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Abstract: We explore several aspects of the relation between gravity and entanglement

in the context of AdS/CFT, in the simple setting of 3 bulk dimensions. Specifically, we

consider small perturbations of the AdS metric and the CFT vacuum state and study what

can be learnt about the metric perturbation from the Ryu-Takayanagi (RT) formula alone.

It is well-known that, if the RT formula holds for all boundary spacelike segments, then

the metric perturbation satisfies the linearized Einstein equations throughout the bulk. We

generalize this result by showing that, if the RT formula holds for all spacelike segments

contained in a certain boundary region, then the metric perturbation satisfies the linearized

Einstein equations in a corresponding bulk region (in fact, it is completely determined in

that region). We also argue that the same is true for small perturbations of the planar BTZ

black hole and the CFT thermal state. We discuss the relation between our results and

the ideas of subregion-subregion duality, and we point out that our argument also serves

as a holographic proof of the linearized RT formula for boundary segments.
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1 Introduction

According to the AdS/CFT conjecture [1], quantum gravity around Anti de Sitter (AdS)

space is equivalent to a conformal field theory (CFT) on its boundary, in such a way that

to each state of one theory corresponds a state of the other theory. In the limit where the

CFT is strongly coupled and has a large number of degrees of freedom the gravity theory

reduces to classical Einstein gravity, so in this limit different CFT states correspond to

different classical spacetimes (supplemented with some configuration of the matter fields).

A major goal in this context is to understand precisely how the bulk geometry (as well as

other bulk physics) is encoded in the CFT state.

Significant advance in this direction has been triggered by the Ryu-Takayanagi (RT) for-

mula for the entanglement entropies of the boundary CFT. In quantum field theory, the

entanglement entropy of a spatial region V is the von Neumann entropy of the reduced

density matrix ρV obtained by tracing out the degrees of freedom in the complement of V ,

SV = −tr (ρV log ρV ) . (1.1)

Note that this quantity depends on the state of the theory, and measures how this state

entangles the region V with its complement. The RT proposal [2], in its generalized form
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due to [3], asserts that, for theories with an Einstein gravity dual, the entanglement entropy

is obtained by a simple geometric calculation,

SV =
1

4G
ext
v∼V

[A(v)] , (1.2)

where one extremizes the area A(v) of the bulk surfaces v that are homologous to the region

V in the boundary (if several extremal surfaces exist one picks the one with minimal area),

and G denotes Newton’s constant. This proposal has passed numerous consistency checks

[4–6], and in fact it has been explicitly derived from holography [7–9].

Beyond its power as a tool for computing entanglement entropies (which are otherwise

difficult to calculate, even in free field theories [10]), the RT formula provides deep insight

into the workings of AdS/CFT. Indeed, given a CFT state one can view this formula as a

constraint on the dual bulk geometry. This is a very strong constraint, so it is reasonable

to expect that it may determine much, if not all, of the bulk geometry without any other

input from holography. Thus, the RT formula suggests that much of the bulk geometry is

encoded in the entanglement structure of the CFT state. Some explicit evidence for this

idea was found in [11–13], where it was argued that boundary entanglement is responsible

for the connectedness of the bulk spacetime.

More evidence comes from the recent result that, at the linearized level, boundary entan-

glement is also responsible for bulk spacetime dynamics. Indeed, given a perturbation of

the AdS geometry and the CFT vacuum state, the assumption that the RT formula holds

to first order for all boundary spatial balls yields a set of nonlocal constraints on the metric

perturbation which are exactly equivalent to the linearized Einstein equations [14, 15] (see

also [16, 17]). In fact, the analysis of [15] is more general: in it, the linearized equations of a

generic (not necessarily Einstein) gravity theory are obtained from the corresponding holo-

graphic entanglement entropy formula, which is a Wald-like generalization of (1.2). These

generic theories of gravity, which involve higher powers of the curvature, are dual to CFTs

slightly away from the strong coupling limit; a similar generalization, which corresponds

to moving slightly away from the large N limit, was obtained in [18]. The above result has

been extended to second order in the metric and state perturbations in [19].

