivaji, 2001; Visconti et al., 1999¢). To examine if there is
correlation between the acquisition of fertilizing capacity and
protein tyrosine phosphorylation in B. arenarum, sperm were
incubated under conditions that support fertilization. After
incubations, phosphorylation on tyrosine residues was ana-
lyzed. When sperm suspensions were incubated in EW, a
concentration-dependent increase in the phosphorylation of
tyrosine residues was observed in proteins from Mr 50,000 to
200,000 (Fig. 3A). Phosphorylation was observed 30 s after
the addition of 80% EW (Fig. 3B). Ponceau S staining was
carried out to show equal protein loads in each lane (Fig. 3B,
right panel). These proteins were specifically phosphorylated
on tyrosine residues since the immunoreactivity was completely
abolished when the antibody solution was preincubated with
10 mM O-phosphotyrosine for 30 min (not shown). Fig. 3C
shows the immunoblotting EW proteins, indicating that the
phosphoproteins detected do not belong to EW.
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Fig. 2. Sperm cholesterol content and its role in fertilization. (A) Sperm suspensions (8 x 10° cells) were incubated 15 min in the specified EW concentration.
Cholesterol sperm content was normalized within each experiment with respect to the cholesterol content of the untreated control sample (100% equivalent to 0.80+
0.025 pg/sperm). Data represent the mean+SEM (n=4). The means of groups that have different letters differ significantly (p <0.01). (B) Intact oocyte strings were
incubated for 90 min in 10% Ringer at 22 °C containing the specified cholesterol-SOj concentration, before insemination with 1x 10* sperm/ml. After 15 min, the
strings were transferred to fresh 10% Ringer between 110 and 170 oocytes were used in each experiment. The means of groups that have different letters differ

significantly (mean+SEM; n=3; p <0.002).

Effects of tyrosine kinase inhibitors on sperm protein
phosphorylation and fertilization

To find out if phosphorylation inhibition had any effect
on fertilization, sperm were incubated in media containing
the tyrosine kinase inhibitor tyrphostin A25. After 30 min,
sperm were exposed to 80% EW. Phosphorylation was
inhibited in a concentration-dependent manner, with an ICs
(50% phosphorylation inhibition) of about 2 uM (Fig. 4A),
based on densitometric analysis (Gel-Pro Analyzer, Version
3.0, Media Cybernetics). No inhibition was observed when
the inactive analogue tyrphostin Al was assayed at 200 puM.
Genistein also displayed an inhibitory effect on phosphor-
ylation with an ICsy, between 2 and 20 uM (data not
shown).

Since we observed that sperm incubated in EW were capable
of fertilizing dejellied oocytes in a condition that tyrosine
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phosphorylation is detected, we examined whether this
phosphorylation has functional consequences. Sperm suspen-
sions were incubated in different concentrations of tyrphostin
A25 for 30 min. These suspensions were then used to in-
seminate intact oocytes, a condition where fertilizing capacity
is naturally acquired. As shown in Fig. 4B, inhibition of
tyrosine phosphorylation was accompanied by a significant
reduction of fertilization rates. However, no effect was ob-
served when sperm were preincubated in the presence of the
inactive analogue tyrphostin Al, correlated with no inhibition
of tyrosine phosphorylation. The inhibitor concentration was
held during all the experiments by keeping the inhibitor in both
the incubation and the insemination media. The effect of
tyrphostin A25 on fertilization did not appear to be due to any
effect on the oocyte itself since insemination of jellied oocytes

in tyrphostin A25 is achieved with untreated sperm (data not
shown).
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Fig. 3. Time course and concentration dependence of EW-induced protein phosphorylation in B. arenarum sperm. (A and B) Sperm suspensions were incubated in EW
(0-80%) for 0.5 to 15 min at 22 °C. Each lane contains 1% Triton X-100 soluble proteins of 7x 10° spermatozoa subjected to Western immunoblotting analysis by
using the anti-PY antibody. The right blot of panel B was stained with Ponceau S as a loading control. (C) EW (12 pg) assayed with anti-PY antibody. Molecular weight

