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The Chong-Cvetič-Lü-Pope 5D rotating charged black hole proves to belong to a set of solutions to
Einstein-Maxwell-Chern-Simons (EMCS) equations that share the electromagnetic potential and the
Chern-Simons coupling constant but differ in the Kretschmann invariant. This one-parametric family of
solutions is found by proposing a properly deformed Plebański-Demiański Ansatz for modeling the metric
tensor. While no black-hole solutions for other values of the Chern-Simons coupling constant are found
within this Ansatz, another type of nonstatic electrovacuum solutions to 5D EMCS equations are obtained,
namely Kundt spacetimes sourced by a pure-radiation field.
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I. INTRODUCTION

The search for solutions to Einstein equations can be
greatly facilitated if the solution is looked for in a family of
metrics conveniently prepared. For this aim, one uses an
Ansatz whose metrics are simple enough to make easy the
control of the Ricci tensor; at the same time they should be
sufficiently flexible to have a chance of finding solutions.
A well-known example of such strategy is the Kerr-Schild
(KS) Ansatz [1–3], where the metric is written in the way

gμν ¼ g
o
μν þ fðxÞkμkν; here g

o
μν is a “seed” known metric,

kμ is a conveniently chosen null congruence of both metrics

g
o
μν and gμν, and fðxÞ is a free function spanning the
members of the family. Also Plebański-Demiański (PD)
metrics [4] have proved to be a fruitful way of representing
the host family of metrics. The components of PD metrics
depend on two coordinates r, p; two functions XðpÞ, YðrÞ
play the role of free degrees of freedom; besides they
contain several parameters to be identified with the cos-
mological constant, the angular momenta of the solution,
etc. In four dimensions, both KS and PD Ansätze succeed
in leading to rotating black-hole solutions. Even the
charged Kerr-Newman solution belongs to both Ansätze.
Actually PD metrics in four dimensions contain the
most general axially symmetric solution to “sourceless”
Einstein-Maxwell equations. This Petrov type-D solution is
characterized by seven parameters: the mass, the Newman-
Unti-Tamburino (NUT) charge, the angular momentum, the
electric charge, the magnetic charge, the acceleration, and

the cosmological constant (see also [5]). For five and higher
dimensions there exists a complete catalog of axially
symmetric solutions to the vacuum Einstein equations
[6–8]. Instead, the only charged rotating black hole so
far obtained is the 5D Chong-Cvetič-Lü-Pope (CCLP)
geometry [9], which is a solution to Einstein-Maxwell-
Chern-Simons (EMCS) equations for a specific Chern-
Simons (CS) coupling constant; it was obtained in the
context of five-dimensional minimal gauged supergravity.
The CCLP geometry is characterized by the mass, the
NUT charge, two angular momenta, the electric charge, and
the cosmological constant. There are not clues to build 5D
solutions to EMCS equations for other values of the CS
coupling constant. However there exist some attempts
for the case of equal angular momenta, which resort to
numerical [10,11] or perturbative [12] techniques. Besides,
a sector of the 5D Einstein-Maxwell equations has proven
to be integrable for a restricted form of the electromagnetic
field [13].
We aim to develop a method to search for solutions to 5D

EMCS equations, by starting from a proper extension of
the 5D PD Ansatz [14]. As a result, we will find that the
CCLP solution appears as one among other solutions to
EMCS equations for the same electromagnetic potential
and CS coupling constant but differing in the value of the
Kretschmann invariant. On the other hand, we will also find
a family of 5D geometries conformal to pp waves that are
sourced by a pure-radiation electromagnetic field. In Sec. II
wewill display the 5D PDAnsatzwewill use for introducing
the host family ofmetrics. For thesemetrics,wewill show the
eigenvalue-eigenvector structure of the Einstein tensor and
their doubleKerr-Schild form. InSec. IIIwewill compute the
eigenvalue-eigenvector structure of the energy-momentum
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tensor belonging to a rotating “pointlike” charge. Since the
eigenvalue-eigenvector structures of both Einstein and
energy-momentum tensors cannot be matched in the PD
Ansatz, in Sec. IV wewill introduce an extended PD Ansatz.
We will obtain a one-parametric family of solutions accom-
plishing the EMCS equations for the same electromagnetic
potential and Chern-Simons coupling constant 2

ffiffiffiffiffiffiffiffiffi
G=3

p
,

among which the CCLP solution is found. In Sec. V we
will discuss further extensions of the Ansatz; however we
will not succeed in getting black-hole solutions for other
values of the Chern-Simons coupling constant. In Sec. VI we
will show a different type of nonstatic solutions to EMCS
equations, which is associated with pure-radiation sources.
In Sec. VII we will display the conclusions.

II. PLEBAŃSKI-DEMIAŃSKI METRICS
IN FIVE DIMENSIONS

We will look for rotating charged black-hole solutions
in the set of 5D Plebański-Demiański-like metrics of the
form [14]

g ¼ −
YðrÞ

p2 þ r2
ω0 ⊗ ω0 þ XðpÞ

p2 þ r2
ω1 ⊗ ω1 þ a2b2

p2r2
ω2

⊗ ω2 þ ðp2 þ r2Þ
�
dr ⊗ dr
YðrÞ þ dp ⊗ dp

XðpÞ
�
; ð1Þ

where

ω0 ≡ ð1 − p2λÞdt
ð1 − a2λÞð1 − b2λÞ −

aða2 − p2Þdϕ
ða2 − b2Þð1 − a2λÞ

−
bðb2 − p2Þdψ

ðb2 − a2Þð1 − b2λÞ ;

ω1 ≡ ð1þ r2λÞdt
ð1 − a2λÞð1 − b2λÞ −

aða2 þ r2Þdϕ
ða2 − b2Þð1 − a2λÞ

−
bðb2 þ r2Þdψ

ðb2 − a2Þð1 − b2λÞ ;