The RT formula has also played an important role in another, related development, namely

the proposal that the way in which the bulk geometry and other bulk physics are encoded

in the CFT state is “local”, in the sense that a boundary domain of dependence contains

complete information about some corresponding bulk region. There is a fair amount of

evidence supporting this idea, usually referred to as subregion-subregion duality [20–22],

and it is currently believed that the bulk region associated to a given boundary domain

of dependence U is the so-called entanglement wedge of U [22, 23]. In this sense, the

entanglement wedge reconstruction [24] gives an explicit example in which bulk operators

can be reconstructed as CFT operators on a boundary domain of dependence, provided

that they lie in the entanglement wedge. This is an improvement on other reconstruction

methods which apply only to a smaller region in the bulk, known as the causal wedge [25].
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The purpose of this paper is to obtain further evidence for the above ideas in a unified way,

in the simple setting of 3 bulk dimensions. In the previously mentioned derivation of the

linearized Einstein equations [14–16], the RT formula is assumed to hold to first order for

all boundary spatial balls (which reduce to segments in the case where the boundary is 2-

dimensional), and this results in the validity of the linearized Einstein equations throughout

the bulk. With the ideas of subregion-subregion duality in mind, it is natural to ask if a

“local” version of this result holds, i.e., if the linearized RT formula for spacelike segments

contained in a certain boundary region implies the linearized Einstein equations in some

corresponding bulk region. We will show that this is indeed the case.

We will take the boundary region U to be the domain of dependence of a spacelike segment,

and we will see that the corresponding bulk region, where the linearized Einstein equations

are satisfied, is the causal wedge W (U), which in this case coincides with the entanglement

wedge. In fact, we will show that the linearized RT formula for spacelike segments contained

in U not only implies the linearized Einstein equations in W (U), but is equivalent to those

equations supplemented with a boundary condition, which relates the metric perturbation

to the state perturbation via the usual holographic formula for the expectation value of the

CFT stress tensor. We will argue that this boundary value problem has a unique solution,

thus providing an explicit example (at the linearized level) of bulk geometry emerging from

boundary entanglement in a “local” way. We will also point out that the validity of the

linearized RT formula for boundary segments in holographic theories follows from the above

equivalence, so our arguments (which do not make use of the replica trick) also serve as an

alternative holographic proof of that formula. These results will be obtained not only for

perturbations of the zero-temperature background (the background considered in [14–16]),

but also at non-zero temperature.

Outline The remainder of this paper is organized as follows. In section 2 we prove the

equivalence announced above for perturbations of the zero-temperature background. We

do it in three steps: in subsection 2.3 we find a pair of local equations which is equivalent

to the condition that the linearized RT formula hold for all segments contained in some

boundary spacelike segment; this result is then used in subsection 2.4 to show that the

linearized RT formula for spacelike segments contained in a generic boundary open region

U is equivalent to the linearized Einstein equations in a corresponding bulk region G(U)

plus a standard holographic formula, which plays the role of a boundary condition; finally,

in subsection 2.5 we show that, in the case where U is the domain of dependence of a

spacelike segment, G(U) = W (U), which completes the argument. In section 3 we show

that our zero-temperature results remain true for perturbations of a thermal background,

and we close in section 4 with a discussion of our results.

Note added: as this work was nearing completion [26] appeared, which presents some

overlap with our results regarding the holographic derivation of the linearized RT formula

without using the replica trick.
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2 Zero temperature

Consider the Poincaré patch of the 3-dimensional Anti de Sitter (AdS) space and, on its

boundary, a conformal field theory (CFT) in the vacuum state. In these circumstances the

Ryu-Takayanagi (RT) formula [2, 3],

S =
A

4G
, (2.1)

is known to hold for any boundary spacelike segment. Here, S is the entanglement entropy

of the segment, A is the length of the bulk geodesic joining the endpoints of the segment

and G is given in terms of the AdS radius l and the CFT central charge c by the holographic

relation c = 3l/2G. Suppose now that we slightly perturb the bulk geometry (maintaining

the AdS asymptotics) and the CFT state. In [14–16] it was shown that, if the RT formula

(2.1) continues to hold to first order for all boundary spacelike segments, then the metric

perturbation satisfies the linearized Einstein equations. The purpose of the present section

is to generalize this result as follows. Let U be the boundary domain of dependence of some

boundary spacelike segment, and let W (U) denote the corresponding causal wedge, namely

the intersection of the AdS causal future and past of U (see figure 1). We will show that, if

the RT formula (2.1) continues to hold to first order for all spacelike segments contained in

U , then the metric perturbation satisfies the linearized Einstein equations in W (U). This

is a “local” generalization of the result of [14–16], where the RT formula is not required

to hold everywhere in the boundary but only in some boundary region, and the linearized

Einstein equations are still recovered in a corresponding bulk region.