standards are indicated at the left of each blot (Mrx 10%).
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Fig. 4. Effect of protein kinase inhibitors on protein tyrosine phosphorylation and fertilization. (A) Sperm were incubated for 30 min at 19 °C in Ringer ST containing
tyrphostin A25 or A1 before exposure to 80% EW for 15 min at 22 °C. Phosphoproteins were detected as in Fig. 3. While tyrphostin A25 inhibited protein tyrosine
phosphorylation, the inactive analogue tyrphostin A1 had no effect at 200 pM. (B) Sperm were incubated for 30 min at 19 °C in Ringer ST containing tyrphostin A25
or Al before inseminating jelly-intact oocytes, keeping the inhibitor concentration in the insemination media. Two- or four-cell embryos were counted. Data represent
the mean+SEM, n=3. The means of groups that have different letter differ significantly (»p < 0.0002).

Relationship between cholesterol efflux and sperm tyrosine
phosphorylation

EW components were able to sequester cholesterol from B.
arenarum spermatozoa. However, in addition to cholesterol
removal, EW molecules could induce on sperm other
physiological modifications. We examined whether cholesterol
removal by cyclodextrin in medium devoid of EW was

charides able to effectively solubilize non-polar substances
(Pitha et al., 1988). They have been widely used to promote
cholesterol efflux from a wide variety of cells (Kilsdonk et al.,
1995; Yancey et al., 1996). Sperm cholesterol content was
measured after incubations in Ringer ST media with different
concentrations of methyl-R-cyclodextrin (MBCD). As shown in
Fig. 5A, a concentration-dependent cholesterol efflux was
observed. At 1 and 2 mM MPBCD, the loss of cholesterol was

around one half of the total loss. Maximum cholesterol removal
was observed with 10 mM MBCD, the maximum concentration

sufficient to activate phosphorylation of B. arenarum sperm
proteins. B-Cyclodextrins are water-soluble cyclic heptasac-
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Fig. 5. Sperm cholesterol efflux in MBCD and its relation with tyrosine phosphorylation. (A) Sperm were incubated for 15 min at 22 °C in Ringer ST media containing
the indicated concentrations of MBCD. Remaining cholesterol (open circles) and released cholesterol (filled circles) were normalized within each experiment with
respect to the cholesterol content of the untreated control sample (100%). Cholesterol remaining at 0.5 mM MBCD or higher concentrations was significantly less than
in control sample (p < 0.001). There were no significant differences between the cholesterol remaining at 0.5 mM and 1 mM, and between the cholesterol remaining at
2 mM and 5 mM MPCD. Data represent mean+SEM (n=4). (B) Assessment of B. arenarum sperm vitality was performed with trypan blue staining after incubations
in MBCD. The results express percentages of unstained spermatozoa normalized within each experiment with respect to the unstained spermatozoa of the 0 mM
MPBCD treatment (100%). Sperm vitality was in all cases significantly less than in control (p < 0.001). At least 200 spermatozoa were counted in each case (p < 0.001)
(mean+SEM, n=3). (C) Sperm were incubated for the indicated periods of time in Ringer ST, 80% EW, 2 mM MpPCD or 80% EW preincubated 30 min with 20 uM
cholesterol sulfate. Protein tyrosine phosphorylation was detected as in Fig. 3.
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tested. To analyze a possible vitality loss caused by cholesterol
removal or toxic drug effects, sperm vitality was assessed by
trypan blue staining after the MPCD treatment. Samples
showed high vitality percentages ranging between 88% and
90% for MPBCD concentrations between 0.5 and 2 mM (Fig.
5B). Lower vitality (74 and 68%) was observed at 5 and 10 mM
MPRCD. Therefore, Bufo sperm lose approximately 20% of
cholesterol maintaining membrane integrity. Interestingly, the
amount of cholesterol removed after incubation for 15 min in
80% EW (Fig. 2A) was analogous to the amount removed with
2 mM MPCD during the same period (Fig. 5A). To study a
possible relationship between cholesterol efflux and tyrosine
phosphorylation, sperm suspensions were incubated either for
30 s or 15 min in media containing 80% EW, 2 mM MBCD or
80% EW preincubated with 20 pM cholesterol-sulfate. As
shown in Fig. 5C, 2 mM MPCD failed in promoting tyrosine
phosphorylation. However, when 80% EW was preincubated
with 20 pM cholesterol-sulfate for 30 min prior to sperm
exposure, a concentration sufficient to block fertilization (Fig.
2B), the increase in protein tyrosine phosphorylation was
inhibited. Altogether, these experiments suggest that, similar to
what it is observed for mammalian fertilization, cholesterol
efflux is necessary but not sufficient for the promotion of sperm
protein tyrosine phosphorylation.