ω2 ≡ −
ð1þ r2λÞð1 − p2λÞdt
ð1 − a2λÞð1 − b2λÞ þ ða2 þ r2Þða2 − p2Þdϕ

aða2 − b2Þð1 − a2λÞ

þ ðb2 þ r2Þðb2 − p2Þdψ
bðb2 − a2Þð1 − b2λÞ : ð2Þ

Here, a, b, and λ are three parameters which can be freely
chosen (however, it must be jaj ≠ jbj).
Even though the 5D metrics (1) are deprived of some

features of 4D Plebański-Demiański metrics (for instance,
they do not contain the parameter associated with the
acceleration), the Ansatz (1) should be enough for our
purposes. The inverse metric for this Ansatz is

g−1 ¼ −
v0 ⊗ v0

ðp2 þ r2ÞYðrÞ þ
v1 ⊗ v1

ðp2 þ r2ÞXðpÞ þ
v2 ⊗ v2
p2r2

þ YðrÞ
p2 þ r2

∂
∂r ⊗

∂
∂rþ

XðpÞ
p2 þ r2

∂
∂p ⊗

∂
∂p ; ð3Þ

where

v0 ≡ r−2ða2 þ r2Þðb2 þ r2Þ

×

� ∂
∂tþ

að1þ r2λÞ
a2 þ r2

∂
∂ϕþ bð1þ r2λÞ

b2 þ r2
∂
∂ψ

�
;

v1 ≡ p−2ða2 − p2Þðb2 − p2Þ

×

� ∂
∂tþ

að1 − p2λÞ
a2 − p2

∂
∂ϕþ bð1 − p2λÞ

b2 − p2

∂
∂ψ

�
;

v2 ≡ ab

� ∂
∂tþ

1

a
∂
∂ϕþ 1

b
∂
∂ψ

�
: ð4Þ

The orthogonal bases ωi ¼ fω0;ω1;ω2; dr; dpg and
vi ¼ fv0; v1; v2; ∂=∂r; ∂=∂pg are dual, except for normali-
zation factors. In fact it is

ωiðvjÞ ¼ 0; ∀ i ≠ j: ð5Þ

They can be normalized:

ω0̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðrÞ

p2 þ r2

s
ω0; ω1̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðpÞ
p2 þ r2

s
ω1;

ω2̂ ¼ ab
pr

ω2; ω3̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ r2

YðrÞ

s
dr;

ω4̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ r2

XðpÞ

s
dp; v0̂ ¼

v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ r2ÞYðrÞ

p ;

v1̂ ¼
v1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp2 þ r2ÞXðpÞ
p ; v2̂ ¼

v2
pr

;

v3̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðrÞ

p2 þ r2

s
∂
∂r ; v4̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðpÞ
p2 þ r2

s
∂
∂p : ð6Þ

Some of the characteristics of the 5D Plebański-
Demiański metrics (1) are as follows.
(i) They are invariant under the change r2 ↔ −p2,

X ↔ Y.
(ii) The metric is Lorentzian only if X > 0 and Y > 0, or

X > 0 and Y < 0 (however ∂=∂r would be timelike in the
second case).
(iii) ðp2 þ r2Þg−1 separates into terms depending only

on r or p. In particular, this implies that the Hamilton-
Jacobi equation is separable.
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(iv) In the chart ðt;ϕ;ψ ; r; pÞ the determinant is

g ¼ det½g� ¼ −
p2r2ðp2 þ r2Þ2

ða2 − b2Þ2ð1 − a2λÞ2ð1 − b2λÞ2 : ð7Þ

(v) Einstein tensor Gμ
ν is linear in the functions X, Y.

In five dimensions only the first and second derivatives of X
and Y appear in Gμ

ν . Because of this reason the solutions X,
Y to vacuum Einstein equations come with additive free
constants [see item (vii)].1

(vi) ðp2 þ r2ÞR exhibits separation of variables:

ðp2 þ r2ÞR ¼ −p−2½p2X0ðpÞ − 2a2b2p−1�0
− r−2½r2Y 0ðrÞ þ 2a2b2r−1�0: ð8Þ

(vii) The solutions to vacuum Einstein equations are

XvacðpÞ ¼ −p−2ða2 − p2Þðb2 − p2Þð1þ p2λÞ þ αp2 þ 2n;

ð9Þ

YvacðrÞ ¼ r−2ða2 þ r2Þðb2 þ r2Þð1 − r2λÞ − αr2 − 2m;

ð10Þ

where α,m, n are integration constants. This is the Kerr-NUT
solution with massm, NUT charge n, angular momenta a, b,
and cosmological constant Λ ¼ 6λ [however, see item (viii)]
[7,8,14,15]. The integration constant α represents a choice
of chart for the Kerr-NUT geometry within the PD Ansatz.
The Kretschmann invariant is Rμν

λρR
λρ
μνjvac ¼ 40λ2 þ 96

ðm þ nÞ2ðp2 þ r2Þ−6ð3p4 − 10p2r2 þ 3r4Þ.Differingfrom
4D, in 5D the mass m and the NUT charge n are not
constrained to vanish in the de Sitter geometry: it is enough
that n ¼ −m.2

(viii) To guarantee the positiveness of Xvac, Yvac for the
entire range of the coordinates, we can choose α ¼ 0 and
replace p with the coordinate θ defined as

p2 ¼ a2 cos2 θ þ b2 sin2 θ; ð11Þ

i.e.,

cos2θ ¼ b2 − p2

b2 − a2
; sin2θ ¼ a2 − p2

a2 − b2
: ð12Þ

By replacing (11) and (12) in Eq. (9), one sees that XvacðθÞ
will be positive definite if λ, n are properly chosen. Besides
it is

dp2 ¼ ðb2 − a2Þ2sin2θcos2θ
a2cos2θ þ b2sin2θ

dθ2: ð13Þ

(ix) fvig ¼ fv0; v1; v2; ∂=∂r; ∂=∂pg are eigenvectors
of the Ricci tensor. This is a very important property of
the Plebański-Demiański Ansatz, since it implies that the
structure of the Einstein tensor is known independently of
the functions X, Y. Indeed the functions X, Y only have
to do with the eigenvalues of the tensor. Without loss of
generality we can write

