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We implement the effects of disorder on a holographic superconductor by introducing a random chemical
potential on the boundary. We demonstrate explicitly that increasing disorder leads to the formation of is-
lands where the superconducting order is enhanced and subsequently to the transition to a metal. We study the
behavior of the superfluid density and of the conductivity as a function of the strength of disorder. We find
explanations for various marked features in the conductivities in terms of hydrodynamic quasinormal modes
of the holographic superconductors. These identifications plus a particular disorder-dependent spectral weight
shift in the conductivity point to a signature of the Higgs mode in the context of disordered holographic super-
conductors. We observe that the behavior of the order parameter close to the transition is not mean-field type as
in the clean case, rather we find robust agreement with exp(−A |T − Tc|−ν), with ν = 1.03 ± 0.02 for this
disorder-driven smeared transition.

Introduction: The suppression of conductivity due to dis-
order, known as Anderson localization, is one of the most
striking transport phenomena that involves quantum behav-
ior [1]. The application of localization ideas to superconduc-
tors was for a long time governed by Anderson’s theorem stat-
ing that nonmagnetic impurities have no significant effect on
the superconducting transition since Cooper pairs are formed
from time reversed eigenstates, which included disorder [2].
Anderson’s idea applies only to weakly disordered systems
(with extended electronic states) and weak interactions; the
role of interactions has been further discussed by Ma and Lee
in [3]. The mechanism put forward in [3] states that strong
disorder gives rise to spatial fluctuations of the order parame-
ter along with its suppression in comparison to its value in the
clean system. The existence of spatial fluctuations of the order
parameter has recently been corroborated and argued to be the
central mechanism in the superconductor-insulator transition
[4, 5]. Various experiments have indicated that high-Tc su-
perconductors are intrinsically disordered [6, 7] emphasizing
the need for a better understanding of the interplay between
superconductivity, strong interactions and disorder. In this
manuscript we tackle this interplay using holographic meth-
ods.

The Anti de Sitter/Conformal Field Theory (AdS/CFT)
correspondence has already succeeded in constructing holo-
graphic versions of superconductors [8, 9] (for reviews see
[10, 11]). Some holographic models have been argued to be
relevant to describe materials like the cuprates [12, 13] since
their dynamics is believed to be largely governed by their
proximity to a quantum critical point [14].

In previous work [15, 16] we investigated mild disorder
in holographic superconductors and found an enhancement
of the superconducting order parameter. Other recent works
studying disorder holographically include [17–19]. Here we
explore the regime of large disorder and provide a detailed de-
scription of the superconductor-metal transition. Although we
work in a setup where the normal phase describes a metal, it is

also possible to consider insulating setups through AdS/CFT
[20–22].

In this paper we report various properties of the super-
conducting transition including the averaged and spatially re-
solved behavior of the condensate, superfluid density and con-
ductivity and provide an explanation in terms of the rele-
vant hydrodynamic modes. We observe that the disorder-
driven transition is smeared and the averaged order param-
eter (here the average 〈·〉 is over the spatial coordinate or,
equivalently, disorder realizations) vanishes very quickly as
〈O〉 ∼ exp (−A|T − Tc|−ν); we find ν = 1.03 ± 0.02. We
expect that our explicit result for this exponent will stimulate
alternative approaches to disorder-driven transitions to pro-
vide a quantitative characterization of the transition.

Disordered holographic superconductor: To build a
noisy holographic s-wave superconductor in 2+1 dimensions
we consider, following [8], the dynamics of a Maxwell field
and a charged scalar in a fixed metric background:

S =

∫
d4x
√
−g
(
−1

4
Fab F

ab − (DµΨ)(DµΨ)† −m2Ψ†Ψ

)
.

