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ABSTRACT

Context. Magnetic clouds (MCs) are twisted magnetic structures ejected from the Sun and probed by in situ instruments. They are
typically modeled as flux ropes (FRs).

Aims. Magnetic field measurements are only available along the 1D spacecraft trajectory. The determination of the FR global charac-
teristics requires the estimation of the FR axis orientation. Among the developed methods, the minimum variance (MV) is the most
flexible, and features only a few assumptions. However, as other methods, MV has biases. We aim to investigate the limits of the
method and extend it to a less biased method.

Methods. We first identified the origin of the biases by testing the MV method on cylindrical and elliptical models with a temporal
expansion comparable to the one observed in MCs. Then, we developed an improved MV method to reduce these biases.

Results. In contrast with many previous publications we find that the ratio of the MV eigenvalues is not a reliable indicator of the
precision of the derived FR axis direction. Next, we emphasize the importance of the FR boundaries selected since they strongly
affect the deduced axis orientation. We have improved the MV method by imposing that the same amount of azimuthal flux should be
present before and after the time of closest approach to the FR axis. We emphasize the importance of finding simultaneously the FR
axis direction and the location of the boundaries corresponding to a balanced magnetic flux, so as to minimize the bias on the deduced
FR axis orientation. This method can also define an inner flux-balanced sub-FR. We show that the MV results are much less biased
when a compromize in size of this sub-FR is achieved.

Conclusions. For weakly asymmetric field temporal profiles, the improved MV provides a very good determination of the FR axis
orientation. The main remaining bias is moderate (lower than 6°) and is present mostly on the angle between the flux rope axis and

the plane perpendicular to the Sun—Earth direction.
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1. Introduction

The Sun release mass and magnetic field in a permanent
solar wind, and also as transients called coronal mass ejec-
tions (CMEs). Coronal remote white-light observations using
coronagraphs have shown that the distribution of mass in
some CMEs present images consistent with twisted structures
(e.g., Krall 2007; Gopalswamy et al. 2013; Vourlidas et al. 2013;
Wood et al. 2017). When CMEs are observed in the interplan-
etary medium they are called interplanetary CMEs (ICMEzs).
The association between CMEs and ICMEs was well estab-
lished since several decades (e.g., Sheeley et al. 1985). In fact,
twisted flux tubes, or flux ropes (FRs), are present also in sev-
eral other systems in the heliosphere, such as the Sun atmo-
sphere, the solar wind, and different locations of planetary
magnetospheres (e.g., Fan 2009; Imber et al. 2011; Smith et al.
2017; Pevtsov et al. 2014; Kilpua et al. 2017). Flux ropes can

store and transport magnetic energy and, because their mag-
netic field lines can be strongly twisted, FRs can also con-
tain and transport important amounts of magnetic helicity (e.g.,
Lynch et al. 2005; Dasso 2009; Sung et al. 2009; Démoulin et al.
2016).

When FRs are observed in situ by a crossing spacecraft,
they present a large and coherent rotation of the magnetic field
vector. A particular set of events that present these FR charac-
teristics corresponds to magnetic clouds (MCs). They are also
characterized by a stronger magnetic field and a lower proton
temperature than the typical solar wind (e.g., Burlaga et al. 1981;
Gosling 1990). Thus, they have a low plasma beta, so that mag-
netic forces are expected to be dominant.

Interplanetary MCs have been systematically observed from
the 80’s, and several models have been proposed to describe
their magnetic structure. The simplest one and generally used
to model the field in MCs is an axially symmetric cylindrical
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magneto-static FR solution, with a relaxed linear force-free field,
the Lundquist’s model (Lundquist 1950; Goldstein 1983). This
model describes relatively well the field distribution for a sig-
nificant number of observed MCs (e.g., Burlaga & Behannon
1982; Lepping et al. 1990; Burlaga 1995; Burlaga et al. 1998,
Lynch et al. 2003, 2005; Dasso et al. 2005, 2006). Still, the
Lundquist solution is known to have difficulties in fitting the
magnetic field strength, in particular it was found that it fre-
quently overestimates the axial component of the field near the
FR axis (e.g., Gulisano et al. 2005).

Several other models have been developed. These models
include more general FR properties, such as nonlinear force-
free field (Farrugia et al. 1999), non-force free magnetic config-
urations (e.g., Mulligan et al. 1999; Hidalgo et al. 2000, 2002;
Cid et al. 2002; Nieves-Chinchilla et al. 2016), and models with
non-cylindrical cross section (e.g., Vandas & Romashets 2003;
Nieves-Chinchilla et al. 2009, 2018a).

In particular, the elliptical model of Vandas & Romashets
(2003) provides a better fit to some observed MCs having a
field strength more uniform than in the Lundquist solution.
This indicates the existence of some flat FRs (Vandas et al.
2005). On the other hand, from a superposed epoch analysis,
Masias-Meza et al. (2016) showed that while slow MCs present
a symmetric profile of the magnetic field, fast ones present a
magnetic intensity profile with a significantly stronger B near
the front than at the rear.

The models presented above were typically compared and
fitted to MC in situ observations, which are limited to the 1D
cut provided by the spacecraft trajectory inside the FR. This
allows a local reconstruction of the FR cross section, and then
it is possible to make estimations of global magnetohydrody-
namic (MHD) quantities, such as magnetic fluxes, twist, helic-
ity, and energy (e.g., Dasso et al. 2003, 2005; Leamon et al.
2004; Mandrini et al. 2005; Qiu et al. 2007; Démoulin et al.
2016; Wang et al. 2016). However, all these estimations depend
directly on the FR orientation, and thus on the quality of the
method used to get it. Moreover, the orientation itself is an
important property of a given FR in order to compare it with
its solar origin (e.g., Nakwacki et al. 2011; Isavnin et al. 2013;
Palmerio et al. 2017).

Different methods to estimate the FR orientation from
spacecraft observations have been developed and applied to
MCs. Some authors have used the so-called Grad-Shafranov
method to get the FR orientation, which consists in apply-
ing the Grad-Shafranov formalism, valid for describing gen-
eral MHD magnetostatic equilibria invariant in one direction
(Sonnerup & Guo 1996; Hau & Sonnerup 1999; Sonnerup et al.
2006; Isavnin et al. 2011). This method use both the magneto-
static constraints and the folding of the same magnetic field line
when it is crossed by the spacecraft during its in-bound and out-
bound travel across the FR. However, the method cannot recover
the FR axis for the simplest magnetic configurations, such as
symmetric FRs or when the spacecraft crossed the FR close to its
axis. Hu & Sonnerup (2002) argued that observed FRs are typi-
cally asymmetric and that this asymmetry removes the above dif-
ficulty. In fact a detailed study, Démoulin et al., in preparation,
show that for FRs typical of MCs the Grad-Shafranov method
provides a biased orientation, which depends on the symmetry
properties of the magnetic field components.

Finally, the method that has less hypotheses, mainly
because it does not introduce the details of a given model,
is the Minimum Variance method (MV). The MV method
just requires a well ordered large scale variance of B in the
three spatial directions. MV has been extensively used to
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find the orientation of structures in the interplanetary medium
(see e.g., Sonnerup & Cahill 1967; Burlaga & Behannon 1982;
Hausman et al. 2004; Siu-Tapia et al. 2015). Several authors
have shown that the MV method estimates quite well the ori-
entation of the FR axis, when the distance between the axis and
the spacecraft trajectory in the MC is small with respect to the
FR radius (see e.g., Klein & Burlaga 1982; Bothmer & Schwenn
1998; Farrugiaetal. 1999; Xiaoetal. 2004; Gulisano et al.
2005, 2007; Ruffenach et al. 2012, 2015). Other authors use the
MYV method to get a first order approximation for the MC ori-
entation. Then, they use this estimation as a seed in a nonlinear
least squares fit of a magnetic model to the data. This approach
is expected to improve the cloud orientation (e.g., Lepping et al.
1990, 2003, 2006; Dasso et al. 2005).