The proof of the above statement is just a slight modification of the argument of [15, 16]. We

will thus follow essentially the same steps as in those references, although our presentation

is a bit simpler (partly due to the low dimensionality) and leads to the linearized Einstein

equations in a more direct and elementary way. In fact, the result we will prove is stronger

than announced: the linearized RT formula for spacelike segments contained in U not only

implies the linearized Einstein equations in W (U), but is equivalent to those equations

supplemented with a boundary condition, which relates the metric perturbation to the state

perturbation via the usual holographic formula for the expectation value of the CFT stress

tensor.

2.1 Geometric preliminaries

We start with a brief summary of the geometry of Poincaré AdS and its perturbations. In

3 dimensions, the metric of Poincaré AdS is

ds2 =
l2

z2

(
−dt2 + dx2 + dz2

)
, (2.2)

with coordinate range t, x ∈ R, z > 0. This is a solution of vacuum Einstein’s equations,

Eab ≡ Gab + Λgab = 0, with cosmological constant Λ = −1/l2. The boundary is at z = 0,

where the Minkowski metric is induced after a suitable Weyl rescaling. If (t, x) 7→ (t′, x′)
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Figure 1. The boundary domain of dependece U of a boundary segment at constant time, which is

a diamond-shaped region, and its corresponding causal wedge W (U), which is a solid double cone.

is a boundary Poincaré transformation, the map (t, x, z) 7→ (t′, x′, z) is clearly an isometry

of (2.2), which we also call a boundary Poincaré transformation. Together with the scale

transformations (t, x, z) 7→ (λt, λx, λz), these comprise the full group of isometries of (2.2).

Coordinate systems in which the AdS metric takes the form (2.2) (thus obtained from the

original one via the transformations just discussed) are called Poincaré coordinate systems.

Any two spacelike separated boundary points p1 and p2 are joined by a unique bulk geodesic.

In Poincaré coordinates in which the points are simultaneous, say p1 = (t0, x0 − R) and

p2 = (t0, x0 +R), the geodesic is the semicircle

t = t0 (x− x0)2 + z2 = R2. (2.3)

Consider now a perturbation δgab of (2.2). The perturbed spacetime is said to be asymp-

totically AdS if it satisfies the Brown-Henneaux boundary conditions [27], which at the

linearized level can be formulated as follows: there is a gauge in which δgaz = 0 everywhere

and the remaining components of δgab are finite at the boundary. Note that, since the

boundary metric is obtained after a Weyl rescaling with Weyl factor vanishing at z = 0,

such a perturbation does not modify the boundary geometry. The first-order variation in
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Eab, the left-hand side of Einstein’s equations, in the above gauge is given by

δEµν = − 1

2l2
[
z2∂2

z (δgµν − ηµνδg) + 3z∂z(δgµν − ηµνδg)
]

δEµz =
z

l2
(∂νδgµν − ∂µδg) +O(z2)

δEzz = −δg
l2

+O(z), (2.4)

where Greek indices correspond to the coordinates t, x and are raised and lowered with the

Minkowski metric ηµν , and δg ≡ δgµµ = ηµνδgµν . The omitted terms in the expansion of

δEµz and δEzz in powers of z will not be needed in the following.

2.2 The linearized RT formula

Let us return to the situation described at the beginning of this section: on the boundary

of Poincaré AdS we have a CFT in the vacuum state, and then we perturb both that state

and the bulk geometry. The perturbed spacetime is required to be asymptotically AdS,

so that the boundary geometry is not modified, and we work in the same gauge as above,

with δgaz = 0. Next we will write down an explicit expression for the linearized version of

the RT formula (2.1). Let V be a boundary spacelike segment, and let us choose Poincaré

coordinates in which it is at constant time, say t = t0, x ∈ [x0−R, x0 +R]. The first-order

variation in the entanglement entropy of V is

δS = δ〈H〉 =
π

R

∫ x0+R

x0−R
dx
[
R2 − (x− x0)2

]
δ〈Ttt〉(t0, x), (2.5)

where H is the modular Hamiltonian of V in the unperturbed state (the vacuum) and