The system is studied on the Schwarzschild-AdS4 metric:

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx2 + dy2

)
,

f(z) = 1− z3 , (1)

where we have set the radius of AdS, R = 1, and the horizon
at zh = 1. This system is dual to a 2+1 CFT living on the
boundary of AdS4, and the U(1) gauge field realizes a con-
served current. The temperature of the black hole is identified
with that of the field theory, and by fixing the horizon radius
we are making use of the rescaling symmetry of our theory to
work in units of temperature. We take the following (consis-
tent) Ansatz for the matter fields:

Ψ(x, z) = ψ(x, z) , A = φ(x, z) dt, (2)
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where ψ(x, z) ∈ R. The resulting equations of motion read

∂2
zφ+

1

f
∂2
xφ−

2ψ2

z2 f
φ = 0 , (3)

∂2
zψ +

1

f
∂2
xψ +

(
f ′

f
− 2

z

)
∂zψ +

1

f2

(
φ2 − m2 f

z2

)
ψ = 0 .

(4)

In what follows we choose the scalar mass m2 = −2, corre-
sponding to a dual operator of conformal dimension ∆ = 2.

The main rule for reading the AdS/CFT dictionary states
that field theory information is extracted from the boundary
values of the gravity fields. The UV (z = 0) asymptotics of
Eqs. (3,4) lead to

φ(x, z) = µ(x) + ρ(x) z + φ(2)(x) z2 + o(z3) , (5)
ψ(x, z) = ψ(1)(x) z + ψ(2)(x) z2 + o(z3) , (6)

where µ(x) and ρ(x) correspond, in the dual field theory,
to space-dependent chemical potential and charge density re-
spectively. The functions ψ(1)(x) and ψ(2)(x) are identified,
under the duality, with the source and VEV of an operator of
dimension 2. Imposing ψ(1)(x) = 0 in Eq. (6) corresponds
to spontaneous breaking of the U(1) symmetry with order pa-
rameter O ∝ ψ(2)(x). In the IR (z ∼ zh = 1) regularity
implies that At vanishes at the horizon.

To mimic the choice of random on-site potential used orig-
inally by Anderson in [1] we implement disorder by introduc-
ing a noisy chemical potential:

µ(x) = µ0 +
µ0

25
w

k∗∑
k=k0

cos(k x+ δk) , (7)

where δk is a random phase for each k, andw is a free parame-
ter that determines the strength of the disorder. Notice that the
system is homogeneous along the remaining spacelike direc-
tion y. We discretize the space, and impose periodic boundary
conditions in the x direction, leading to k with values:

kn =
2π

L
(n+ 1) with 0 ≤ n < N =

k∗
k0
, (8)

where L is the length in the x direction of our cylindrical
space. Our noise is a truncated version of Gaussian white
noise where the highest wave number k∗ takes the role of the
inverse of the correlation length for the chemical potential.
More details on the properties of this choice of disorder can
be found in [16].

Summarizing, we think of k0 as the inverse system size and
of k∗ as the inverse correlation length, and we work in the
regime k0/T � 1. More precisely, for most of the simula-
tions we take L = 20π, and k∗ = 1, but we checked the
stability of the results for lengths up to L = 80π.

To find solutions describing disordered superconducting
states we integrate the equations of motion (3, 4) for different
realizations of disorder characterized by sets of the random
phases δk. We define the expectation values for the different

observables by averaging over different realizations. Typical
plots correspond to about fifty realizations.

The order parameter and superconducting islands: Let
us focus on the behavior of the order parameter as a function
of the chemical potential µ and the dimensionless strength of
disorder w. We will pay special attention to the minimum of
the condensate Omin throughout the sample which we expect
to be related with the DC conductivity.

In [15, 16] it was shown that noise enhances the spatial av-
erage of the order parameter. However, already Ma and Lee
found in [3] that strong disorder gives rise to spatial fluctu-
ations of the order parameter along with its suppression in
comparison with its value in the clean/homogeneous system.
In Fig. 1 we plot the spatial dependence of the order parameter
at a temperature T = 0.81Tw=0

c , where Tw=0
c is the homo-

geneous critical temperature. We find that for strong enough
noise regions akin to islands appear in the system.
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Figure 1: The condensate as a function of the coordinate x for
three realizations with strength w = 0.1, 0.9, 3, and the same set
δk (orange, yellow and purple lines respectively), at a temperature
T = 0.81Tw=0

c . This plot shows the appearance of islands, that is,
of spatial fluctuations in the condensate.