The most crucial information to introduce in any of the meth-
ods to get the FR orientation is the start and end time of the
FR. This is a major problem because different authors gener-
ally define the FR boundaries at different places/times (e.g.,
Riley et al. 2004; Russell & Shinde 2005; Dasso et al. 2006;
Al-Haddad et al. 2013), with the consequent difference on the
determination of both the axis orientation and the parameters
for the proposed models. One of the reasons at the origin of
these different boundaries is the partial erosion of the FR due
to magnetic reconnection. If it happens in the FR front, this
creates after the closed FR a “back” which presents mixed sig-
natures of a FR and stationary solar wind (Dasso et al. 2006).
This erosion process also can occur at the FR rear, produc-
ing a mixed region before the beginning of the real closed FR
(Ruffenach et al. 2015). This lack of exact information on the FR
boundary can have an important influence on the proper deter-
mination of the FR axis direction. Indeed, comparing different
methods show a large dispersion of the estimated FR orientation
(Al-Haddad et al. 2013; Janvier et al. 2015).

In Sect. 2 we present a geometrical description of FRs in the
solar wind, proposing new angles to determine its orientation,
and review the MV method and its application to get the orien-
tation of MCs. In Sect. 3 we generate synthetic linear force-free
FRs with symmetry of translation along their axis, including the
possibility of expansion and cylindrical/elliptical cross-sections,
and emulate the observed time-series observed by spacecraft.
Then, in Sect. 4 the application of several variants of the MV
technique are applied to the synthetic clouds, finding biases pro-
duced by different MCs properties. In Sect. 5 a deeper analy-
sis of the bias introduced due to a boundary selection is done,
and we proposed a new MV method to minimize this bias. Our
conclusions are given in Sect. 7, and in the Appendix we show
the expected coupling between field components when MV is
applied.

2. Geometry of flux ropes
2.1. Flux rope axis and frame

The coordinates generally used for the analysis of data pro-
vided by spacecraft located in the vicinity of Earth are
defined in the Geocentric Solar Ecliptic (GSE) system of ref-
erence. It is defined with an orthogonal base of unit vectors
(XGse>YGse- 26se)- Xgse points from the Earth toward the Sun,
Yosk is also in the ecliptic plane and in the direction opposite to
the Earth rotation motion around the Sun, and Zggsg points to the
north pole of the heliosphere (Fig. 1a). A similar coordinate sys-
tem is the heliographic radial tangential normal (RTN) system of
reference (e.g., Franz & Harper 2002) where the following could
also be transcripted.
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Fig. 1. Definitions of the angles of the FR axis. Panel a: schema showing
the observation, here GSE, and FR frames. The FR frame is defined
by the vectors Xpgr, Vg, Zrr Where Zgg is along the FR axis and in the
direction of the axial magnetic field, g is orthogonal to Zgr and in the
plane defined by X sk and Zpgr, and gz completes the orthonormal direct
basis. Two rotations are needed to pass from the GSE frame to the FR
frame. They are defined by the angles i and A which are respectively the
inclination and the location angle (spherical coordinates with the polar
axis Xgsg). Panel b: schema showing the meaning of the angle A in the
plane of the FR axis shown in panel a in light blue. 2.z, in green, is
the projection of Zgg in the plane orthogonal to Xgsg, see panel a.

The FR axis orientation is classically defined with respect to
the GSE system in spherical coordinates with the polar axis cho-
sen as +2gsg, by two angles: the longitude (¢qxis) and the latitude
(faxis)- However these angles are not the natural ones to describe
the FR axis orientation with respect to its translation direction
(—Xgse). Indeed, the geometrical configuration of the space-
craft crossing is defined both by the closest approach distance
and the angle between the spacecraft trajectory and the FR axis
orientation. A rotation of the FR around the spacecraft trajectory
does not change the geometry of the spacecraft crossing, while
it changes both @.xis and Ouis. This implies that the same cross-
ing geometry is present along curves defined in the {axis, Faxis }
space. Even worse, this choice of reference system has the dis-
advantage to set the polar axis (8 = £90°) along Zgsg which
is both a possible and an un-particular axis direction for MCs
while the polar axis is singular as it corresponds to any values of
@axis- Therefore, the coordinates {axis, faxis} are not appropriate
to study the orientation of the FR.

The motion of MCs is mainly radial away from the Sun,
especially away from the corona (where limited deflection could
occur). Then, the radial direction is a particular direction. We
then set a new spherical coordinate system having its polar axis
along Xgsg (Fig. 1a). This direction could correspond to the
spacecraft crossing a FR leg. However, such crossing does not
allow to detect the rotation of the magnetic field as the FR is typ-
ically only partially crossed on one side. It implies that FRs with
an axis direction almost parallel to Xgsg are mostly not present in
MC data sets. Then, the direction Xgsg can be used as the polar
axis of the new spherical coordinate system.

The local axis direction of the FR is called Zgr (with B, pr >
0 in the central region of the FR). We define the inclination on
the ecliptic (i) and the location (1) angles as shown in Fig. 1.
More precisely, let us define the unit vector Zp. pr, in green in
Fig. 1a, along the projection of the FR axis on the plane defined

by (Jse» Zase) then i is the angle from §gg to 2 pr. Similarly,
A is the angle from 2, pr t0 Zgr.

If the FR axis is located in a plane, i is the inclination of this
plane (in light blue) on the ecliptic as shown in Fig. la. And if
we further suppose that the distance to the Sun is monotonously
decreasing from the FR apex to any of the FR leg when following
the FR axis, the angle A is evolving monotonously along the FR
from —90° in one of the FR leg, to A = 0 at the apex, then toward
A = 90° in the other leg. It implies that A can be used implicitly
as a proxy of the location where the spacecraft intercepts the FR
(as shown in Fig.1c of Janvier et al. 2013). Finally, the above
conclusions extend to other coordinate systems such as RTN.

We next define the FR frame. Zgg corresponds to the FR axis,
as defined before. Since the speed of MCs is much higher than
the spacecraft speed, we assume a rectilinear spacecraft trajec-
tory defined by the unit vector d. We define j in the direction

Zrr X d and Xpg completes the right-handed orthonormal base
(XFRr, ¥gr> Zrr) Which defines the FR frame (Fig. 1a).

2.2. Minimum variance technique applied to flux ropes

The MV method finds the directions in which the projection of
a series of N vectors has an extremum mean quadratic deviation
(e.g., Sonnerup & Scheible 1998). This method can be applied
to the time series of the magnetic field B measured in situ across
MCs, and it provides an estimation of the FR axis orientation as
follows.

The mean quadratic deviation, or variance, of the magnetic
field B in a given direction defined by the unit vector 7 is:

1 & \2
o2 = ﬁ;((Bk —(B))- it) = ((By— (Bu)") ¢))

where the summation is done on the N data points of the time
series and (B) is the mean magnetic field.

The MV method finds the direction # where o2 is extremum.
The constraint |#27] = 1 is incorporated with the Lagrange multi-
plier variational method. The resulting set of equations in matrix
form is

(@)

3

2, = n=A n;

oyn; = mijn; = AL n;
i=1

where Ay is the Lagrange multiplier and

3)

The matrix m;; is symmetric with real positive eigenvalues: 0 <
€Vmin < €Vin < eVmax. Their corresponding orthogonal eigenvec-
tors (Xmv, Zmv, Fpy) are the directions of minimum, intermedi-
ate and maximum variation of the magnetic field, respectively.

The magnetic configuration of MCs is assumed to be a FR
with some generic properties which have direct implications on
the eigenvalues and eigenvectors found by the MV applied to
MC data as follows. First, the axial field, B, gr, is stronger on the
FR axis and decline to a low value near the boundary. Second, the
azimuthal field vanishes on the axis (to have no singular electric
current) and typically grows to a magnitude comparable to the
axial field strength at the FR periphery.

For trajectories passing close enough from the FR axis, the
azimuthal field is mostly in the gz direction. Then, the vari-
ance of Bypr is expected to be about twice the one of B, pr.
The variance of B, pr is the lowest one. Then the eigenvectors
(XMmv,Fmy»> 2mv) provide an estimation of (Xgr, rg. Zrr), taking

m;; = (BiBj) — (B;){(B}).
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into account that the direction of the eigenvectors provided by
MYV could need a change of sign in order to satisfy the conven-
tion defined before for the FR frame. Next, since jpy is perpen-
dicular to d (defining the spacecraft trajectory), then the angle
between ¥,y and d allows to test how close is the MV frame
from the FR frame. Finally, as the spacecraft trajectory is further
from the FR axis, this estimation of the FR frame is expected
to be worse. This is quantitatively tested in Sects. 4—6 with the
models presented in Sect. 3.