Tµν is the CFT stress-energy tensor. The first equality above is the so-called first law of

entanglement [5], which holds for any quantum system in any background state; the second

equality follows from the explicit expression for the modular Hamiltonian of a segment in

the vacuum state of a CFT, which was derived in [7]. On the other hand, the first-order

variation in the bulk geodesic distance between the endpoints of V is

δA =
1

2lR

∫ x0+R

x0−R
dx
[
R2 − (x− x0)2

]
δgxx(γ(x)), (2.6)

where γ(x) = (t0, x,
√
R2 − (x− x0)2) is the AdS geodesic joining the endpoints of V . This

result is easily obtained from the general formula for the length of a curve after noting that,

although the metric perturbation induces a small variation in the geodesic, the latter does

not contribute to δA because geodesics are extrema of the length. From the above two

equations we see that the RT formula (2.1) holds to first order for V if and only if∫ x0+R

x0−R
dx
[
R2 − (x− x0)2

] [
δ〈Txx〉(t0, x)− 1

8πGl
δgxx(γ(x))

]
= 0, (2.7)

where we have used that Ttt = Txx because the CFT stress tensor is traceless (recall that

our metric perturbation does not modify the flat boundary geometry, so it does not give rise
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Figure 2. The union G(L) of all AdS geodesics with both endpoints inside a boundary segment L

at constant time t0. The red semicircle is the geodesic joining the endpoints of L.

to a trace anomaly). This is the linearized RT formula for a boundary spacelike segment,

in Poincaré coordinates such that the segment is at constant time. Of course one can

rewrite this formula in a coordinate-independent manner, but it will not be necessary for

our purposes. If the CFT is holographic and the metric perturbation is the dual of the state

perturbation, then one can check (e.g. by computing δgµν via the HKLL procedure) that

the integrand in (2.7) vanishes and hence the formula is satisfied. We emphasize, however,

that we are not assuming that the CFT is holographic. We consider a generic CFT, and

we look for necessary and sufficient conditions for the linearized RT formula to hold for all

spacelike segments contained in a certain boundary region.

2.3 Segments

Let L be a boundary spacelike open1 segment, and let us choose Poincaré coordinates in

which it is at constant time. Next we show that the RT formula (2.1) holds to first order

for all segments contained in L if and only if

δ〈Txx〉 =
1

8πGl
δgxx in L δEtt = 0 in G(L), (2.8)

where G(L) denotes the union of all AdS geodesics with both endpoints in L. Note that,

in the coordinates we are using, this is a semidisk at constant time, as shown in figure 2.

The second equation above is the tt component of the linearized Einstein equations.

Say that L is the segment t = t0, x ∈ (a, b). By the results of the previous subsection, what

we have to show is that the pair of local equations (2.8) is equivalent to the condition that

1Not including its endpoints. Unless otherwise stated, as we did here, our segments are closed.
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Figure 3. The set D(a, b) of allowed values of the parameters x0, R.

the linearized RT formula (2.7) hold for all (x0, R) in the domain

D(a, b) ≡ {(x0, R) ∈ R× R+ |x0 −R > a, x0 +R < b}, (2.9)

which is represented in figure 3. Suppose first that this condition is satisfied, namely that

the linearized RT formula (2.7) holds for all (x0, R) ∈ D(a, b). Then, in particular, it holds

for any x0 ∈ (a, b) provided that R is sufficiently small. Evaluating this formula to leading

order in the limit R → 0 one easily obtains the first equation in (2.8), and substituting it

back into (2.7) yields∫ x0+R

x0−R
dx
[
R2 − (x− x0)2

]
[δgxx(t0, x, 0)− δgxx(γ(x))] = 0 (2.10)

for all (x0, R) ∈ D(a, b). Note that this is a purely geometric constraint. Conversely, these

two equations (the first equation in (2.8) and (2.10)) clearly imply that the linearized RT

formula (2.7) holds for all (x0, R) ∈ D(a, b), so they are equivalent to the latter condition.