The enhancement of superconducting properties reported
in [15, 16] has some precedent in the condensed matter lit-
erature. The role of superconducting islands was already ex-
plicitly mentioned in [23], and further analyzed in [4]. In that
work it was shown that for each realization of disorder, there
are spatial regions where the local upper critical field exceeds
the system-wide average value. These regions form super-
conducting islands weakly coupled via the Josephson effect.
At low temperatures, proximity coupling is long ranged and,
thus, global superconductivity may be established in the sys-
tem. Similar arguments were also advanced in [5]. We see
that precisely this mechanism seems to be at play in our holo-
graphic model.

To characterize the possible appearance of islands we study
the minimum of the condensate Omin for different values of
the parameters that characterize the system. In Fig. 2 we plot
Omin (dashed line) as function of the disorder strength w at
constant temperature T = 0.81Tw=0

c . This figure shows that
Omin is a holographic version of the original suggestion of
Ma and Lee [3] that strong disorder gives rise to spatial fluc-
tuations of the order parameter along with its suppression in
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Figure 2: Superfluid density, ns (solid line) and minimum of the
condensate, Omin (dashed line), as a function of disorder, w, for
T/Tw=0

c = 0.81. The value of Omin has been normalized to unity
at w = 0.

comparison with its value in the clean/homogeneous system.
Moreover, for large values of the disorder strength we observe
an exponential tail for Omin. This means that we have some
leaking between islands of superfluid leading to a finite value
of the condensate in between. We relate this to the fact that
AdS suppresses large momentum contributions to the order
parameter as reported in [15, 16].

Conductivities: The holographic computation of conduc-
tivities requires the study of fluctuations on top of the back-
ground. Here we focus on the conductivity of the U(1) bro-
ken superconducting phase, where the perturbations couple to
the noise due to the nontrivial scalar field. Given the sym-
metries of the setup, there are two different conductivities one
can study: the one in the direction parallel to the noise and that
orthogonal to it. The orthogonal conductivity is insensitive to
the disorder, and we thus focus on the parallel one.

To compute the electric conductivity we consider homo-
geneous perturbations of the gauge field oscillating with fre-
quency ω:

Aµ = A(0)
µ (x, z) + aµ(x, z) e−iω t , (9)

and on the boundary (z = 0) we impose fti(x) = 1 (where
fµν is the field strength of aµ, and i runs over the spatial direc-
tions x, y), thus sourcing a constant electric field in the dual
field theory. Then, following AdS/CFT, the conductivity is
computed as

σii(x) =
〈Ji〉
Ei

= − i∂zai(x, z)
ω ai(x, z)

∣∣∣∣
z→0

, (10)

where there is no summation over i, and we impose ingoing
boundary conditions for ai(x, z) at the horizon.

For the conductivity in the direction of the noise we must
consider the linearized equations for the spatial component
of the gauge field ax(x, z). Unfortunately, the x dependence
couples ax to the perturbation of the temporal component of
the gauge field a0(x, z) and to the perturbations of the scalar

field χ(x, z) + iη(x, z), and we must then solve the four cou-
pled linear equations of motion (15). Interestingly, as we will
show in Fig. 4, the fields (χ, η) show up as hydrodynamic
modes in the computation of conductivities.

When looking for the low frequency behavior of the con-
ductivity we find that, as in the homogeneous phase, we have
a pole in the imaginary part of σ. This translates, through
Kramers-Kronig rules, into a (numerically invisible) delta
function in the real part, giving

σ ≈ ns
(
πδ(ω) +

i

ω

)
+ . . . , (11)

where ns is the superfluid density. Notice that for σxx, a near-
boundary analysis of the equations of motion shows that, due
to current conservation, the DC conductivity must be homo-
geneous, and therefore ns is a constant independent of x.