3. Test models

We describe in this section the geometrical aspects of the space-
craft trajectory, and the simulation of measured magnetic field
along the trajectory. The magnetic models include key ingredi-
ents observed or consistent with observations of MC: typical
magnetic profiles, expansion, flatness of the FR cross section
and asymmetry due to magnetic reconnection. These models are
described in the FR frame, with the origin of the reference sys-
tem set at the FR axis.

3.1. Geometry of the flux rope crossing

During the spacecraft crossing of the FR, its small acceleration
has a negligible effect on the measured quantities (i.e., on the
time where they are measured, Démoulin et al. 2008). Then, we
consider a motion with a constant velocity V. during the space-
craft crossing. Supposing that the FR moves along —Xgsg, the
spacecraft position, rs,c(f), in the FR frame is:

x(t) =V .tcosA

(@) = Yp
z(t) = V.tsinA

“

where ¢ is the time with 7 = O set at the time when the spacecraft
has the closest distance, |yp|, to the FR axis. Thus, ¢ < 0 cor-
responds to the in-bound trajectory (i.e., when the spacecraft is
entering the FR going toward its axis) and 7 > O to the out-bound
one (i.e., when the spacecraft is going away from the FR axis).

In order to provide a generic description of a FR crossing we
suppose here that the 3D magnetic field evolution, Br(x, y, z, 1),
is known in the FR frame (with an analytical or a numeri-
cal simulation). This magnetic field is transformed to the GSE
frame by two rotations (with angles ipg and Aggr). Then, insert-
ing the spacecraft trajectory rs;c(f), Eq. (4), in Bgsg(r), limits
the description of B to the one observed along the spacecraft
trajectory, noted Bys(#), which is only a function of time. After
sampling the time uniformly, this time series models the syn-
thetic magnetic field observed by a spacecraft crossing the mag-
netic field configuration comparable to in situ data obtained in
MCs.

The direct MV method, Sect. 2.2, and later on including
some additional procedures, Sect. 5, are applied below to the
above synthetic field. The estimated angles, iy and Ay, are
next compared to igg and Apg allowing to test the performance
of the MV method on an ensemble of models by scanning the
parameter space.

3.2. Expanding magnetic field

We consider a general magnetic field configuration, By(xo, Yo, Z0),
associated to an element of fluid located at (xq,yo,zo) and
defined attime #y. Below, to be coherent with Eq. (4), we simply set
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to =0 at the time when the FR axis distance to the spacecraft is
minimum. The self-similar isotropic expansion by the factor e(r)
implies x = e(f) xo,y = e(t) yo,z = e(f) zo where x,y,z are
the new coordinates of the same element of fluid, but at time ¢,
with e(0) = 1. Only an isotropic expansion is considered here
since it preserves the force balance of force-free configurations
while keeping the magnetic field structure, while a non-isotropic
expansion introduces forces which deform the FR so that it would
require a numerical simulation to determine the corresponding
expanded configuration.

The expanded magnetic field, B, is function of space and
time:

By (x/e(), y/e(t), z/e(n))

B(x,y,z,t) = 20

&)

The term e2(¢) at the denominator is included to preserve the
magnetic flux. Equation (5) describes the temporal evolution in
the 3D space. Introducing Eq. (4) into Eq. (5), this limits the
description of B to the observed field along the spacecraft tra-
jectory with B,s(f) only function of time.

The expansion is driven by the decrease of total pressure in
the surrounding of the FR as it is moving away from the Sun
(Démoulin & Dasso 2009a). This total pressure can be approxi-
mated by a power law of the distance from the Sun to the FR cen-
ter (D(2)). The force balance at the FR boundary implies that e(7)
is also a power law of D(?): e(t) = (D(t)/Do)° where { is the nor-
malized expansion factor (e.g., Démoulin et al. 2008) and Dy is a
reference distance taken here as the spacecraft distance from the
Sun. The velocity of the FR core, V., is approximately constant
during the spacecraft crossing, as in Eq. (4), then D(¢) = V.t+ Dy
with the spacecraft being located at D = Dy at t = 0. In this
frame work e(?) is:

e)=(1+1¥~1+¢1, (6)
with
7=Vt /Dy, @)

which corresponds to the time difference between the observed
time and the time when the axis reaches Dy, normalized by the
travel time from the Sun to the distance Dy at velocity V.. The
linear approximation on the right side of Eq. (6) provides a good
approximation for most MCs because ¢ = 1 and Ty, << 1 with
Tmax being half of the FR crossing time (Démoulin et al. 2008). It
implies that the expansion typically introduces only a small mod-
ification to the observed field profile compared to a case without
expansion.

3.3. Cylindrical flux rope model

We consider in this subsection a cylindrically symmetric mag-
netic field configuration for the FR, with its axis along the z
direction in the FR frame. Then, at a time ¢t = 0, By(r) is only

function of the distance to the axis |/xj + y3, or equivalently of
the relative position of an element of fluid from the FR axis, p,
that is the distance normalized by the FR radius, by. Consider-
ing only expansion (e.g., no magnetic diffusion) p is preserved
during the self-similar isotropic expansion:

VT xR 0P

by b(7) ’

p= ®)
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Fig. 2. Simulations of observed magnetic field components in the FR frame and |B| versus time (in hour) for synthetic expanding (panels a,b)
circular and (panel c) elliptical linear force-free FR with positive magnetic helicity. The impact parameter is defined by p = y/by where by is
the FR half-size in the direction orthogonal to the simulated FR crossing. The FR boundaries are set at B, = 0. The results with three values of

the normalized expansion factor, {, are shown with different colors. A

value of £ ~ 1 is typical according with observations (as deduced from

the observed V, gse(#) in MCs from 0.3 to 5 AU). The mean observed case, by = 0.1 AU is shown. The other parameters, By = 1 at r = 0 and

V. = 400kms~! are only scaling the axis.

where by and b(t) are the radius of the FR at t = 0 and ¢ respec-
tively. As other spatial variables (Sect. 3.2), b(¢) is simply related
to by as b(f) = e(t) by. p is a Lagrangian marker of the rela-
tive distance to the FR axis. It follows the magnetic field as the
expansion occurs. In the FR frame, the magnetic field can be
written simply as

B(p,1) = By(p) /€*(D). )

The spacecraft rectilinear trajectory satisfies y, = constant.
We define the impact parameter as p = y,/bo. Using Eq. (4),
Eq. (8) is rewritten along the spacecraft trajectory as:

V(7 cos A Dy/bg)? + p?
e(t)

where the subscript “obs” has been added to specify that p is
determined along the simulated spacecraft trajectory so pgps is
function of time (and it corresponds to the different elements of
fluid observed by the spacecraft), while p, defined in Eq. (8),
is a general Lagrangian marker, so independent of time. Since
the simulated magnetic field along the spacecraft trajectory is
Bo(pops(1))/€%(t), the magnitudes of |r| and ¢ determine how
strongly the expansion affects the modeled magnetic field (com-
pared to a case without expansion).

In the FR frame, B = (—Bysin6, Bycos 8, B,) where By(p)
and B,(p) are the azimuthal and axial components respectively.

Pobs(1) = (10

Its components along the spacecraft trajectory are:

B obs
Bopm(t) = —220o) P
e*(t)  Pobs e(?)
B V. tcos A
By,FR(t) _ 6(2pobs) ¢ LCos (11)
e(t) by Pobs e(r)
B (pobs)
B.mr(f) = =222
2 FR (1) 20)
For a linear force-free field (Lundquist’s FR):
Bo,pr(0obs) = Bo J1(@0obs)
Bz,FR(pobs) = BO J()(a'pobs) (12)

where B is the axial field strength of the FR axis. We define «
as the first zero of the Bessel function Jy, @ ~ 2.4, then pgps = 1
defines the reversal of the axial field component. Observed MCs
have typically a weak axial field component at their boundary so
Pobs = 1, while some cases with p,,s £ 1 have been observed
(Vandas & Geranios 2001).