Thus, what remains to be shown is that the non-local geometric constraint (2.10) is equiv-

alent to the second equation in (2.8), namely the tt component of the linearized Einstein

equations in G(L). To see this, note that the integral in (2.10) vanishes identically in the

limit R → 0, so the constraint is satisfied if and only if the derivative of that integral

with respect to R vanishes. The latter, divided by R, also vanishes identically in the limit

R→ 0, so we can differentiate again to obtain the equivalent constraint∫ x0+R

x0−R
dx

[
(∂2
zδgxx)(γ(x)) +

3√
R2 − (x− x0)2

(∂zδgxx)(γ(x))

]
= 0. (2.11)

The derivatives with respect to z appear because there is an R hidden in γ (recall that this

curve is a semicircle of radius R, see its expression under (2.6)). Comparing with the first

equation in (2.4), which gives the explicit form of δEµν , we see that the above equation

can be rewritten as ∫ x0+R

x0−R
dx

1

R2 − (x− x0)2
δEtt(γ(x)) = 0. (2.12)

Clearly, a sufficient condition for this constraint to be satisfied for all (x0, R) ∈ D(a, b) is

that δEtt = 0 in G(L). To see that this condition is also necessary, suppose that the above
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equation is satisfied, multiply it by R, integrate in this variable2 from 0 to R and then

differentiate with respect to x0. This yields an equation identical to (2.12) except for an

extra factor x− x0 in the integrand, from which the term x0 can be dropped using (2.12)

again. Iterating this procedure one obtains∫ x0+R

x0−R
dx

1

R2 − (x− x0)2
xnδEtt(γ(x)) = 0 (2.13)

for all n ∈ N. Now define f(θ) ≡ δEtt(γ(x0 +R cos θ))/(R sin θ) for θ ∈ (0, π). This is the

function δEtt/z evaluated on the semicircle γ and expressed in terms of the standard polar

angle. The set of equations (2.13) can then be rewritten as∫ π

0
dθ (cos θ)nf(θ) = 0. (2.14)

Let now g be the even extension of f to the domain (−π, π), i.e., g(θ) = f(θ) for θ ∈ (0, π)

and g(θ) = f(−θ) for θ ∈ (−π, 0). Using the relation cos(nθ) = Tn(cos θ), where Tn denotes

the Chebyshev polynomial of degree n, it is clear from (2.14) that all Fourier coefficients of

g vanish. Therefore, g itself must vanish, so f also vanishes and, in consequence, δEtt = 0

in G(L) as we wanted to show.

The result just proven can be easily restated in a coordinate-independent way: the RT

formula (2.1) holds to first order for all segments contained in a boundary spacelike open

segment L if and only if

δ〈Tµν〉lµlν =
1

8πGl
δgµν l

µlν in L δEµνn
µnν = 0 in G(L) (2.15)

for some boundary vector lµ tangent to L and some bulk vector nµ normal to G(L). Note

that nz = 0 in all Poincaré coordinate systems (because this component is invariant under

boundary boosts and n ∝ ∂t when L is at constant time), hence the use of Greek indices

for nµ. The above equation clearly reduces to (2.8) in Poincaré coordinates such that L is

at constant time.

2.4 Open regions

Let U be a boundary open region. Next we show that the RT formula (2.1) holds to first

order for all spacelike segments contained in U if and only if

δ〈Tµν〉 =
1

8πGl
δgµν in U δEab = 0 in G(U), (2.16)

where G(U) denotes the union of all AdS geodesics joining the endpoints of some spacelike

segment contained in U . The first of these equations is the standard holographic formula

for the expectation value of the CFT stress tensor [28, 29]; the second is, of course, the

linearized Einstein equations.

2After performing these first two operations on the left-hand side of (2.12) one obtains the integral of

δEtt/z over the semidisk t = t0, (x− x0)2 + z2 < R.

– 9 –



u

Figure 4. A conical neighborhood N of a vector u in a 2-dimensional vector space.

Since U is open, any segment contained in U is also contained in some open segment which

is itself contained in U . Thus, by the results of the previous subsection, what we have to

show is that (2.15) holds for any spacelike open segment L ⊂ U if and only if (2.16) holds.