XðpÞ ¼ XvacðpÞ þ fðpÞ; ð14Þ

YðrÞ ¼ YvacðrÞ þ gðrÞ; ð15Þ

ðGμ
ν þ ΛδμνÞvνi ¼ ϵivνi : ð16Þ

Thus v0 and ∂=∂r share the eigenvalue

ϵ0 ¼
2r3f0 þ pðp2 þ 3r2Þg0

2prðp2 þ r2Þ2 þ f00

2ðp2 þ r2Þ ; ð17Þ

and v1 and ∂=∂p share the eigenvalue

ϵ1 ¼
2p3g0 þ rðr2 þ 3p2Þf0

2prðp2 þ r2Þ2 þ g00

2ðp2 þ r2Þ ; ð18Þ

therefore it results

ϵ0 þ ϵ1 ¼
p−3ðp3f0Þ0 þ r−3ðr3g0Þ0

2ðp2 þ r2Þ : ð19Þ

Besides v2 has the eigenvalue

ϵ2 ¼
f00 þ g00

2ðp2 þ r2Þ : ð20Þ

In terms of the normalized bases (6), it follows that

ðGμ
ν þ ΛδμνÞ ∂

∂xμ ⊗ dxν ¼ ϵ0

�
v0̂ ⊗ ω0̂ þ ∂

∂r ⊗ dr

�

þ ϵ1

�
v1̂ ⊗ ω1̂ þ ∂

∂p ⊗ dp

�

þ ϵ2v2̂ ⊗ ω2̂: ð21Þ

While this result can be considered as the strength of
Plebański-Demiański approach, at the same time it is its
weakness. In fact, the expression (21) constitutes a severe
limitation for the Plebański-Demiański Ansatz as a way to
generate solutions to Einstein equations with sources: the

1This property could be also obtained in four dimensions
by properly redefining X, Y.

2In five dimensions, Rμνλρ − Λ
6
ðgμλgνρ − gμρgνλÞ is affected by a

global factor (mþ n). Actually, as shown in Ref. [14], for odd
dimensions there exists a scaling symmetry making trivial one
of the free parameters. Thus, the NUT parameter n could be
removed by properly changing coordinates, and the mass m
would be completely fixed in the de Sitter geometry.
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equations should be sourced by an energy-momentum
tensor with the same eigenvalue-eigenvector structure.
(x) Plebański-Demiański metrics can be cast in a Kerr-

Schild form that is linear in the function YðrÞ. Those
contributions being inversely proportional to YðrÞ are
absorbed into a coordinate change. Even more, by allowing
for complex coordinates, one can also obtain a double Kerr-
Schild form that is linear in X, Y. In fact, let us perform the
complex coordinate change

dt0 ¼ dtþða2þ r2Þðb2þ r2Þ
r2YðrÞ drþ i

ða2−p2Þðb2−p2Þ
p2XðpÞ dp;

dϕ0 ¼ dϕ−λadt0 þaðb2þ r2Þð1þ r2λÞ
r2YðrÞ dr

þ i
aðb2−p2Þð1−p2λÞ

p2XðpÞ dp;

dψ 0 ¼ dψ −λbdt0 þbða2þ r2Þð1þ r2λÞ
r2YðrÞ dr

þ i
bða2−p2Þð1−p2λÞ

p2XðpÞ dp;

dr0 ¼ dr; dp0 ¼ idp: ð22Þ

In the new coordinate basis, the vectors vi’s look like

v0 ¼ r−2ða2 þ r2Þðb2 þ r2Þ

×

� ∂
∂t0 þ

að1 − a2λÞ
a2 þ r2

∂
∂ϕ0 þ

bð1 − b2λÞ
b2 þ r2

∂
∂ψ 0

�
;

v1 ¼ p−2ða2 − p2Þðb2 − p2Þ

×

� ∂
∂t0 þ

að1 − a2λÞ
a2 − p2

∂
∂ϕ0 þ

bð1 − b2λÞ
b2 − p2

∂
∂ψ 0

�
;

v2 ¼ ab

� ∂
∂t0 þ a−1ð1 − a2λÞ ∂

∂ϕ0 þ b−1ð1 − b2λÞ ∂
∂ψ 0

�
:

ð23Þ
Besides it is

∂
∂r ¼

∂
∂r0 þ

v0
YðrÞ ; ð24Þ

∂
∂p ¼ i

∂
∂p0 þ i

v1
XðpÞ : ð25Þ

Thus, the inverse metric (3) is equal to

g−1 ¼ 1

p2 þ r2

� ∂
∂r0 ⊗ v0 þ v0 ⊗

∂
∂r0 −

∂
∂p0

⊗ v1 − v1 ⊗
∂
∂p0

�
þ v2 ⊗ v2

p2r2
þ YðrÞ
p2 þ r2

∂
∂r0

⊗
∂
∂r0 −

XðpÞ
p2 þ r2

∂
∂p0 ⊗

∂
∂p0 ; ð26Þ

so in the complex chart ðt0;ϕ0;ψ 0; r0; p0Þ their components
are linear in X, Y. The vectors

k≡ −
∂
∂r0 ¼ −

∂
∂rþ

v0
YðrÞ ; ð27Þ

K≡ −
∂
∂p0 ¼ i

∂
∂pþ v1

XðpÞ ð28Þ

are null and geodesic whatever the functions X, Y are;
besides they are mutually perpendicular. Therefore, the
metric (26) has a double Kerr-Schild form, with functions
X, Y playing the role of free degrees of freedom in the Kerr-
Schild Ansatz (however, in this case they are restricted to
depend on a unique coordinate). In particular, the Kerr-
NUT metric—whose functions X, Y are given in Eqs. (9)
and (10)—can be cast into this form:3

g−1
Kerr-NUT ¼g−1

dS −
2m

p2þ r2
k⊗k−

2n
p2þ r2

K⊗K: ð29Þ

III. EINSTEIN-MAXWELL EQUATIONS

Both the Kerr-Schild and Plebański-Demiański Ansätze
have interesting properties regarding Maxwell equations.
Let us explain them in the context of the KS Ansatz; the
conclusions will be also valid for the double KS form
exhibited by PD metrics. Let be the metric [1–3]

gμν ¼ g
o
μν þ fðxÞkμkν; ð30Þ

where kμ is a null vector of g
o
μν. Then, the determinant

g ¼ detðgμνÞ does not depend on fðxÞ, and kμ is a null
vector of gμν too. Besides, the inverse metric reads

gμν ¼ g
oμν − fðxÞkμkν: ð31Þ

If kμ is not only null but geodesic too, i.e.,

kμkμ ¼ 0 and 0 ¼ kμðkν;μ − kμ;νÞ ¼ kμð∂μkν − ∂νkμÞ;
ð32Þ

where kμ ¼ g
oμνkν ¼ gμνkν, then it can be proved that if

an electromagnetic potential Aμ ¼ AðxÞkμ solves Maxwell

equations in the metric g
o
μν then it will also solve them in the

metric gμν. In fact, it is easy to prove that the field tensor

Fμν ¼ gμλgνρð∂λAρ − ∂ρAλÞ ð33Þ
does not depend on the function fðxÞ; so the equations

∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0 ð34Þ

3As mentioned in property (vii), m ¼ 0 ¼ n is just a particular
case of de Sitter geometry. In five dimensions, the geometry is
still de Sitter whenever n is equal and opposite to m.
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are not affected by fðxÞ. Concerning the Einstein-Maxwell
problem, this property implies that Einstein equations will
be sourced by an energy-momentum tensor, the electro-
magnetic energy-momentum tensor

Tμ
ν ¼ −

1

4π

�
FμρFρν −

1

4
δμνFλρFρλ

�
ð35Þ

[we use the signature ð−þþþ…Þ], which does not
contain the unknown function fðxÞ. Moreover, as proved
in Refs. [7,16,17], if kμ is tangent to a (null-)geodesic
congruence, then Rμ

ν will be linear in fðxÞkμkν. So, in terms
of the function fðxÞ the problem gets rather simple, since
fðxÞ appears only linearly in the Einstein tensor. Of course,
the success of the Kerr-Schild Ansatz cannot be a priori
guaranteed. To have a chance of finding a new solution to
Einstein or Einstein-Maxwell equations one should start
from a suitable null vector kμ in order that the sole unknown
function fðxÞ can fulfill the entire set of equations.
In the framework of PD metrics, let us consider the

potential of a rotating pointlike charge

Aμ ¼
Q

p2 þ r2
kμ; ð36Þ

where kμ are the covariant components of the null vector
(27). We remark that this potential is equivalent to A ¼
Qðp2 þ r2Þ−1ω0 and A ¼ Qðp2 þ r2Þ−1ω1, since they
differ in pure gauge terms.4 The field F ¼ dA verifies
the Maxwell equations in the metric (1) whatever the
functions XðpÞ, YðrÞ are. By computing the eigenvalues
and eigenvectors of the energy-momentum tensor (35) it
follows that

8πGTμ
ν

∂
∂xμ ⊗ dxν

¼ −
4GQ2

ðp2 þ r2Þ3
�
v0̂ ⊗ ω0̂ þ ∂

∂r ⊗ dr

− v1̂ ⊗ ω1̂ −
∂
∂p ⊗ dpþ p2 − r2

p2 þ r2
v2̂ ⊗ ω2̂

�
: ð37Þ

We will try to combine this result with the one in Eq. (21),
to know whether there is a chance of getting a solution to
5D Einstein-Maxwell equations within the Ansatz (1), (14),
and (15). To this aim, we should find functions fðpÞ, gðrÞ
such that the eigenvalues (17)–(20) become equal to the
ones in the energy-momentum tensor of Eq. (37). By
comparing Eqs. (21) and (37) we should search for the
eigenvalues

ϵ0 ¼ −ϵ1 ¼ −
4GQ2

ðp2 þ r2Þ3 ; ϵ2 ¼ −
4GQ2ðp2 − r2Þ
ðp2 þ r2Þ4 :

ð38Þ
The condition ϵ0 þ ϵ1 ¼ 0, which results from the expected
eigenvalues (38), implies f0 ¼ −Bpþ Cp−3 and g0 ¼
BrþDr−3 in Eq. (19). However, these functions fðpÞ,
gðrÞ do not lead to the expected eigenvalues. Therefore,
there is not a solution sourced by the rotating pointlike
charge potential (36) within the Ansatz (1).5

IV. EXTENDING THE PLEBAŃSKI-DEMIAŃSKI
ANSATZ

As a way to enlarge the set of Plebański-Demiański
metrics, and thus improve the chance of getting solutions to
Einstein-Maxwell equations, we could try including a
“conformal” factor in the four-dimensional sector where
the electromagnetic field manifests itself (notice that
Fμνvν2 ¼ 0):6

g ¼ Θðr; pÞ
�
−

YðrÞ
p2 þ r2

ω0 ⊗ ω0 þ XðpÞ
p2 þ r2

ω1 ⊗ ω1

þ ðp2 þ r2Þ
�
dr ⊗ dr
YðrÞ þ dp ⊗ dp

XðpÞ
��

þ a2b2

p2r2
ω2 ⊗ ω2: ð39Þ

The potential (36) will still satisfy Maxwell equations, and
its energy-momentum tensor will scale with Θðr; pÞ−2:

Tμ
ν → Θðr; pÞ−2Tμ

ν ; ð40Þ
which means that the so-modified energy-momentum
tensor still possesses the structure displayed in Eqs. (37).
On the other hand, to save the structure of Gμ

ν displayed in
Eq. (21), we are compelled to employ the function
Θðr; pÞ ¼ ðBp2r2 þ CÞ−2 (B, C are integration constants).
However, it is not possible to find a set B, C, XðpÞ, YðrÞ
matching the eigenvalues of the source (37)–(40).7

4Notice that kμdxμ ¼ −ðp2 þ r2ÞYðrÞ−1drþ ω0. Besides,
from definitions (2), it is easy to verify that ðp2 þ r2Þ−1
ðω0 −ω1Þ is a closed 1-form.

5The static case is not included here because the Ansatz
prevents the simultaneous vanishing of a and b [see the
determinant (7)].

6This kind of metric has been used in Ref. [18] to obtain
magnetic dipole-charged solutions with electric charge in five-
dimensional minimal supergravity.