Examples of simulated magnetic field profiles are shown
in Fig. 2a,b. Observations provide { ~ 0.8 + 0.2 at 1 AU
and { = 09 + 0.2 and ¢ = 1.05 = 0.3 in the inner and
outer heliosphere, respectively, for unperturbed MCs (not over-
taken by a fast stream or by another MC, Démoulin et al. 2008;
Gulisano et al. 2010, 2012). Then, we show the cases ¢ = 0, 1, 2,
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which are respectively the cases without, with typical and with
twice as large of an expansion rate than observed. As { or/and the
FR radius increase, the simulated observed field is more asym-
metric. Finally, the case { = 1 introduces only a moderate asym-
metry in all B components for not extremely large FR radius
(with a radius <0.1 AU at 1 AU).

The B,pr and B, pr temporal profiles are nearly symmetric
in time while By g is nearly antisymmetric. A non-zero impact
parameter p introduces a component B,pr, Whose magnitude
increases with |p|, see Eq. (11). This property can be used in
observations to estimate |p| if a By(p) profile is assumed (see
Sect. 4.3 in Démoulin & Dasso 2009b). Based on different mod-
els and the analysis of synthetic FRs, an empirical method to
estimate |p| from the observed B, pr profile was developed in
Gulisano et al. (2007).

3.4. Elliptical flux rope model

Vandas & Romashets (2003) generalized the linear-force free
field of Lundquist to a FR with an elliptical cross-section. Along
and across the trajectory, more precisely in the x and y directions
of the FR frame, the maximum FR extension is 2aq and 2by,
respectively. The Lundquist’s solution is recovered for by = ay.
Since the encountered or overtaking solar wind tends to com-
press the FR in the radial direction away from the Sun, then the
relative sizes are expected to satisfy ag < bo.

With invariance along the FR axis, the linear force-free field
equations are reduced to the Helmholtz equation AA + a?A = 0
with (By, By, B;) = (0A/d8y,—0A/0x, ®A). Vandas & Romashets
(2003) solved this equation with elliptic cylindrical coordinates,
one of the few coordinate systems where the Helmholtz equation
has separable solutions. They set the magnetic field to be tangen-
tial to the elliptical boundary with a vanishing axial component.
For all by/ay values, they found an analytical solution expressed
with the even Mathieu function of zero order.

The above elliptical model can be set in self similar expan-
sion as done above for the Lundquist’s field. The sizes become
a = ap e(t) and b = bg e(t). The cartesian components of the
elliptical model solution (By, By, B;) are first expressed in func-
tion of x,y. Then, the use of Egs. (4) and (5) provide the simu-
lated crossing of the FR. The impact parameter p is generalized
to p = yp/bo, with y, being the minimum signed distance to the
FR axis. Finally, Eq. (8) is generalized to

p = \0/aoR + (Go/bo) = |(x/a) + (/b)Y (13)
with ag, by defined at t = 0 and a, b at . The selected boundary
condition implies B, rr(p = 1) = 0. Finally, along the spacecraft
trajectory pops(?) is still expressed by Eq. (10).

An example of field component profiles of this elliptical
structure is shown in Fig. 2c with b/a = 2. The main difference
with the circular case, Fig. 2b, is a flatter B(f) profile. Indeed,
since the magnetic tension is less important due to the FR elon-
gation in the y direction, the outward gradient of the magnetic
pressure is lower then B is more uniform.

3.5. Defining flux rope boundaries

In the absence of magnetic diffusion and reconnection a given
value of p Eq. (8) traces a selected cylindrical shell within the
FR. Along the spacecraft trajectory the front and rear bound-
aries are located at prone and Preqr, respectively. Below, we con-
sider eroded FRs, with O < pgone < 1 and 0 < pgeyr < 1, in order
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to include possible events where the peeling of the FR via mag-
netic reconnection can be present (see, e.g., Dasso et al. 2006;
Ruftenach et al. 2012, 2015).

The temporal series of B is computed in the time interval
[tr, tr] from Eq. (11), or its equivalent for the elliptical case.
Because the closest approach is set at t = 0, Eq. (4), one has the
ordering: fr < 0 < g - fr and fg are found by solving Eq. (10),
with Pobs(f) = Pfront and Prear, rEspectively. We suppose below
that p < Pgont and p < Prear, SO that the FR is crossed by the
spacecraft.

The case of the front boundary and ¢ > 0 (expanding FR) is
simple. pobs(?) in the in-bound branch is a decreasing function of
time (for # < 0 in Eq. (10), the numerator is a decreasing function
of time while the denominator is always increasing with time).
This implies that pyps(fr) = prone has a unique solution when
P < Prront-

The case of the rear boundary is more case-dependent. This
is because both the numerator and the denominator of Eq. (10)
are both increasing with time for £ > 0 and ¢ > 0. For ¢ < 1, the
numerator is growing faster than the denominator so pops(fr) =
Prear has a unique solution (when p < pre,r). For larger £ values
there are two g solutions or even none for { > 4. The physi-
cal solution in the first case is the one closer to the axis while
in the second case the expansion rate is so large that the simu-
lated spacecraft never crosses the rear boundary. This last case is
not observed as the maximum ¢ values observed within unper-
turbed MCs is 1.5 in the inner heliosphere, 1.1 at 1 AU, and 1.7
in the outer heliosphere (Démoulin et al. 2008; Gulisano et al.
2010, 2012).

4. Tests of minimum variance
4.1. Main procedure

A classical test of the quality of the MV method to distin-
guish directions is to analyze the separation between the variance
(eigenvalues) associated with the three eigenvalues evpiy, eVin
and evy,x of the matrix m;; defined by Eq. (3) (see references in
Sect. 1). Indeed, if two directions have similar variances, so sim-
ilar eigenvalues, say for example, x and z directions, a rotation of
the frame around the third eigenvector (y) is expected to provide
also similar variances in the two rotated directions (x’ and z’).
This implies that the x, z directions are not well defined.

However, a large separation of the three eigenvalues is a nec-
essary but not sufficient condition to have a precise determina-
tion of the FR axis direction. A systematic bias could be present
due to the mixing of the field components to achieve extremum
variances in the eigenvector directions. To understand this possi-
ble bias, let us analyze the Lundquist’s FR with a non-negligible
impact parameter p as an example. |B, pr| has a shape compara-
ble to B,rr (Fig. 2b). Then, the MV combines B, pr and B, rr
by a rotation of frame to produce the flattest possible By my (so
with the lowest variance). This produces a bias in the MV frame
orientation which increases with |p|, confirming the results of
Gulisano et al. (2007). Indeed, in general, the MV method will
mix components which are correlated, see Appendix A.

More generally, this bias and other ones are present for
the axis direction obtained when the MV is applied to expand-
ing FRs. Below, we first identify, then correct, these biases as
much as possible. They are measured by the positive and acute
angles 6y, 6,, 6. between the x,y, z directions of the MV and FR
frames, respectively (these angles can be defined as signed, but
the absolute value is sufficient for our purpose). Next, we com-
pute Ai = ipy — ipg and AL = Ayy — Apr Which quantify the
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Fig. 3. Test of the MV method with the Lunquist’s FR without expansion ({ = 0). The simulated data are defined within the time interval where
B.yr > 0. Panel a shows the results for MVO (MV applied to B) and panel b for MV1 (MV applied to B). The FR axis is oriented with i = 90°
and A = 0° so that the simulated observed and FR frames are the same (Fig. 1). Left column: 6., 0, 0. are the angles in degrees between the x,y, z
directions, respectively, of the FR and MV frames. Middle left column: Ai and AA quantify the difference of axis orientations between the FR and
the one found by MV, so the orientation biases. Middle right column: ratios of the eigenvalues evy,, eViy and evy,. Right column: ratio of the
maximum values of B, vy to B, rr (amplified by a factor of 100 for the first ratio). The horizontal dotted lines and the yellow regions are landmarks
set at the same locations in different figures for the graphs with the same quantities for a better comparison due to the different scales.

difference of axis orientations found by the MV and the correct
one simulated with the FR model. Finally, we quantify the bias
on the axial field by the ratio B; maxmv/Bzmax FR-

From the tests made, we conclude that a large separation of
the three eigenvalues is needed but this is far from being suf-
ficient to have a precise axis determination. For example, for
|pl < 0.6, we show in Fig. 3b a case where the two lowest eigen-
values are more separated when |p| increases, up to |p| < 0.6,
while the bias in the axis orientation increases (6., 6, A4 in the
left panels).