The “if” part of this statement is obvious (note that G(L) ⊂ G(U), i.e., any geodesic with

both endpoints in L joins the endpoints of a spacelike segment contained in U), so we only

have to prove the “only if” part. Our argument below hinges on the following simple result:

let T be a symmetric rank-2 tensor over a 2-dimensional vector space V , and let N ⊂ V

be a conical neighborhood of some vector u ∈ V (see figure 4). Then,

T (v, v) = 0 for all v ∈ N ⇒ T = 0. (2.17)

Indeed, consider two non-collinear vectors e1, e2 ∈ N , which form a basis of V . If the above

hypothesis is satisfied we have T (e1, e1) = T (e2, e2) = 0. Moreover, e1 + e2 ∈ N , so that

0 = T (e1 + e2, e1 + e2) = 2T (e1, e2) and hence T = 0. Note that this is true regardless of

how small N is. This result clearly generalizes to higher dimensions; we restricted to the

2-dimensional case for simplicity and because this is the only case relevant for our purposes.

Suppose now that (2.15) holds for any spacelike open segment L ⊂ U , and let us show that

this implies (2.16). Clearly, for any point p ∈ U and any boundary spacelike vector lµ at

p, there is an open segment L ⊂ U passing through p with tangent lµ, so the first equation

in (2.15) is satisfied everywhere in U and for any boundary spacelike vector lµ. By (2.17),

this implies the first equation in (2.16). Consider now a point p = (t, x, z) ∈ G(U) and a

spacelike open segment L ⊂ U such that p ∈ G(L). If σs denotes the one-parameter group of

boundary boosts centered at (t, x), which leaves p invariant, we have p = σs(p) ∈ G(σs(L)).

Moreover, since U is open, for sufficiently small s we have σs(L) ⊂ U . Therefore, the second

equation in (2.15) is satisfied at p for any nµ in a sufficiently small conical neighborhood

(within the subspace spanned by ∂t and ∂x) of some vector normal to G(L), so, by (2.17),

δEµν = 0 in G(U). (2.18)

The remaining components of the linearized Einstein equations then follow from the con-

servation of δEab and the first equation in (2.16), which has already been proved. Indeed,
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the above equation and the conservation of δEab imply

∂zδĒµz = 0 ∂zδEzz + z∂µδĒµz = 0 in G(U), (2.19)

where we have defined δĒµz ≡ δEµz/z and, as before, Greek indices are raised and lowered

with the Minkowski metric. On the other hand, since the CFT stress tensor is traceless

and conserved, the first equation in (2.16) implies δĒµz = δEzz = 0 in U (see the explicit

form of these components in (2.4)). Thus we have a very simple initial value problem (with

z playing the role of time) for δĒµz and δEzz. In order to solve it, note first that, for every

point p = (t, x, z) ∈ G(U), the point p0 = (t, x, 0) lies in U and, furthermore, the segment

joining p0 and p is contained in G(U) (indeed, consider a spacelike segment L ⊂ U such

that p ∈ G(L); it is clear from figure 2 that p0 ∈ L and the segment joining p0 and p

is contained in G(L)). This property enables us to integrate (2.19) in z from U to any

point in G(U), and thus conclude that the unique solution to the initial value problem is

δĒµz = δEzz = 0 in G(U). In other words, δEaz = 0 in G(U), which completes the proof.

2.5 Domains of dependence

Let X be a boundary spacelike open segment, and let U = D(X) be its boundary domain

of dependence, namely the set of boundary points p for which any boundary inextensible

causal curve containing p passes through X. This is an open region (because X is open),

so the results of the previous subsection apply to it. Next we show that G(U) = W (U),

where W (U) denotes the causal wedge of U (i.e., the intersection of its AdS causal future

and past), thereby completing the argument for the main statement of this section.

That W (U) ⊂ G(U) is clear from figure 1. Indeed, in Poincaré coordinates such that X

is at constant time, any point in W (U) lies in an AdS geodesic at constant time (which is

a semicircle) centered in the vertical axis of U , and this geodesic joins the endpoints of a

segment contained in U . On the other hand, the inclusionG(U) ⊂W (U) is a consequence of

entanglement wedge nesting, which was proved for generic asymptotically AdS spacetimes

satisfying the null curvature condition in [6]. This inclusion can also be seen more directly,

and very simply, as follows. Consider a spacelike segment V ⊂ U , and let γ be the AdS

geodesic joining its endpoints. From figure 1, with U replaced by D(V ), it is clear that

γ ⊂ W (D(V )) (recall that, unless otherwise stated, our segments are closed, so W (D(V ))

is closed). Moreover, from the definition of a domain of dependence it follows immediately

that D(V ) ⊂ U , so W (D(V )) ⊂W (U) and hence γ ⊂W (U) as we wanted to show.