Role of MBCD and HCOj in mediating the fertilizing capacity
acquisition of B. arenarum sperm

The presence of NaHCOj is required for in vitro capacitation
of mouse sperm. The associated changes of tyrosine phosphor-
ylation occur upon activation of sperm adenyl cyclase induced
by HCO5 (Visconti et al., 1995a). Membrane permeable cAMP
analogues can substitute for NaHCOj; in promoting phosphor-
ylation, through direct activation of PKA (Visconti et al.,
1995b). We examined whether tyrosine phosphorylation of
Bufo sperm proteins could be, as in the case of mouse sperm,
stimulated by NaHCO;. Sperm suspensions were incubated in
modified Ringer ST media (see Materials and methods)
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containing different NaHCOj; concentrations. The ionic strength
was kept constant in all samples. As shown in Fig. 6A, 30 mM
NaHCOj; did induce protein tyrosine phosphorylation. Interest-
ingly, when sperm were preincubated with 2 mM MPCD for
15 min prior to exposure to different concentrations of
NaHCOs;, tyrosine phosphorylation was induced at lower
concentrations. A striking biphasic effect was displayed by
NaHCO; when sperm were pre-treated with MRCD: tyrosine
phosphorylation was induced at 1 and 5 mM NaHCO; but no
phosphorylation was observed at higher concentrations. To test
whether PKA could also play a role in B. arenarum sperm
tyrosine phosphorylation, we incubated sperm with the
membrane permeable cAMP analogue dibutyryl-cAMP. How-
ever, db-cAMP did not induce protein phosphorylation in
incubations up to 2 h and concentrations up to 1 mM in the
absence or presence of the phosphodiesterase inhibitor 3-
isobutyl-1-methylxanthine (IBMX) (Fig. 6B).

Since NaHCO; supported tyrosine phosphorylation, we
examined if NaHCO; could substitute for EW in supporting
acquisition of sperm fertilizing capacity. As previously demon-
strated, dejellied oocytes inseminated in the absence of EW or
with sperm that were not previously exposed to EW were not
fertilized (Fig. 1). We performed two sets of experiments where
different NaHCO; concentrations were tested on sperm with
respect to their ability to fertilize dejellied oocytes. Only in one
set of experiments sperm were previously incubated in the
presence of 2 mM MPCD. Under no preincubation with
MpPCD, sperm were able to fertilize when insemination was
carried out in media containing 30 mM NaHCO; (Fig. 7).
Fertilization rates were four times higher in 30 mM NaHCO;
than in 1 to 15 mM. However, when sperm were previously
incubated in media containing 2 mM MPBCD, fertilization was
observed at lower NaHCQ; concentrations. Both results
demonstrate that acquisition of fertilizing sperm capacity
could be supported in the absence of EW. In vitro fertilization
performed at higher concentrations of NaHCO; with sperm
previously incubated in media containing MBCD 2 mM
displayed reduced fertilization rates (Fig. 7); interestingly,
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Fig. 6. Dependence of tyrosine phosphorylation induced by NaHCO; on MBCD pre-treatment and stimulation of PKA by a cAMP analogue. (A) Sperm suspensions
were incubated in the absence or presence of 2 mM MBCD for 15 min prior to exposure to the specified NaHCO; concentrations (in mM) for 15 min. (B) Sperm were
incubated in the presence of db-cAMP (db-cA, in mM) and 0.1 mM IBMX as specified. Right panel shows a sample incubated with 80% EW for 15 min at 22 °C.

Protein tyrosine phosphorylation was detected as in Fig. 3A.