4.2. Minimum variance applied to B or B

The MV technique, described in Sect. 2.2, can be applied to the
time series of B or B = B/|B| defined within the modeled FR
(and later on with in situ data). These approaches are called MV0
and MV1 and were used, for example, by Siscoe & Suey (1972)
and Gulisano et al. (2007), respectively.

MVO, applied to the Lundquist’s model has an orientation
bias increasing linearly with p (Fig. 3a, see 6., 8, and AA varia-
tions). This bias is reduced with MV1 (Fig. 3b). Next, 6, = Ai
= 0 for this simple test because B, gr, B;rr are symmetric and
By r is antisymmetric with time so that they cannot be mixed
by MV (see Appendix A). These tests agree with the results of
Gulisano et al. (2007) and precise the origin of the bias since the
use of i and A is more adapted to separate the relevant magnetic
components than the longitude and latitude of the FR axis. This
further justifies the choice of i and A angles because, when using
them, the bias of the orientation remains mainly on A.

Moreover, the origin of the biases is illustrated for = 0
with the B components of the Lundquist’s FR drawn in the FR
frame (black lines) and MVO frame (orange lines) in Fig. 4a.
B.rr and B pr are combined to provide a flat B, pv (Fig. 4a,
left panel). More generally, for a cylindrically symmetric FR,

By = By(pobs) P/pobs in the FR frame from Eq. (11), then B, =
constant if the azimuthal component By is linear with the radius
Pobs- In this case, the variance of B, vanishes and the MV0
method would exactly associate this minimum variance direction
to Xpr. In brief, there would be no orientation biases. However, in
general this linear dependence is only approximately true close
to the FR center for cylindrically symmetric FR (using a Taylor
expansion of By).

The above bias decreases when normalizing B to unity since
|B| decreases away from the FR axis, compensating partly the
decrease of By. It implies that By/|B| is more linear with p,,s than
By. This effect is directly seen on the B, component for p = 0
since By = |B,| and it is still well present for p = —0.5 when
comparing the central panels of Fig. 4. Consequently, B,/|B] is
more uniform than B, and the MV1 frame is closer to the FR
frame than the MVO one (Fig. 3). Then, the B components in
the MV1 frame (green lines in Fig. 4) are closer to the ones in
the FR frame (black lines) than when MVO is applied to B of
the Lundquist’s field (orange lines).

4.3. Sign and magnitude of biases

The MV bias identified above is due to a mix between B, pr and
B, pr. By definition of the orientation of the z axis, B,pr > 0 in
the FR core. From Eq. (11), B,rr has the sign of —pBy. Then,
the bias A4 has also the sign of —pBy. For example, Fig. 3 shows
a case with positive helicity, ByB, > 0, and p > 0 so that Al <
0. Other cases are simply obtained by changing the sign of Ad
accordingly to the signs of p and magnetic helicity.

The effect of expansion for a typical ¢ value, =1, introduces
only a small extra bias on i, |Ai] < 4°, as seen by compar-
ing Fig. 5a to Fig. 3b. The expansion induces an asymmetry in
the field components (Fig. 2), then the MV method combines a
part of B,rr with B_rr, Fig. 6a, introducing a bias for 6, and
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Fig. 5. Test of the MV 1 method with FRs expanding with a typically observed rate ({ = 1). The simulated data are defined within the time interval
where B,pr > 0. Panel a shows the results for a circular FR and panel b for an elliptical one. The FR axis is oriented with i = 90° and A = 0°
so that the simulated observed and FR frames are the same (Fig. 1). Left column: 6,,6,, 6, are the angles in degrees between the x, y, z directions,
respectively, of the FR and MV frames. Middle left column: Ai and AA quantify the difference of axis orientations between the FR and the one
found by MYV, so the orientation biases. Middle right column: ratios of the eigenvalues evyn, €Vin and evpax. Right column: ratio of the maximum
values of B uv to B, gr (amplified by a factor of 100 for the first ratio). The horizontal dotted lines and the yellow regions are landmarks to compare

the graphs.

Ai values. Other quantities (6, 6,, A1, the ratio of eigenvalues
and B,,max,MV) are not significantly affected by the expan-
sion. This small effect of expansion is a generic result for all the
models tested.

Increasing the aspect ratio b/a enhances more significantly
the bias (Fig. 5b, we note the change of vertical scale on the left
panels). In fact, since the B(f) profile gets flatter with increasing
b/a value (Fig. 2c, right panel) MV1 is converging to MVO as
b/a is larger, so the bias increases (as shown above with Fig. 3
comparing MVO0 to MV 1). In contrast, as b/a increases, the ratio
eVmin/evine decreases (Fig. 5, compare middle right panels), so
this ratio is again not a reliable indicator of the quality of the axis
direction determination. Furthermore, as b/a increases, By pr(?)
behaves closer to B, pr(#) then both MV0O and MV1 rotate the
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frame combining B,rr and B,pgr, trying to get B,my as flat
as possible (compare the two left panels of Fig. 6). This fur-
ther increases |AA| so the bias in the determined axis orientation
(Fig. 5b).

The bias on the axis orientation introduced by the MV
implies a systematic overestimation of the axial component B;,
as shown in Fig. 4, which increases with |p| (Fig. 3, right panels).
This effect is stronger for MVO0 than MV 1 as expected from the
orientation bias results. This bias on B, also increases slightly
with b/a value (Fig. 5, right panels). This is illustrated with an
example shown in the right panels of Fig. 6. The MV method
rotates the MV frame so that the bump shape of B, g is removed
in Bymv. This strengthens B, vy independently of the sign of p
and of magnetic helicity.
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Fig. 6. Magnetic field components versus
time (in hour) in the FR frame (black), in
the MVO frame (orange, MV using B) and
in the MV1 frame (green, MV using B) for
FRs expanding with a typically observed rate
(¢ = 1). A relatively large impact parameter,
p = —0.5, is selected to show the differences.
Panel a shows the results for a circular FR and
panel b for an elliptical one. The other param-
eters are By = latt = 0, V. = 400 kms™!,
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5. Biases due to boundary selection

5.1. Defining the flux rope boundaries

The boundaries of the time interval selected in the in situ data to
find the FR orientation are typically set where abrupt changes of
the magnetic field and plasma parameters are detected. However,
there are frequently some ambiguities in setting them so that
the selected boundaries depend on the author’s specific criteria.
For example, the MC observed on October 18-20 1995 by the
Wind spacecraft was studied by several groups of authors which
set different MC boundaries (Lepping et al. 1997; Larson et al.
1997; Janoo et al. 1998; Collier et al. 2001; Hidalgo et al. 2002;
Dasso et al. 2006).

The main origin of these discrepancies is that the mea-
sured magnetic field components and the plasma data, such
as proton temperature, plasma composition and properties of
high energy particles, do not always agree on the extension of
the MC, and more generally of the magnetic ejecta (see, e.g.,
Russell & Shinde 2005). A part of this ambiguity is due to the
partial magnetic reconnection of the ejected solar FR with the
magnetic field of the encountered solar wind or of an overtaking
stream. This reconnection does not affect the field and plasma
on the same time scale. For example a change of magnetic con-
nectivity is affecting on short time scales (on the order of few
tens of minutes) the propagation of high energy particles while
the mix up of MC and solar wind protons from the distribu-
tion core takes days to be mixed after reconnection occurred.
The above processes imply that different boundaries are often
defined in different studies of the same MC (e.g., Riley et al.
2004; Al-Haddad et al. 2013).

The selection of boundaries have large implications on the
derived FR orientation (e.g., Dasso et al. 2006). For example,
the axis orientation derived from MV and a least square fit to
a Lundquist’s model can be significantly different and without
coherence along the axis of a MC observed by four spacecraft
(ACE, STEREO A and B, Wind) for a set of boundaries
(Farrugia et al. 2011), while consistent results are obtained
between both methods and along the FR axis when refined time
intervals are used (Ruffenach et al. 2012). The important effect
of the boundaries is further shown in Janvier et al. (2015) by the
difference in orientations found with the same set of MCs ana-
lyzed by Lynch et al. (2005) and Lepping & Wu (2010), while
the FR axes were determined in both cases by the same method
(fit of B data to Lundquist’s model).

t
10 by=0.1AU.