In summary, we have shown that, given a boundary spacelike open segment X, the RT

formula (2.1) holds to first order for all spacelike segments contained in the boundary

domain of dependence U of X if and only if

δ〈Tµν〉 =
1

8πGl
δgµν in U δEab = 0 in W (U). (2.20)

Thus, the linearized RT formula for segments in U implies the linearized Einstein equations

in the causal wedge W (U), and in fact it is equivalent to those equations supplemented
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with a standard holographic formula, which plays the role of a boundary condition. Some

implications of this result will be discussed in section 4.

3 Non-zero temperature

The results of the previous section remain true in the case where the background bulk

geometry is the planar BTZ black hole and the background CFT state is the thermal state

at the black hole temperature. This is because the latter configuration is just a patch of the

Poincaré AdS/vacuum configuration (the background considered in the previous section),

as we will now explain.

Let us first study the relation between the planar BTZ black hole and Poincaré AdS. The

planar BTZ black hole of inverse temperature β is the 3-dimensional spacetime with metric

ds2 = −
(
r̄2

l2
−M

)
dt̄2 +

dr̄2

r̄2

l2
−M

+
r̄2

l2
dx̄2, (3.1)

where M = (2πl/β)2 and the coordinate range is t̄, x̄ ∈ R, r̄ > l
√
M (note that what we

are calling the planar BTZ black hole is, more precisely, the region of the planar BTZ black

hole outside the horizon). This is just a patch of Poincaré AdS. Indeed, setting

t = l

√
1− Ml2

r̄2
e
√
Mx̄/l sinh(

√
Mt̄/l)

x = l

√
1− Ml2

r̄2
e
√
Mx̄/l cosh(

√
Mt̄/l)

z =

√
Ml2

r̄
e
√
Mx̄/l (3.2)

in the Poincaré AdS metric (2.2) one recovers the planar BTZ metric (3.1). The domain

of this coordinate transformation is t̄, x̄ ∈ R, r̄ > l
√
M , and its image is |t| < x, z > 0.

Therefore, the planar BTZ black hole is the region |t| < x of Poincaré AdS, see figure

5. In particular, the boundary of the planar BTZ black hole is the Rindler wedge of the

boundary of Poincaré AdS.

On the boundary of the planar BTZ black hole, consider a CFT at the black hole tempera-

ture. The corresponding modular Hamiltonian H, which is defined in terms of the density

matrix ρ by the equation ρ = e−H/Tr(e−H), is thus β times the true Hamiltonian of the

theory. In other words, H is the Noether charge associated with the Killing vector ξ = β∂t̄.

In terms of Poincaré coordinates,

ξ = β

(
∂t

∂t̄
∂t +

∂x

∂t̄
∂x

)
= 2π (x∂t + t∂x) , (3.3)

so we may alternatively say that the CFT is at inverse temperature 2π with respect to the

standard boost generator on the Rindler wedge, which is the vector between parentheses

on the right-hand side above. Now, let us view the theory as being defined on the whole
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Figure 5. The planar BTZ black hole, viewed as a patch of Poincaré AdS. The boundary of this

patch is the Rindler wedge of the z = 0 surface.

boundary of Poincaré AdS and the thermal state as a reduced density matrix obtained by

tracing out the degrees of freedom outside the Rindler wedge. By the Bisognano-Wichmann

theorem [30], we may take the global state of the theory to be the vacuum state.

Thus we have seen that the planar BTZ black hole/thermal state configuration is the patch

|t| < x of the Poincaré AdS/vacuum configuration, so the results of the previous section

are also valid for perturbations of this thermal background. In particular, since the Rindler

wedge is the domain of dependence of a segment with one of its endpoints sent to infinity

and its corresponding causal wedge is the entire planar BTZ black hole (compare figures

1 and 5), if the linearized RT formula holds for all boundary spacelike segments3 then the

metric perturbation satisfies the linearized Einstein equations throughout the bulk. Note

that we would not have been able to reach this conclusion directly from the results of [14–

16], because there the linearized RT formula was assumed to hold for all spacelike segments

in the entire boundary of Poincaré AdS.