7Within this context, we remark the existence of a nonflat
vacuum solution: if λ ¼ 0, then the Ricci tensor is zero for C ¼ 0,
XvacðpÞ ¼ αp2 þ βp4 − a2b2B2p6, and YvacðrÞ ¼ −αr2 þ γr4 þ
a2b2B2r6 (α, β, γ are integration constants). This solution is
intrinsically curved, since the Riemann tensor cannot be made
zero by choosing the integration constants (for other Ricci-flat
solutions of this sort, see Ref. [19]). Instead, its 4D analog—
which is λ ¼ 0, Θ ¼ ðBprÞ−2, XvacðpÞ ¼ αp2 þ βp4, YvacðrÞ ¼
−αr2 þ βr4—is the flat spacetime for any values of the integra-
tion constants α, β.
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So, we should consider other ways of relaxing the Ansatz
(1) in order that a source like (37) makes sense in Einstein
equations. Let us remark that the source (37) requires the
vanishing of Rr

p. If the metric depends on only two
coordinates r, p, and it is diagonal in the block ðr; pÞ,
then Rrp has the form [20]

Rrp ¼ 1

2
½logð−g−1grrgppÞ�;rp

−
1

4
½log grr�;p½logð−g−1gppÞ�;r

−
1

4
½log gpp�;r½logð−g−1grrÞ�;p þ

1

4
gμν;r gμν;p: ð41Þ

Besides, if grr¼ðp2þr2ÞYðrÞ−1 and gpp¼ðp2þr2ÞXðpÞ−1,
one obtains

Rrp ¼ −
1

2
½logð−gðp2 þ r2Þ3Þ�;rp

−
1

2ðp2 þ r2Þ ½p½logð−gÞ�;r þ r½logð−gÞ�;p�

þ 1

4
gμν;r gμν;p:

So, the simplest way of changing the Ansatz for the metric,
while keeping the value Rrp ¼ 0, is

(i) keep the form of the block ðr; pÞ and
(ii) modify the block ðt;ϕ;ψÞ without affecting the

values of g and gμν;r gμν;p.
The preservation of Rrp is just one of the clues it should

be observed to have a chance of success in getting a
solution to Einstein-Maxwell equations. Of course, we also
should care that this way of relaxing the Ansatz has not a
destructive impact on Fμν; otherwise we would affect the
fulfilling of Maxwell equations or the form of Tμ

ν . Taking
these considerations into account, we will extend the
Plebański-Demiański Ansatz by replacing ω2 in the metric
(1) with

Ω2 ¼ ω2 −
p2r2

abðp2 þ r2Þ ðYðr; pÞω
0 þ Xðr; pÞω1Þ; ð42Þ

where Xðr; pÞ, Yðr; pÞ are functions to be chosen. The so-
extended Plebański-Demiański Ansatz is then

g ¼ −
YðrÞ

p2 þ r2
ω0 ⊗ ω0 þ XðpÞ

p2 þ r2
ω1 ⊗ ω1 þ a2b2

p2r2
Ω2

⊗ Ω2 þ ðp2 þ r2Þ
�
dr ⊗ dr
YðrÞ þ dp ⊗ dp

XðpÞ
�
: ð43Þ

Notice that the determinant (7) is effectively preserved, in
spite of the modifications introduced in the block ðt;ϕ;ψÞ.
In fact, the volume associated with g is

volume ¼ ab
pr

ω0 ∧ ω1 ∧ Ω2 ∧ dr ∧ dp

¼ ab
pr

ω0 ∧ ω1 ∧ ω2 ∧ dr ∧ dp; ð44Þ

then the volume does not depend on the “deformations”
Xðr; pÞ, Yðr; pÞ. Besides we will require that gμν;r gμν;p
keeps its “undeformed” value, which is

gμν;r gμν;p ¼ −
4

pr
−

8pr
ðp2 þ r2Þ2 ; ð45Þ

this requirement implies that X , Y must be

X ¼ hðpÞ and Y ¼ qðrÞ; ð46Þ

or

X ¼ p2 þ r2

p2r2
ðp2hðrÞ − abÞ and

Y ¼ p2 þ r2

p2r2
ðr2qðpÞ − abÞ: ð47Þ

We will choose the first option because it guarantees the
separability of ðp2 þ r2Þg−1.
It is worth noticing that the CCLP metric [9,15] belongs

to this Ansatz; it is the case

XCCLPðpÞ ¼XvacðpÞ; YCCLPðrÞ ¼ YvacðrÞþ
Q2þ 2abQ

r2
;

XCCLP ¼ 0; YCCLP ¼
Q
r2
: ð48Þ

It could be said that the CCLP metric is somehow “biased”
towards the Y, Y sector. Hopefully, we might find a solution
to Einstein-Maxwell equations by “unbiasing” the choice
of X , Y.
As can be seen in Eq. (43), the basis of ωi ’s is no longer

orthogonal. Instead the basis fω0;ω1;Ω2; dr; dpg is
orthogonal in the metric (43). Not surprisingly, the inverse
metric also has the Plebański-Demiański structure, but
vectors v0, v1 must be, respectively, substituted for

V0 ¼ v0 þ Yðr; pÞv2; ð49Þ

V1 ¼ v1 þ Xðr; pÞv2: ð50Þ

The inverse metric reads

g−1 ¼ −
V0 ⊗ V0

ðp2 þ r2ÞYðrÞ þ
V1 ⊗ V1

ðp2 þ r2ÞXðpÞ þ
v2 ⊗ v2
p2r2

þ YðrÞ
p2 þ r2

∂
∂r ⊗

∂
∂rþ

XðpÞ
p2 þ r2

∂
∂p ⊗

∂
∂p : ð51Þ
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Thus fV0;V1; v2; ∂=∂r; ∂=∂pg is an orthogonal basis in
the tangent space that is dual to fω0;ω1;Ω2; dr; dpg,
except for normalization factors.
We are left with the unknowns hðpÞ, qðrÞ, XðpÞ, and

YðrÞ. If the extended Plebański-Demiański Ansatz is useful,
we will success in finding the functions h, q, X, Y endowing
the Einstein tensor with a suitable eigenvalue-eigenvector
structure to be sourced by the energy-momentum tensor
belonging to a rotating pointlike charge. So let us now
turn to the electromagnetic potential (36), where kμ is
still the one described in footnote 4; its contravariant
version is the vector k in Eq. (27) where v0 must be
replaced with V0. k is a null and geodesic vector in the
extended metric (43) too. As was already pointed out, the
potential (36) is gauge equivalent to A ¼ Qðp2 þ r2Þ−1ω0

and A ¼ Qðp2 þ r2Þ−1ω1. This equivalence reflects in the
“unbiased” 2-form field

F ¼ dA ¼ 2Q
ðp2 þ r2Þ2 ðrω

0 ∧ drþ pω1 ∧ dpÞ: ð52Þ

The contravariant field Fμν in the metric (43) is

Fμν ∂
∂xμ ∧

∂
∂xν ¼

2Q
ðp2 þ r2Þ3

�
rV0 ∧ ∂

∂r − pV1 ∧ ∂
∂p

�
:

ð53Þ

The presence of vectors V0, V1 implies that the extended
Ansatz (43) affects Fμν by introducing new terms. Even so,
the energy-momentum tensor (35) associated to Fμν,

8πGTμ
ν

∂
∂xμ ⊗ dxν ¼ −

4GQ2

ðp2 þ r2Þ3
�
V0̂ ⊗ ω0̂ þ ∂

∂r
⊗ dr − V1̂ ⊗ ω1̂ −

∂
∂p

⊗ dpþ p2 − r2

p2 þ r2
v2̂ ⊗ Ω2̂

�
ð54Þ

[we are involving the normalized versions (6) of the
orthogonal bases in the tangent and cotangent spaces],
exhibits an eigenvalue structure which does not depend on
the choice of X , Y. Instead, the choice of X , Y does affect
the fulfillment of Maxwell equations. However, by choos-
ing the functions hðpÞ, qðrÞ in Eq. (46) as

Xðr; pÞ ¼ μXQ
p2

þ ζ; Yðr; pÞ ¼ μYQ
r2

− ζ; ð55Þ

we obtain that Fμν fulfills Maxwell-Chern-Simons
equations,

∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 1

4
ðμX − μYÞϵνλραβFλρFαβ; ð56Þ

with an arbitrary coupling constant proportional to μX − μY
(the value of ζ is irrelevant, not only at this stage but for
the rest of the analysis as well.).8

The potential (36) satisfies Eq. (56) whatever the
functions XðpÞ and YðrÞ are. So we are now left with
two unknowns, XðpÞ and YðrÞ. Our aim is to properly
choose them to obtain solutions to Einstein-Chern-Simons
equationswith an arbitraryChern-Simons coupling constant.
Concerning the structure of Gμ

ν þ Λδμν in the extended
Plebański-Demiański Ansatz, one can verify that ∂=∂r and
∂=∂p are still eigenvectors whatever X, Y are. As a
necessary condition to match the energy-momentum tensor
(54), their respective eigenvalues ϵ3, ϵ4 should be equal and
opposite. Without loss of generality, let us we write

XðpÞ ¼ XvacðpÞ þ fðpÞ; ð57Þ

YðrÞ ¼ YvacðrÞ þ gðrÞ; ð58Þ

then one gets that the eigenvalues are effectively equal and
opposite if and only if

p−3ðp3f0Þ0 þ r−3ðr3g0Þ0 ¼ 0: ð59Þ

This linear equation has independent inverse square homo-
geneous solutions for f and g,9 which implies two new
constants in X, Y. For convenience, we will write the
solutions in the following way:

XðpÞ ¼ XvacðpÞ − μXQ
μXQþ 2abþ βX

p2
; ð60Þ

YðrÞ ¼ YvacðrÞ þ μYQ
μYQþ 2abþ βY

r2
: ð61Þ

So far, the results for X, Y do not differ from the ones
we would have obtained in the previous section. However
we have changed the geometry, by extending the Plebański-
Demiański Ansatz, as an attempt to match the eigenvalues
and eigenvectors ofGμ

ν þ Λδμν with those of the source (54).
In fact, the extended Ansatz replaced vectors v0, v1 with V0,
V1 as defined in Eqs. (49), (50), and (55). Thus we obtain
that not only ∂=∂r; ∂=∂p but V0, V1, v2 are eigenvectors of
Gμ

ν þ Λδμν with eigenvalues

8Even if we work with Maxwell-Chern-Simons equations, the
Maxwellian form of Tμ

ν remains valid. This is because the Chern-
Simons term in the action, F ∧ F ∧ A, does not contain the
metric; thus it does not contribute to Tμ

ν .
9Equation (59) also accepts the solution f ¼ −βp2 þ γ,

g ¼ βr2 þ δ; however this solution is already present in Xvac,
Yvac through the integration constants α, m, n.
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−ϵ0 ¼ −ϵ3 ¼ ϵ1 ¼ ϵ4 ¼
3Q2ðμX − μYÞ2
ðp2 þ r2Þ3

þQ
ð3p2 þ r2Þr4μXβX þ ðp2 þ 3r2Þp4μYβY

p4r4ðp2 þ r2Þ2 ;

ð62Þ

ϵ2 ¼ −3Q2ðμX − μYÞ2
p2 − r2

ðp2 þ r2Þ4 þ 3Q
p4μYβY − r4μXβX
p4r4ðp2 þ r2Þ :

ð63Þ

The terms proportional to Q2ðμX − μYÞ2 are characteristic
of this extended Ansatz. So, we recognize at least two
interesting cases.
(i) If βX ¼ 0 ¼ βY , then the eigenvalues of Gμ

ν þ Λδμν
coincide with those of 8πGTμ

ν (i.e., Einstein equations are
verified) provided that

ðμX − μYÞ2 ¼
4G
3

: ð64Þ

Thus the rotating pointlike charged solution to Einstein-
Maxwell-Chern-Simons equations is obtained only for a
specific value of the Chern-Simons coupling constant.
The CCLP solution (48) is a particular choice of μX , μY
satisfying the condition (64). However, each choice of μX ,
μY fulfilling Eq. (64) still could imply a different geometry.
In fact the Kretschmann invariant depends not only on
μX − μY but on μX , μY in a separate way. For instance, in
the simplest case λ ¼ m ¼ n ¼ 0 it results

Rμν
λρR

λρ
μν ¼ 4Q2ðμX −μYÞ2

ðp2þ r2Þ8
�
48ða2þb2Þðp4− r4Þ2

p2−r2

þ192ðabðp2þ r2ÞþQðp2μX þ r2μYÞÞ2

þQ2ðμX −μYÞ2ð28p2r2−65ðp4þ r4ÞÞ
�
: ð65Þ

So different values of μX , μY , subjected to the condition
(64), lead to different values of the Kretschmann invariant.
This is a good indication to think that we have found a one-
parametric family of geometries. However, the certainty
must come from a proper global analysis of the involved
solutions.
(ii) If βX ¼ βY and μX ¼ μY , then the eigenvalues

become

−ϵ0 ¼ −ϵ3 ¼ ϵ1 ¼ ϵ4 ¼ QμXβX
p2 þ r2

p4r4
; ð66Þ

ϵ2 ¼ 3QμXβX
p2 − r2

p4r4
: ð67Þ

It would be interesting to look for sources matching this
eigenvalue structure.