5.2. Testing the effect of boundary location

The effect of the boundary selection on the determined axis is
illustrated in Fig. 7 using MV1 on a Lundquist’s FR without
expansion (in order to focus the analysis only on the boundary
effects). We set the front at pgone = 1 (where B,pg = 0) and
allows prear < 1. The FR is crossed only for |p| < prear SO the
large values of Ai, A1 and B, max Mv/ Bz max rr Obtained for large
|p| values in Fig. 3b are absent in figures with preor < 1 and the
comparison of biases should be done for the same p value.

Already with preor = 0.9 (Fig. 7a), so only with 10% in radius
removed at the FR rear, there is a clear increase of MV1 bias
(compare to Fig. 3b where pre,r = 1 is the only different parame-
ter). 6, which was null in Fig. 3b, is comparable to 6, and 6, (left
panel of Fig. 7a). This introduces mainly a rotation of the esti-
mated FR axis by changing its inclination on the ecliptic plane
(Ai > 0). There is a mix up of B, rr with the other components
in order to increase the variance of B, \v. This is possible as
the components are no longer antisymmetric or symmetric with
respect to the closest approach time, then they are partly corre-
lated (see Appendix A).

AS preqar 18 further decreased the bias on i increases, and domi-
nates the bias on A for all p values. For example, with pe,r = 0.5,
so with half of the FR rear removed, this introduces the main
bias on i with a rotation of the determined FR axis on the order
of 24-35° compared to the known axis direction (Fig. 7b, mid-
dle left panel). Even worse, this bias on i is also present for low
impact parameter cases (bias ~ 24°). This increasing bias is asso-
ciated with an increasing separation of the two lowest eigenval-
ues (Fig. 7b, middle right panel). It shows once more that the
eigenvalue separation is not a good criteria for estimating the
precision of the axis direction defined by MV.

The location of the FR boundaries also introduces biases
on other parameters of the FR such as its radius (by chang-
ing the geometry of the crossing) or its axial field strength
(by mixing the field components). Still, it has only a moder-
ate effect on B, maxMv/Bzmaxrr since MV1 mixes Bypr with
B rr and Bypr =~ 0 where B pr is maximum (Fig. 6), so that
B, maxmv/B;maxFr 18 comparable to the case pr,r = 1 for the
same p value (compare the left panel of Fig. 3 to those of Fig. 7).

5.3. Boundaries selected with flux conservation

Since V - B = 0, the same amount of azimuthal magnetic flux
should be present in the FR front and rear (e.g., Dasso et al.
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Fig. 7. Effect of the flux unbalance on the results of MV1 applied to the Lundquist’s FR without expansion ({ = 0). The results are shown for
two cases of flux unbalance between the FR front and rear. The front limit is located where B,pr = 0 (0fone = 1) and the rear limit is set at a
fraction pye, Of the FR radius. For comparison the case pre,r = 1 is shown in Fig. 3b. Left column: 6., 0,, 6, are the angles in degrees between the
x,y, z directions, respectively, of the FR and MV frames. Middle left column: Ai and AA quantify the difference of axis orientations between the
FR and the one found by MV, so the orientation biases. Middle right column: ratios of the eigenvalues evyin, €Vin and evi. Right column: ratio
of the maximum values of B, \v to B,rr (amplified by a factor of 100 for the first ratio). The horizontal dotted lines and the yellow regions are

landmarks.

2006). This implies that in the FR frame the same amount of
flux crosses the y—z plane before and after the time of the closest
spacecraft approach to the FR axis, then for a locally straight FR
axis:

ff By dxdz=0.
FR

However, the FR axis of observed MC is expected to be
bend toward the Sun. Therefore, following field lines from the
front to the rear part, the same amount of flux is located in a
slightly longer region along the axis in the front region than at
the rear. Nevertheless, the curvature radius of the axis, R, is
large, typically several AUs (e.g., Janvier et al. 2015), compared
to the distance r to the FR axis (r < 0.1 AU), then the correc-
tion in r/R., is dominant near the border of the FR, but it is still
small. Moreover, the magnetic torque balance is expected to dis-
tribute equally the twist along the FR, at least locally. Then, the
hypothesis of local invariance by translation along the FR axis is
expected to be a good approximation, at least away from the FR
legs (see Owens et al. 2012).

Within the above approximations, the accumulated magnetic
flux between #r and g, in the FR frame and per unit length along
the axial direction, is

dFy(tF7 tR) _
dz B

Since dF'y/dz includes the observed velocity component V, this
flux computation includes automatically the details of the local
FR expansion. It is also valid for any FR cross-section shape.
Next, for a given boundary time, either # or g, dFy(tr, tr)/dz =
0 defines the other FR boundary by imposing the flux balance (as
it should be the case for a FR). In case of multiple solutions, this
implies that more than one FR, or a FR and another structure, are
present. Then, the FR, selected by the initial choice of boundary,
is defined by minimizing |tz — fr| so selecting only one FR.

(14)

f ’ By(t") Vi(£') df' . (15)

IF
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Another equivalent formulation is to remark that V- B = 0
implies for a configuration invariant in z:
B = (0A/dy,—0A/dx, B,(x,y)), (16)
where A(x,y) is the z component of vector potential. Integrat-
ing any field line implies that it is located on a surface A(x,y) =
constant. This property relate any location in the FR front to its
corresponding rear position. Along the spacecraft trajectory, so
y = ¥p (defined in Eq. (4)), A(x,yp) can be derived by integra-
tion of By. Next, taking the origin of A at the front boundary
this implies A(¢, y,) = —dF(tg, t)/dz where the x coordinate has
been replaced by time for marking the position. Then, Eq. (15)
can also be expressed with the vector potential component A, as
done, for example, in the Grad—Shrafranov equation for magne-
tostatic field.

The above property of flux conservation was used to define
the back region of MCs (the region which was part of the FR
before reconnection at the front occurred, Dasso et al. 2006,
2007) and, more generally, the amount of magnetic flux recon-
nected with the background field (Ruffenach et al. 2015). Below,
we further propose that Eq. (15) can also be used in a broader
context to define coherent sub-FRs within the core of the physi-
cal FR. The aim is to test the stability and to limit the bias of the
FR axis determined by the MV variance.

5.4. Defining the flux rope core

We have shown in Sect. 4.2, for FRs with cylindrical symmetry,
that the MV bias decreases as the azimuthal field component By
or By/|B] (MVO or MV1) has a more linear dependance with
the distance to the FR axis. For non singular distributions of the
electric current and cylindrically symmetric FRs, By vanishes on
the axis. A Taylor expansion of By(r) implies that By(r) is linear
for sufficiently small r values, so the bias of MV is expected to
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Fig. 8. Test of MV 1 applied only to the FR core. The results are shown in function of p, = Prront = Prear, S0 With flux balance between the front and
rear. Panels a,b: b/a = 1, panel ¢) bja = 2. Panel a: { = 0 (no expansion), panels b,c) { = 1 (typical observed expansion). The curves are drawn
for p, > p (otherwise the FR core is not crossed) where p = 0.3. Left column: 6., 6,,0. are the angles in degrees between the x, y, z directions,
respectively, of the FR and MV frames. Middle left column: Ai and AA quantify the difference of axis orientations between the FR and the one
found by MYV, so the orientation biases. Middle right column: ratios of the eigenvalues eVyn, €Vin and eVpax. Right column: ratio of the maximum
values of B, v to B, rr (amplified by a factor of 100 for the first ratio). The horizontal dashed dotted lines and the yellow regions are landmarks.

be lower when MV is applied to the core of the FR. However,
restricting the core has the disadvantage of considering less data
points, and for real FRs it implies including relatively more small
structures and noise/fluctuations that can compete with the FR
structure and produce an additional undesired bias. Then, we use
Eq. (15) to define sub-regions corresponding to inner FRs in the
simulated data. For the models considered, Eq. (15) is simply
solved by setting Pfront = Prear = Pb. When real observations
are analyzed, getting the boundaries for this flux-balanced inner
sub-FR requires to know its orientation (i.e., By in the FR frame
is needed to compute Fy). Thus, it is needed to use a method
that feedbacks on the best estimations of the orientation while
checking that the flux balance criterion is met.