522 D. Krapf et al. / Developmental Biology 306 (2007) 516-524

P w o
(=] (=} =

Fertilized oocytes (%)
(7%)
(=]

20
10
0 - - .
0 1 5 15 30 0 1 5 15 30 EW
HCO, (mM) HCO, (mM)

preincubutt:d with MBCD preincubutedAwithout MBCD

Fig. 7. Effects of MBCD incubation on the ability of sperm to fertilize dejellied
oocytes in media containing NaHCO;. Sperm suspensions were incubated for
15 min in the absence or presence of 2 mM MBCD and diluted ten times before
inseminating dejellied oocytes in media containing the specified NaHCO;
concentrations. Embryos and oocytes (at least 110) were recorded after 2—4 h.
Data represent the mean+SEM (n=4). The means of groups that have different
letters differ significantly (p <0.05).

these conditions are correlated with the levels of protein
tyrosine phosphorylation shown in Fig. 6A.

Discussion

Successful fertilization by free-spawning organisms such as
amphibians can occur only if a series of constraints are
overcome before the sperm makes contact with the egg. Bufo
sperm reach the egg envelope with an intact acrosome (Raisman
et al., 1980; Yoshizaki and Katagiri, 1982). In B. arenarum,
spermatozoa can bind to dejellied oocytes but no fertilization
takes place (Krapf et al., unpublished results). Accordingly,
previous reports showed that the acrosome of B. japonicus
sperm bound to the vitelline envelope of dejellied oocytes is not
reacted (Omata and Katagiri, 1996). These data indicate that
spermatozoa depend on egg jelly components to fertilize,
suggesting a key role of the jelly coat in the sperm acquisition of
fertilizing capacity.

One of the characteristics of mammalian sperm capacitation
is the ability of the acrosome-intact spermatozoa to undergo the
acrosome reaction in response to ZP stimulation (Ward and
Storey, 1984). Thus, the similarity between the unresponsive-
ness of acrosome reaction to egg envelope components in non-
capacitated mammalian sperm with the lack of fertilizing
capacity of Bufo sperm when no EW is present was of interest.
We were able to set up conditions where fertilization of dejellied
Bufo oocytes was restored by short preincubations of sperm in
EW media before insemination. Olson and Chandler (1999)
have shown different results in X. laevis, where incubation of
sperm in EW did not restore fertilization of dejellied eggs. In
those experiments, the preincubation media contained approxi-
mately 10 times less diffusible proteins and the osmolarity was
about 10 times higher than our preincubation medium. More-
over, the authors restricted the preincubation periods to 5 min.
Considering the short period of fertilizing capacity that Bufo
sperm displayed in our conditions, it could be possible that they

failed to find a “fertility window” under their conditions. We
showed that this presumably “capacitated state” of B. arenarum
sperm, as first hypothesized in amphibians by Shivers and
James over 35 years ago (1970), correlates to physiological
changes caused by the jelly coat components to the sperm.
These changes are not related to the occurrence of an acrosome
reaction since EW of B. arenarum does not promote acrosome
exocytosis of homologous spermatozoa (Arranz and Cabada,
2000; Krapf et al., 2006).

In mammals, these changes are associated with sperm
cholesterol efflux and protein tyrosine phosphorylation. We
measured the amount of cholesterol in B. arenarum sperm and
found it to be similar to that of X. laevis (Bernardin et al., 1992).
After incubations of 15 min in Ringer ST supplemented with
80% EW, approximately 20% of cholesterol was released from
sperm. This efflux was dependent on EW concentration. Since a
fast efflux was noticed, it is most likely that the pool of
cholesterol released was located in the sperm plasma membrane
(Yancey et al., 1996). This cholesterol loss could not be ascribed
to an acrosome breakdown since the acrosome reaction is not
induced under the assay conditions (Arranz and Cabada, 2000).
We found that the cholesterol efflux is a prerequisite for
fertilization since the incubation of oocytes with cholesterol-
SO, impairs fertilization.