The dependence of the superfluid density on the strength
of disorder is shown in Fig. 2, together with the evolution of
the minimum value of the condensate. For low w, we verify
that ns does not change much in total agreement with Ander-
son’s theorem even if we are describing a strongly coupled
system. The persistence of the transport properties for weak
disorder, even in strongly coupled systems, has been argued
in the metal-insulator transition in [24]. Fig. 2 shows that for
large w, both the superfluid density and the minimum of the
condensate decay exponentially. This illustrates the disorder-
driven transition to the normal (metallic) phase.
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Figure 3: Real part of the AC conductivity for T/Tw=0
c = 0.45. The

black line corresponds to the homogeneous case, whereas the purple
and yellow lines denote the disordered w = 1 and w = 2.4 cases
respectively. The dimensionless frequency ω̃ is proportional to ω/T .

We present the real part of the AC conductivity in Fig. 3,
comparing the homogeneous case with the results for two dif-
ferent values of the strength of disorder. The two key fea-
tures absent in the homogeneous case are: the presence of
resonances for small frequencies and a shift of the spectral
weight at large frequencies. The small frequency resonances
are a direct result of coupling of new fluctuating fields for
an x-dependent chemical potential. These resonances can be
understood as related to the holographic quasinormal modes
studied in [25, 26] and shown to affect the conductivity at
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nonzero superfluid velocity in [27]. The shift in the spec-
tral weight clearly depends on the strength of disorder, and
we view it as evidence of the Higgs mode associated with the
spontaneous breaking of the U(1) symmetry [28]. The Higgs
mode corresponds to oscillations of the modulus of the order
parameter, and it is predicted [29] to cause an excess of the
electrical conductivity at sub-gap frequencies. In clean BCS
superconductors the mass of the Higgs mode results in a gap
of its contribution to the conductivity which is of the order of
the BCS gap, and thus makes it difficult to detect the Higgs
mode through its effect on the conductivity. However, it was
shown in [30] that disorder suppresses that gap, giving rise to
an observable excess of the AC conductivity at sub-gap fre-
quencies with respect to the standard BCS prediction (based
on the measurement of the energy gap of Cooper pairs) [28].
The excess observed in [28] is qualitatively similar to what we
observe in Fig. 3 at frequencies 2 . ω̃ . 4 where the conduc-
tivity of the disordered system (yellow line) is higher than that
of the clean one (black line).

To verify that the small frequency resonances in the con-
ductivity correspond to the gapless modes studied in [26], we
compute the effective velocity, vs, of the first of these reso-
nances assuming the dispersion relation

ω = vs(T,w) k , (12)

and taking k to be equal to k0, where k0 = 2π/L is the small-
est wave number in the sum (7). We then compare the evolu-
tion of vs with the temperature with the findings of [26]. The
result is plotted in Fig. 4 which shows that vs(T,w) follows
the standard temperature dependence discussed in [25, 26]
(corresponding to the solid black line in the graphic). What
is new in our case is its dependence on the disorder. For small
temperatures the role of disorder is suppressed. For higher
temperatures we see that vs decreases with increasing disor-
der strength except very near the critical temperature, Fig. 4.
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Figure 4: Effective velocity vs(T,w) corresponding to the first res-
onance of the conductivity for w = 0.1 (blue dots) and w = 1 (red
dots). The black solid line presents the result of [26] for the speed of
sound of the sound mode in holographic superconductors.

Smeared phase transition: Finally, let us turn to the anal-
ysis of one of the most universal properties in phase transi-
tions: the behavior of the order parameter close to the transi-

tion [31]. As a first approach to disordered phenomena, the
fate of a particular clean critical point under the influence of
impurities is controlled by the Harris criterion [32] that gen-
eralizes the standard power-counting criterion to random cou-
plings. As explained in [33] our chemical potential disordered
along one dimension, and thus perfectly correlated along the
remaining spatial direction, introduces relevant disorder. This
places our setup in the class of systems where quenched dis-
order can lead to exotic critical points where the conventional
power-law scaling does not hold [34–36]. Moreover, in some
cases disorder has been shown to cause the formation of rare
regions undergoing a phase transition independently from the
rest of the system. In terms of the average of the order param-
eter this results in a smeared phase transition characterized
by an exponential scaling [37–39]. One would expect the is-
lands of conductivity that form in our system to play the role
of these rare regions, and consequently to smear out the phase
transition.
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Figure 5: The disorder-driven transition is smeared. Plot of the spa-
tial average of the condensate close to the critical temperature for
w = 0, 0.1, 0,2 and 0.4 (black, purple, orange, and yellow lines,
respectively).