Next, we describe how to impose the flux balance with data.
The following method was tested with the above models where
the flux balance is rigorously defined with Pgont = Prear- The
method has two main steps: fixing either the front or rear bound-
ary and scanning the other boundary. More precisely, the method
first tests if there is more azimuthal flux at the rear than at the
front of the MC, then, if it is the case it defines the FR rear time.
If no flux balance is achieved in the previous step, the end time
is then used as the rear boundary and the method defines the FR
front time when the azimuthal flux is conserved.

We next describe this method with more details. Let us sup-
pose first that the front boundary is fixed (e.g., it can be defined
by a sharp jump in the magnetic and plasma data, or it can be also

located inside the MC to study the FR core). The MV method
is recurrently applied to the data limited in between fr and the
scanned values of fg, then the flux balance is computed from
Eq. (15), in the MV frame (function of #r). The lowest value of #g
which satisfies the flux balance is selected as the FR rear bound-
ary. If no flux balance is achieved, the same method is applied
by fixing g at a sharp jump in the magnetic and plasma data
(at the latest time compatible with MC properties), or earlier on,
again to study only the FR core. Then, # is scanned. Finally, the
largest value of #r which satisfies the flux balance is retained.

Insummary, present method defines the FR, orits core, whichis
present at the spacecraft crossing by imposing the azimuthal flux
balance. Since the MV eigenvectors are computed with flux bal-
ance, the bias on the deduced FR axis orientation is minimized.
Finally, this method of scanning boundaries to impose flux bal-
ance can be implemented in other methods, such as fitting a flux
rope model. The limitation is the computation time, as a nonlin-
ear least-square fit is required for each tested boundary. Still, the
computation time can be limited by including in the method a more
efficient search of the zero of a function than a simple scan (the sim-
plest being bisection or Newton’s root finding).

5.5. Results with selecting the flux rope core

As expected, the results of Fig. 8a show that the MV 1 bias is sig-
nificantly reduced as a smaller central part of the Lundquist’s FR
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is considered up to the limit where the FR is not crossed (o, = p).
This contrast with the eigenvalues being closer as py, decreases,
further showing another example where the ratios of eigenval-
ues are not good indicators of the quality of the deduced FR
axis. Finally, as a natural consequence of MV1 and FR frames
becoming closer with a lower py, value, the axial field is also bet-
ter recovered when py, is decreased (right panel of Fig. 8a).

The above trends with py, are also obtained with MVO but
still with a larger bias than with MV 1. Next, similar results are
obtained when the expansion is included with a magnitude as
typically observed (Fig. 8b). However, this improved axis deter-
mination is less effective as the FR is flatter, so as b/a is larger
(Fig. 8c). Of course in application to observations, perturbations
of the FR field and the limitation to too few data points will con-
strain the decrease of py, so close to the impact parameter p as in
Fig. 8.

6. Biases due to fluctuations

The effects of fluctuations can separate two groups:
— achange of position for the boundary determined by the flux
balance;
— a change of the variances in the x, y, z directions (with fixed
boundaries).
Let us call by the fluctuation in the y direction. The flux balance
writes:

dFy(tp, tr)

R
= f (B,(1') + by(t) Vo(t') di’ =0, (17)
dz ,F
which is simpler to write in function of x:
XR
f (B, + b,) dx = 0. (18)
XF

Let us fix g - tg is changing by At, corresponding to the size
Ax, to satisfy the flux balance with fluctuations. The change of
flux due to the main field B, is about By ,Ax where B, is the
amplitude of the field near the FR boundary. The change of flux
due to a sinusoidal fluctuation of wavelength / is at most b, 4,2/,
where b, , is the amplitude of the fluctuation, which corresponds
to the contribution of half wavelength (the others cancel). Insert-
ing these orders of magnitude in Eq. (18), and diving by the FR
radius b to normalize, the magnitude of the boundary change Ax
satisfies:

Ax  2by, 1l

b “7B.b (19)
Both the last two fractions are typically <1, say on the order of
0.1, s0 Ax/b < 0.01, which will give a very small bias on the axis
(Fig. 7ais for Ax/b = 0.1, so the effect would be much smaller,
likely a factor of ten smaller). In conclusion, fluctuations would
change significantly the computed boundary, so the axis deter-
mined, unless they are both large in amplitude and with a large
wavelength. As an example, to get the effect shown in Fig. 7a
we need Ax/b = 0.1, then with by /By, ~ I/b both ratio needs
to be ~0.4, and this is the most favorable case where half the
wavelength perturbation is not compensated (odd number of half
wavelength across the FR).

For the second effect, the variance of Eq. (1) is rewritten with

fluctuations as:

or = ((Ba+by—(By+by))?)

((By + by — (By))*)
((Ba = (Bu))*) + 2 {(By — (Bn)) bn) + (b2
((Bo = (Ba))?) + (b2)

X

X

(20)

Q
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where the linear terms in b, are neglected because they con-
tribute only by at most half wavelength (same as in previous
paragraph). Then, the contributions of the fluctuations is mostly
to increase the variances of all B components. If isotropic fluc-
tuations are introduced they have no effect in the determination
of the variance extremums so on the eigenvectors. This is not
the case for fluctuations orthogonal to B (Alfvenic fluctuations
are expected in a low S plasma). Still, could the eigenvectors be
significantly rotated? Let suppose a rotation of x, y directions to
x’,y" in the FR frame. Reducing (bﬁ) in the x’ direction would
need a significant correlation of the perturbation in the x, y direc-
tions (see Appendix A). Moreover, this rotation would signifi-
cantly increase ((Ba—(Bp))*) by mixing B, with B, counteracting
the above hypothetical decrease of variance due to fluctuations.
The same consideration can be done with a rotation from x, z
directions to x’, 7', with the difference that it is less costly to mix
x and z component for the variance as they have more similar
behavior than compared with the y component.

In conclusion, fluctuations cannot change significantly the i
angle. The effect is expected to be larger on A angle but still weak
unless the fluctuations have a long wavelength, comparable to
the FR radius and are of large amplitude. This is very difficult
to achieve as we already know that the effect of the expansion,
which also can be thought as a kind of large-scale perturbation,
is small.

7. Conclusion

An accurate determination of the flux rope (FR) axis direction
from the interplanetary data of B is important for statistical stud-
ies determining the global axis shape, for the determination of
the FR physical properties (e.g., the internal distribution of the
magnetic twist, the amount of magnetic flux and helicity) as well
as for comparing the MC global properties and its orientation
itself to the ones determined from its solar source region. MV is
one method to estimate the direction of the FR axis. However, as
any present method, MV is known to have biases. Our main aim
was to identify them and to correct them as much as possible.

The orientation of the axis is better defined by the location
angle A and the inclination i, as defined in Fig. 1, rather than
the traditional latitude and longitude of the axis, using Zgsg as
the polar angle. For example, the biases of the MV method are
of different origins and magnitudes for A and i while the bias
origins are mixed for latitude and longitude. The angles A and
i are then important to identify, then to correct, the MV biases.
For that, we test MV results with several methods and models.

The eigenvalues ratio provided from applying MV to the FR
observations quantifies how different/similar are the variances
in the three different directions. The eigenvalues should be suf-
ficiently separated to identify accurately the eigenvectors found
by MV. However, this eigenvalues ratio is not a proxy for quanti-
fying the accuracy of the estimation of the real FR axis direction,
in contrast to the claim of several previous publications.

MYV was first applied to the simulated B time series com-
puted with a Lundquist’s model and its generalisation to an ellip-
tical cross-section. This introduces an increasing bias on the axis
determination as the simulated spacecraft crosses the FR fur-
ther away from its axis. This bias is reduced when the MV is
applied to B/B time series, confirming the previous results of
Gulisano et al. (2007). By analyzing cylindrical models we iden-
tify the origin of this bias as due to the departure of a linear
dependence of the azimuthal field components with the distance
to the FR axis. Including expansion in the modeled FR, with an
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expansion rate as it is typically observed, does not have a signif-
icant effect on the orientation obtained from MV.