V. FURTHER EXTENSIONS OF
PLEBAŃSKI-DEMIAŃSKI ANSATZ

Once we have understood the mechanism to make the
CCLP-like solutions work, we can try extending this
mechanism to search for more solutions. For instance,
we could further extent the Ansatz (42) by considering that
Ω2 could have also components dr and dp:

Ω2 ¼ ω2 −
p2r2

abðp2 þ r2Þ ðYðr; pÞω
0 þ Xðr; pÞω1Þ

−
p2r2

ab
ðZðr; pÞdrþWðr; pÞdpÞ; ð68Þ

which not only forces the replacements (49) and (50) in the
inverse metric but the replacement of vectors ∂=∂r and
∂=∂p with

V3 ¼
∂
∂rþ Zðr; pÞv2; ð69Þ

V4 ¼
∂
∂pþWðr; pÞv2: ð70Þ

Thus the inverse metric becomes

g−1 ¼ −
V0 ⊗ V0

ðp2 þ r2ÞYðrÞ þ
V1 ⊗ V1

ðp2 þ r2ÞXðpÞ þ
v2 ⊗ v2
p2r2

þ YðrÞ
p2 þ r2

V3 ⊗ V3 þ
XðpÞ
p2 þ r2

V4 ⊗ V4: ð71Þ

The determinant of the metric remains independent of X, Y,
X , Y, W, Z. The potential (36) still satisfies Maxwell-
Chern-Simons equations (56) for the choices (55), and its
energy-momentum tensor is

8πGTμ
ν

∂
∂xμ ⊗ dxν ¼ −

4GQ2

ðp2 þ r2Þ3
�
V0̂ ⊗ ω0̂ þ V3

⊗ dr − V1̂ ⊗ ω1̂ − V4 ⊗ dp

þ p2 − r2

p2 þ r2
v2̂ ⊗ Ω2̂

�
: ð72Þ

The separability of ðp2 þ r2Þg−1 is guaranteed by choosing

Wðr; pÞ ¼ wðpÞ; Zðr; pÞ ¼ zðrÞ: ð73Þ

Although the metric is no longer diagonal by blocks in the
chart ðt;ϕ;ψ ; r; pÞ,Rp

r is still zero. However the Ricci tensor
Rμ
ν becomes nonlinear in X, Y; its form is complicated

enough to suggest that this strategy will not be successful
in getting solutions to Einstein-Maxwell-Chern-Simons
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equations for other values of the Chern-Simons coupling
constant (however, see Ref. [21] for the slowly rotating
case).
As a different try, we will invert the procedure of the

previous section. Instead of changing ω2 in the metric (1),
we will change v2 in the inverse metric (3). This is a rather
obvious strategy, once one realizes that g and g−1 are on an
equal footing in the requirements to keep Rrp ¼ 0. If v2 is
substituted with

V2 ¼ v2 −
p2r2

abðp2 þ r2Þ ðN ðrÞv0 þMðpÞv1Þ; ð74Þ

then the determinant of g−1 will be preserved; however the
separability of ðp2 þ r2Þg−1 will be lost. The correspond-
ing metric g can be reached by replacing in (1)

Ω0 ¼ ω0 þN ðrÞω2; ð75Þ

Ω1 ¼ ω1 þMðpÞω2: ð76Þ

By keeping the “undeformed” value (45) we are led to

N ðrÞ ¼ 1

1þ μr2
; MðpÞ ¼ 0; ð77Þ

or

N ðrÞ ¼ 0; MðpÞ ¼ 1

1þ μp2
: ð78Þ

Nevertheless, the potential (36) is not a solution to
Maxwell-Chern-Simons equations in this geometry.

VI. PURE-RADIATION SOLUTION TO 5D
EINSTEIN-MAXWELL EQUATIONS

We will leave the Plebański-Demiański family of
metrics, to show a different type of nonstatic solutions
to 5D Einstein-Maxwell equations in the framework of the
Kerr-Schild Ansatz (30). We will still use the Plebański-

Demiański form to introduce a suitable seed metric g
o
μν.

In fact, we will start from the metric (1), as written for
the vacuum solutions (9) and (10) with the following choice
of constants:

b ¼ 0; α ¼ 1 − a2λ; m ¼ a2

2
¼ −n: ð79Þ

Therefore the functions Xvac, Yvac become

XvacðpÞ ¼ −λp4; YvacðrÞ ¼ −λr4: ð80Þ

Since both Xvac, Yvac must be positive in order to have a
Lorentzian metric, then one gets that λ has to be negative;

besides it is m ¼ −n, what means that the seed metric is
the anti–de Sitter (AdS) geometry in a peculiar chart:

g
o
μν ¼ gAdS. In such a chart, the interval associated with the
seed metric is

ds2AdS ¼ ðp2 − r2Þdu2 þ p2r2ð2dudσ þ dw2Þ

− λ−1ðp2 þ r2Þ
�
dr2

r4
þ dp2

p4

�
; ð81Þ

where

u ¼
ffiffiffiffiffiffi
−λ

p ðt − aϕÞ
1 − a2λ

; σ ¼ a−2ðu −
ffiffiffiffiffiffi
−λ

p
tÞ; w ¼ ψ

a
:

ð82Þ
As can be seen, the parameter a has been absorbed into the
new coordinates; no trace of a remains in the interval (81).
With the help of the complex coordinate

ζ ¼ 1

2
ffiffiffiffiffiffi
−λ

p
�
1

r
þ i
p

�
2

; ð83Þ

the interval reads

ds2AdS ¼ 4λ−1ðζ − ζ̄Þ−2½duð
ffiffiffiffiffiffi
−λ

p
ðζ þ ζ̄Þduþ 2dσÞ

þ dw2 þ dζdζ̄�; ð84Þ
or using the real and imaginary parts of ζ ¼ χ þ iy,

ds2AdS ¼ −λ−1y−2½duð2
ffiffiffiffiffiffi
−λ

p
χduþ 2dσÞ þ dw2

þ dχ2 þ dy2�: ð85Þ
The metric inside the square brackets is flat. In fact, in the
chart ðτ; w; x; y; zÞ such that

u ¼ τ þ z; σ ¼ λðτ þ zÞ3
3

−
ðτ − zÞ

2
−

ffiffiffiffiffiffi
−λ

p
ðτ þ zÞx;