Fig. 5 shows the transition for the clean, homogeneous
case [9], and for three disordered cases (w = 0.1, 0.2, 0.4).
We confirm that for the disordered transition the order pa-
rameter behaves as 〈O〉 ∼ exp (−A|T − Tc|−ν) in Fig. 6.
Notice that Tc is different for each value of w, and is al-
ways higher than Tw=0

c . By taking the logarithmic derivative
〈O′(T )〉/〈O(T )〉, this figure shows linear fits that allow us
to determine the exponent ν, obtaining ν = 1.03 ± 0.02 in-
dependent of the disorder w. Explicitly, the fits in Fig. 6 are
y = −2.26 − 2.02x for w = 0.4, y = −3.13 − 2.01x for
w = 0.2, and y = −4.21 − 2.06x for w = 0.1, and notice
that the slope of these fits corresponds to −(ν + 1). The fits
also show that the coefficient A of the expression above in-
creases with the disorder strength w, in agreement with the
optimal fluctuation theory predictions [37, 39]. In particular,
after assuming ν ≈ 1, these fits result in the following values
of A: 0.01 at w = 0.1, 0.04 at w = 0.2, and 0.1 at w = 0.4.
The ranges of the fits, shown by solid black lines in Fig. 6, are
determined on one side by the region where the condensate
behaves as in the homogeneous case which as Fig. 5 shows is
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for temperatures around .95Tc. On the other side the bound
arises from the numerical instability introduced by exponen-
tially small values of the condensate. Notice that the points at
temperatures above Tw=0

c are rare, and many realizations are
needed in order to have enough statistics to capture their be-
havior. Moreover, those points correspond to very low values
of the condensate, and small errors in 〈O(T )〉 affect strongly
the value of 〈O′(T )〉/〈O(T )〉. Finally, one should notice that
the UV cutoff k∗ in our disordered chemical potential bounds
the disorder distribution. Consequently, one expects to find,
as we do, a finite disordered critical temperature Twc above
which only the normal phase exists [37, 39].
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Figure 6: The disorder-driven transition is smeared. We plot
log

(
1
O

dO
dT

)
versus log(Tc − T ) for w = 0.1, 0.2, 0.4 (purple, or-

ange, and yellow respectively). The solid black lines denote linear
fits to the data, and the vertical dashed lines indicate the critical tem-
perature of the homogeneous case Tw=0

c .

Conclusions
Superconducting islands in holography: We argued that the
formation of islands in the context of holographic disorder-
driven superconductors is, as in experimental and numerical
analyses, the central mechanism at play in the transition. This
behavior is responsible for the enhancement of superconduc-
tivity reported in [15, 16]. The fact that the islands are coupled
via the Josephson effect, as suggested originally in [4], causes
the exponential decay in the tail of the superfluid density as
shown in Fig. 2.

Disorder in strongly interacting systems: The interplay be-
tween disorder and interactions has been the subject of vigor-
ous studies in the condensed matter literature initiated most re-
cently by the work of Basko et al. [24]. In the series of works
generated by [24], (see for example [40–42]) it is shown
that for sufficiently strong disorder, weak interactions do not
change the nature of the localized phase [43, 44]. The present
work is in the complementary region, where interactions are
strong to begin with, and disorder is increased. We have es-
tablished that weak disorder does not destroy the holographic
superconducting state, in particular, Fig. 2 shows that the su-
perfluid density is largely unaffected for small disorder. In-
stead, for strong disorder the formation of islands suppresses
the superfluid density driving the system to the normal phase.

Optical conductivity: We have studied the AC conductivity

for disordered holographic superconductors, identifying the
new low-frequency resonances with quasinormal modes of the
holographic superconductor. Moreover, the conductivity dis-
plays a disorder-dependent shift of the spectral weight highly
suggestive of a massive Higgs excitation. Strong experimental
evidence in favor of a Higgs mode in strongly disordered su-
perconductors close to the quantum phase transition has been
recently reported in [28].