Another bias is due to the selection of the time interval
used to apply MV. In MC observations there are frequently sev-
eral sets of plausible boundaries depending on which magnetic
and plasma data are used to define abrupt change of temporal
behavior. We verify on modeled synthetic FR that the selection
of the time interval boundaries is crucial to minimize the bias
in the determined FR orientation. We next solve this difficulty
by imposing that the same amount of azimuthal magnetic flux
should be measured before and after the closest approach of the
FR axis. The estimation of the flux balance is computed in the
MYV frame scanning alternately the rear and the front boundary.
We find, as expected, that the MV bias for the estimation of the
FR axis direction is minimized when the azimuthal flux balance
is satisfied. This flux balance technique can be applied to other
methods, such as FR model fitting. We also anticipate a decrease
in the axis orientation bias since the FR models have an intrin-
sic flux balance, so that the selected part of the data should also
satisfy this constraint.

The above constraint of flux conservation also allows us to
explore a variable part of the FR core as input to MV. Indeed,
the test made with cylindrical models shows that the bias in the
axis orientation is lower when an inner part of the FR is selected.
This effect is weaker for FRs with flatter cross sections. In appli-
cations to observations, the limitation to the FR core is further
justified by the expected presence of larger perturbations at the
FR periphery, due to interactions with the external ambient solar
wind.

However in observations, the presence of B fluctuations
implies that the analyzed time interval should be sufficiently
large and does not affect the axis determination too much. Then,
a compromise should be taken between too small and too large
time intervals. This compromise is MC case dependent since it
is linked to the intensity and distribution of B perturbations. This
can be realized in studied MCs by analyzing the evolution of i
and A in function of the position of one boundary (the other being
computed by flux balance).

In the present study we limit the application of the MV
to MCs with approximately symmetric B(f) observed pro-
files. This corresponds to about 70% the MCs observed at
1 AU with an asymmetry parameter below 15% (Fig. 3h of
Lepping et al. 2018) or with a distortion parameter (DiP) of
0.5 = 0.07 (Table 4 of Nieves-Chinchilla et al. 2018b). Next,
on top of the expansion, which introduces only a weak asym-
metry, an intrinsic asymmetry exist especially for the faster
MCs (Masias-Meza et al. 2016). This spatial intrinsic asymme-
try introduces another bias in the axis determined by the MV. Its
correction needs both the development of the MV method, and
also the development of asymmetric models to test the amount
of remaining bias. This will be the object of another study.

Still, the present results are important for applications to
mostly slow MCs. For FR close to cylindrical symmetry and in
expansion, MV applied to B/B time series combined with the
flux conservation gives results where the remaining biases are
mostly present on the location angle A with a magnitude typi-
cally proportional to the impact parameter. It implies that, with
a known axis shape, there is a bias on how far the spacecraft
crossing occurred from the axis apex, see Janvier et al. (2015).
The sign of the bias depends on the sign of the product between
the impact parameter and of the magnetic helicity.

At the opposite, the inclination i is well recovered (with
a bias less than 4° for an impact parameter below 0.7). This
implies that the direction of the FR axis projected orthogonally

to the radial direction (from the Sun) is well determined. Then,
the application of the MV method to B/B time series, called
MV1, is recommended for studying the amount of global rota-
tion of the FR during its transit from the Sun to the in situ obser-
vation position.
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Appendix A: Minimum variance and symmetries

The mean quadratic deviation, or variance, of the magnetic field
B in a given direction defined by the unit vector 7 is:

N
Var, = o2 = % > (B By - &) (A1)
k

=1

where the summation is done on the N data points of the time
series and (B) is the mean magnetic field.

Let us apply Eq. (A.1) to the FR magnetic components
observed (or simulated) by a spacecraft, with B,(?), B,(t), B.(?)
the components in the FR frame (defined in Sect. 2.1). This
defines a series of N data points Bf? (i = x,y,2). We call the
variances of these field components Var;. We define also the cor-
relations between two specific components, as

1 N
Cory; = DB (B) (B = (B)). (A2)
k=1

A.1. Is the FR y-direction well recovered by MV?

Let us suppose we are in the FR frame, and let us consider a 2D
rotation by an angle ¢ around a fixed x axis, so supposing Xyv =
Xrr, in order to analyze if MV will mix the components B, with
B, when this rotation is permitted. Thus, the new component By,
in the rotated frame (y’) will be
By = Bycosé — B;sind. (A3)
Then, the variance in the new rotated y’ axis, Vary(d), can be
written as

Var,(6) = Vary(cos 8)? + Var,(sin6)*> — 2sin cos & Cor,
Var, — Var, . Var, + Var,
= cos 20 — Cory; sin26 + —

This is of the form a cos 2(6 —6;,) + b with a, b two constants with
a > 0if Var, > Var,. d, is the bias angle of the MV: the rotation
around the axis vy = Xrr needed to maximize Vary (5). More

precisely:
Var, — Var, |’
a = \/(—y > z) +C0r§’Z
2 Cory,,
tan20, = -———- (A4)
Var, — Var,

A typical order of magnitude of 6, can be estimated with the
field By = By sint, B, = By cos t with ¢ in the interval [-7/2, /2]
(this keeps the global shape of the B, and B, profiles, in partic-
ular their symmetry, and it is sufficient for an order of magni-
tude estimation). This implies Var, ~ Bj/2, Var, ~ B;/10 and
Cory; = 0. Indeed, in practice we have often in MCs the order-
ing:

|Cor, | << Var, << Var,. (A.5)
It implies
6p = Cor, ;/Var, << 1. (A.6)

A similar analysis can be done with x replacing z, so con-
sidering a rotation by an angle ¢” around the z axis, so supposing

Zmv = Zpr, and thus mixing B, with B,. As above, we have often
in MCs the ordering:

|Cor,,| << Var, < Var,. (A7)
This implies
8, ~ —Cor,,/Var, < 1 (A.8)

which is even better satisfied than Eq. (A.6) in MCs when B, is
lower than B,, so for a low impact parameter.

We conclude that the y-direction, both orthogonal to the FR
axis and spacecraft trajectory, is expected to be well recovered
by MV when flux balance is achieved. This is summarized by a
low expected bias for the i angle.

A.2. Is the FR axis direction well recovered by MV?

The same analysis done in the previous sub-section can be
applied to the mix between B, with B,. Here it is clearer to look
at the bias of the x axis, as a minimum of variance is expected
nearby while a saddle point is expected around the z axis (vari-
ance decreases when changing in some directions, but increases
in other directions). This is not a problem as the variance matrix
is symmetric, then it has orthogonal eigenvectors, so when the
bias on both x- and y-axis are known, the bias on the z-axis can
be deduced.

Let us consider a rotation by an angle 6, around the y axis,

S0 SUPPOSINg Jyry = -

B,y = B;cos 6, — B, sind,. (A9)

Then, Var, (d,) is written as

Var, ()
= Var,(cos 6y)2 + Var,(sin 6),)2 —2sin 6, cos 6, Cory,

Var,~Var, . Var, +Var,
= — 5 €08 20y — Cor,; sin 26, + 5=

just as in previous subsection with y changed to x and extract-
ing a negative sign in front of cos2d, to write Var,(d,) as
—acos2(6y — dy,) + b so that a minimum of Var,(d,) is present
close to the x-axis for small ¢, values (with a, b two constants
with @ > 0 if Var, > Var,). 6, is the bias angle of the MV for
this rotation: the rotation around the axis yy;y = Jpr needs to
minimize Var, (d,). More precisely:

2
Var, — V:
\/ (—arz 5 arx) + Cory,

a =
tan 26, _2Coru: (A.10)
Var, — Var,
Unlike previously, Egs. (A.5) and (A.7), the ordering
|Cor, .| < Var, < Var, (A.11)

is typically much less satisfied in MCs, so the bias of the rota-
tion 6, around the y-axis, as provided by the minimum of vari-
ance, could be important, and it increases with Cor, ; so with the
impact parameter. Since Xyy and Zyy are orthogonal this con-
clusion applies also to the axis direction estimated by MV.

We conclude that the FR axis, or z, direction is expected to
have more bias than the y direction, except when the impact
parameter is small (which implies a small B, component, then
a small Cor, ;). This is summarized by a larger bias for the A
angle than for i except for small p values.
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