In addition, the fertilizing capacity acquired during incuba-
tion in EW was found to be correlated with the tyrosine
phosphorylation of a subset of proteins of Mr 50,000 to 200,000.
The induced phosphorylation could be detected within 30 s and
found it to be maximal at 15 min, with no further increase
thereafter (not shown). Inhibition of tyrosine phosphorylation
could be accomplished with the tyrosine kinase inhibitor
tyrphostin A25. The role of tyrosine kinases during fertilizing
capacity acquisition was further supported by the inhibitory
effects of tyrphostin A25 on fertilization of jelly-intact oocytes.

In mouse sperm, increasing of cytoplasmatic cAMP levels
follows direct activation of a sperm adenyl cyclase by HCO5
(Okamura et al., 1985; Visconti et al., 1990). Unlike the
modulation of mouse sperm phosphorylation by cAMP
(Visconti et al., 1995b), a cAMP analogue could not substitute
for EW in promoting protein tyrosine phosphorylation. How-
ever, tyrosine phosphorylation of B. arenarum sperm proteins
was induced by NaHCOj;. The regulation of the transmembrane
signal transduction pathway leading to the promotion of
tyrosine phosphorylation by EW or HCOj3 could be modulated
by cholesterol removal. The removal of cholesterol was
necessary for activation of phosphorylation, although it could
be circumvented with high NaHCO; concentration (Fig. 7).
This fact became evident when both tyrosine phosphorylation
promoted by EW and fertilization of intact oocytes were
impaired when cholesterol release from sperm was abrogated.
How cholesterol removal regulates this pathway is still not
known. Previous studies suggested that cholesterol modifies
biophysical properties of biological membranes, including the
ability of membrane proteins to undergo conformational
changes that may control their functions (Cross and Overstreet,
1987; Rochwerger and Cuasnicu, 1992). Thus, high concentra-
tions of cholesterol in the membrane might inhibit membrane
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protein function. This indirect effect of cholesterol on mem-
brane protein function might stabilize those membrane and
transmembrane events that are part of the intrinsic regulatory
nature of fertilizing capacity acquisition. The dependence of the
EW-induced increase in tyrosine phosphorylation on cholesterol
membrane content could possibly be ascribed to an increase of
the permeability of the sperm to certain ions, such as HCOs3,
upon removal of cholesterol from the sperm plasma membrane.
In fact, this could be similar to the regulation of some
membrane-associated ion transporters by sterols (Shouffani
and Kanner, 1990; Vemuri and Philipson, 1989). Cholesterol
might concentrate in specialized plasma membrane microdo-
mains known as lipid rafts. In this regard, the removal of
cholesterol upon contact with components of the egg jelly or
EW could mediate the disruption of lipid raft domains causing a
shift in the overall membrane fluidity of the sperm plasma
membrane, playing a role in the transmembrane movement of
HCOj; (Sleight et al., 2005).

The effect of NaHCO; on phosphorylation could be related
to intracellular pH changes rather than direct adenyl cyclase
activation since a rise of intracellular cAMP concentration did
not promote phosphorylation. In this regard, a Na'/HCO3
cotransporter was identified and localized in the flagellar
plasma membrane of sea urchin (Gunaratne et al., 2006) and
mouse sperm (Demarco et al.,, 2003). Alkalinization of
intracellular pH was found to alter the phosphorylation pattern
of epididymal bovine sperm proteins, but this effect could also
occur via kinases other than PKA or potentially on protein
phosphatases (Carr and Acott, 1989). A possible role of PKA in
Bufo sperm capacitation cannot be discarded yet.

In summary, we identified physiological modifications that
take place in B. arenarum sperm before the acrosome reaction.
These changes are guided by female factors secreted by the
oviduct that are found in the jelly coat. We could correlate these
modifications (rise in tyrosine phosphorylation and cholesterol
efflux) with the acquisition of fertilizing capacity. Moreover,
HCO;5; was shown to be a key element of both tyrosine
phosphorylation induction and acquisition of fertilizing capa-
city. Using this ion in combination with MRCD, we defined an
EW-free medium for fertilization. We can conclude that
capacitation-like changes of spermatozoa take place in an
animal with external fertilization as B. arenarum, suggesting
that sperm capacitation is not exclusive of mammalian species.
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