χ ¼ xþ
ffiffiffiffiffiffi
−λ

p ðτ þ zÞ2
2

; ð86Þ

the interval reads

ds2AdS ¼ −λ−1y−2½−dτ2 þ dw2 þ dx2 þ dy2 þ dz2�; ð87Þ
which is one of known forms the AdS metric can adopt
(see Sec. V.3 in Ref. [22]).
Coming back to the chart ðu; σ; w; r; pÞ, let us introduce

the electromagnetic potential

A ¼ AðuÞ
p2r2

n; ð88Þ

where n≡ du is the null 1-form of components

nμ ¼ f1; 0; 0; 0; 0g: ð89Þ
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The electromagnetic potential (88) fulfills the Maxwell
equations not only in the geometry (81) but in any metric
having the Kerr-Schild form

g ¼ gAdS þ fðu; r; pÞn ⊗ n: ð90Þ

This solution is a pure-radiation field, since Tμ
ν has the

form10

Tμ
ν ¼ −λAðuÞ2

πp4r4
nμnν: ð91Þ

On the other hand, the Einstein tensor for the metric (90) is

Gμ
ν þ Λδμν ¼ −2λ

�
f −

1

4ðp2 þ r2Þ
�
p3

∂
∂p

�
p
∂f
∂p

�

þ r3
∂
∂r

�
r
∂f
∂r

���
nμnν: ð92Þ

The fact that both the energy-momentum tensor (91) and
the Einstein tensor (92) have the same structure implies
that the Kerr-Schild Ansatz is successful in this case,
because there is a sole equation to be satisfied by the
unknown function fðu; r; pÞ. In fact, Einstein-Maxwell
equations are satisfied by choosing11

fðu; r; pÞ ¼ −
2

7
GAðuÞ2 ðp

2 þ r2Þ2
p6r6

: ð93Þ

Besides, the function f can be added with a homogeneous
solution of Einstein equations, like

fvac ¼
βðuÞ
p2r2

þ γðuÞp8r8

ðp2 þ r2Þ5 þ δðuÞp2r2 þ κðuÞ ðp
2 þ r2Þ3
p4r4

þ εðuÞ
p4r4

�
3ðp2 þ r2Þ2
14p2r2

− 1

�
; ð94Þ

which generates vacuum solutions representing exact
gravitational waves associated with the null 1-form nμ.

12

Actually the (linear) homogeneous equation for fvac can be
solved by separating variables; the general solution is
obtained by linearly combining the solutions

fvacν ¼ ðCνðuÞJ2ðνp−1Þ þDνðuÞY2ðνp−1ÞÞðEνðuÞI2ðνr−1Þ
þ FνðuÞK2ðνr−1ÞÞ; ð95Þ

where Cν, Dν, Eν, Fν are arbitrary functions of u and ν is a
separation constant.
In sum, we have obtained an electrovacuum solution

whose metric is conformal to a pp wave in 5D. In fact,
according to Eqs. (85) and (90) the interval is

ds2 ¼ −λ−1y−2½duðð2
ffiffiffiffiffiffi
−λ

p
χ − λy2fÞduþ 2dσÞ

þ dw2 þ dχ2 þ dy2�; ð96Þ

which belongs to the class of metrics studied by Kundt [23],
and has the form of Siklos metric [24] (see also
Refs. [25,26]). However the functions (93)–(95) are char-
acteristic of five dimensions. Concerning the pp-wave
metric inside the bracket of Eq. (96), the 1-form (89) has
zero covariant derivative whatever the function f is and is a
null vector of the respective Weyl tensor.

VII. CONCLUSIONS

Plebański-Demiański-like Ansatz (1) does not contain the
solution to Einstein-Maxwell equations for a rotating point-
like charge in five dimensions. The reason can be traced to
the lack of agreement between the eigenvalues of the energy-
momentum tensor and those belonging to the Einstein tensor
(37) in such an Ansatz, even though the eigenvector struc-
tures do coincide. However, the Plebański-Demiański
Ansatz can be properly extended to obtain awider framework
where the eigenvector-eigenvalue structure of the energy-
momentum andEinstein tensors can bematched, as shown in
Sec. IV. In this extended Ansatz the CCLP solution is found.
Remarkably, the CCLP geometry is just one in a set of
solutions satisfying Einstein-Maxwell-Chern-Simons equa-
tions for the electromagnetic potential (36) and the coupling
constant μX − μY ¼ 2

ffiffiffiffiffiffiffiffiffi
G=3

p
in Eq. (56). In fact, this

constraint on μX , μY still leaves alive many different
solutions fulfilling the equations, as evidenced by the fact
that the Kretschmann invariant in Eq. (65) depends inde-
pendently on μX and μY . Whether they are different
geometries or not should be elucidated through the analysis
of the global properties of these solutions.
Although we tried other extensions of Plebański-

Demiański Ansatz, we did not succeed in getting solutions
sourced by a rotating pointlike charge for other values of the
Chern-Simons coupling constant. Insteadwehave obtained a
family of gravitational waves depending on three coordi-
nates, with and without a pure-radiation electromagnetic
field. These geometries are described by the interval (96),
where f can be substituted with a combination of the
functions (93)–(95).

10The general solution for Maxwell equations in the consid-
ered metric (81), (90) is Aκ ¼ p−1r−1ðGκðuÞJ1ðκp−1Þ þ
HκðuÞY1ðκp−1ÞÞ ðPκðuÞI1ðκr−1Þ þQκðuÞK1ðκr−1ÞÞn, but it
does not guarantee the pure-radiation form of the energy-
momentum tensor.

11Actually Einstein-Maxwell-Chern-Simons equations are ful-
filled too. On the one hand, the Chern-Simons term ϵνλραβFλρFαβ
vanishes for potentials like (88), since the only non-null inde-
pendent components of the field tensor are Fur and Fup. On the
other hand, the Chern-Simons coupling does not contribute to
the energy-momentum tensor, as mentioned in footnote 8.

12The term δðuÞp2r2 should be absorbable by changing
coordinates, since it does not take part in the Riemann tensor.
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