The disorder-driven transition is smeared: We have shown
that under the influence of disorder the superconductor-metal
transition changes from power law, mean field to a smeared
transition of the form exp(−A |T − Tc|−ν), with ν = 1.03±
0.02. We hope that our results motivate other approaches to a
quantitative description of this transition.

Future directions : Understanding the properties of con-
ductivities in the language of modes helps us compare with
more traditional condensed matter methods directly. Building
a holographic disordered superconducting thin film will help
us tackle the Higgs mode in the strongly disordered supercon-
ductor close to the quantum phase transition [28]. Ultimately,
due to the universality of critical exponents [31], we hope that
our holographic approach provides a direct path to disorder-
driven critical exponents.

Acknowledgments It is a great pleasure to thank Nico
Nessi for useful discussions. We thank the Galileo Galilei
Institute for Theoretical Physics for hospitality and the INFN
(Firenze) for partial support. D. A. is supported by GIF, grant
1156. We thank Zampolli for being a shelter of flavor. D.A.
and I.S. thank the ICTP for hospitality at various stages of
this collaboration. D.A. thanks the FROGS for unconditional
support.

Supporting material

Numerical stability: Given the aleatory nature of our cal-
culation, in this appendix we show the stability of the result
of the value of ν against the number of realizations. Namely,
Fig. 7 shows that the result stabilizes as we increase the num-
ber of realizations of disorder, i.e. the number of times we
generate a series of random phases, δk in Eq. (7). Most of our
simulations for determining ν involve over 100 realizations.

Homogeneous versus smeared condensate: In Fig. 8 we
show that the homogeneous transition follows a power law.
We present it in the same plot as a smeared transition to il-
lustrate how our numerical analysis distinguishes between the
homogeneous and the disordered transition. Note that for an
homogeneous condensate Oh = Ah|T − Tc|β , with β = 1/2
[9], hence one can write

log

(
O′

O

)
= − log |T − Tc|+ cons , (13)

while for the disordered case O = As exp(−A|T − Tc|−ν),
and one has

log

(
O′

O

)
= −(ν + 1) log |T − Tc|+ cons . (14)
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Figure 7: The condensates for w = 0.4 with four different numbers
of realizations: purple corresponds to 10 realizations, orange to 25,
yellow to 75, and black to 150. Notice that except for the leftmost,
high temperature, data points, the value of the condensate stabilizes
for a number of realizations above 25.

-12 -10 -8 -6 -4
2

4

6

8

10

12

LogHTc-TL

L
o
g

HXO
\'�

XO
\L

Figure 8: The homogeneous condensate (black dots) and the smeared
condensate for w = 0.1 (purple). The red, and blue lines correspond
to the linear fits y = −0.71 − 1.00x, and y = −4.21 − 2.06x
respectively.

Equations of the perturbations: The equations of motion
for the perturbations relevant for computing the electric con-
ductivity read:

2 (i ω η + a0 ψ + 2φχ)ψ − z2 (f ∂zza0 + i ω ∂xax + ∂xxa0) = 0 , (15a)

z2

f

(
ω2 ax + f f ′ ∂zax + f2 ∂zzax − i ω ∂xa0

)
− 2

(
ψ2ax − ψ ∂xη + ∂xψ η

)
= 0 , (15b)

− 2 (i ω η + ψ a0)φ− z2φ2 χ+
(
−z2 ω2 +m2 f

)
χ− z f

(
−2 f ∂zχ+ z f ′ ∂zχ+ z f ∂zzχ+ z ∂xxχ

)
= 0 , (15c)[

z2
(
ω2 + φ2)−m2 f

]
η − 2x f2 ∂zη + z2

[
−i ω a0 ψ − 2 i ωφχ+ f

(
f ′ ∂zη + f ∂zzη − ψ ∂xax − 2 ax ∂xψ + ∂xxη

)]
= 0 , (15d)

subject to the constraint:

− i z2 ω ∂za0 + f
(
2ψ ∂zη − 2 η ∂zψ − z2 ∂xzax

)
= 0 .

(16)
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