4 Discussion

In this paper we have considered the 3-dimensional Poincaré AdS space and, on its bound-

ary, a CFT in the vacuum state, a situation in which, by explicit computation, the RT

formula (2.1) is known to hold for all boundary spacelike segments. Then we have perturbed

3We are considering perturbations of the thermal background, so by boundary we mean that of the

planar BTZ black hole.
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both the bulk geometry and the CFT state, and we have studied under what conditions

the RT formula continues to hold to first order for all spacelike segments contained in a

boundary region U , which we have taken to be the domain of dependence of some given

spacelike segment. We have found that a necessary and sufficient condition is that the

metric perturbation satisfy (i) the linearized Einstein equations in the causal wedge W (U),

and (ii) a boundary condition which relates its value at U to the state perturbation via the

usual holographic formula for the expectation value of the CFT stress tensor (see (2.20)

for the explicit equations and figure 1 for a representation of the regions U and W (U)).

We have also shown that the same is true for small perturbations of the planar BTZ black

hole and the CFT thermal state.

These results generalize the analysis of [14–16], where the linearized Einstein equations

where first shown to follow from the linearized RT formula, by weakening its assumptions:

the latter formula is not required to hold everywhere in the boundary but only in some

boundary region, and the background state is allowed to have any temperature. Our ar-

gument is similar to that of [15, 16], although it is perhaps a bit simpler in some steps,

and we have stressed that it shows not only the implication “linearized RT ⇒ linearized

Einstein + boundary condition” but also the converse one. The analysis of [14–16], unlike

ours, is not restricted to the case of 3 bulk dimensions, but is valid for any bulk dimension-

ality4. There seems to be no obstruction for our zero-temperature results to carry over to

higher dimensions, but this is not so clear in the case of non-zero temperature, where our

arguments relied heavily on the bulk being 3-dimensional.

It is worth noting that the above boundary value problem, Eq. (2.20), has a unique solu-

tion. Indeed, from the first equation in (2.4) one easily sees that the µν components of

the linearized Einstein equations and the requirement that δgµν be finite at the boundary

constrain the metric perturbation in W (U) to be independent of z5, and thus to be com-

pletely determined by the boundary condition (the remaining components of the linearized

Einstein equations are just boundary value constraints, which are satisfied by our specific

boundary condition). Therefore, given a perturbation of the CFT state, requiring that the

linearized RT formula be satisfied for all spacelike segments contained in U determines com-

pletely the metric perturbation in W (U). This result is a very explicit and simple example

of bulk geometry emerging from boundary entanglement. It also gives further evidence for

subregion-subregion duality, namely the idea that, in holography, a boundary domain of

dependece contains complete information about some corresponding bulk region [20–22].

The latter is believed to be the so-called entanglement wedge rather than the causal wedge

(see [22–24] for some evidence in this direction), but both bulk regions coincide in the case

4In some sense, the derivation of the linearized Einstein equations from the linearized RT formula is

a stronger result in D ≥ 5 bulk dimensions than in lower dimensions, because, for D < 5, the Lovelock

theorem states that the only diffeomorphism-invariant theory of gravity which has second-order equations

of motion is Einstein gravity.
5This is true both at zero and non-zero temperature. Note from (3.2) that, in the case of non-zero

temperature, the metric perturbation depends on the BTZ radial coordinate r̄ even though it does not

depend on z.
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we have been considering, where the boundary region is the domain of dependence of a

segment.

Our analysis, however, also applies to boundary regions U for which the causal wedge

and the entanglement wedge do not coincide. Suppose, for example, that we require the

linearized RT formula to hold for all spacelike segments contained in a boundary region

U which is the union of two non-overlapping regions, each of which is the domain of

dependence of a spacelike segment. According to what has been seen above, this determines

completely the metric perturbation in the union of the corresponding causal wedges. If the

segments are spacelike separated, then U is itself a domain of dependence, and the union

of causal wedges, where the metric perturbation is determined, is the causal wedge of U . If

the segments are sufficiently close to each other, the entanglement wedge is larger (always

containing the causal wedge), so there is a part of this bulk region where the geometry is

not reconstructed. This is not in contradiction with subregion-subregion duality; it simply

says that the RT formula for segments alone is not enough to reconstruct the geometry

everywhere in the entanglement wedge but only in the causal wedge. It is plausible that the

geometry may be reconstructed past the causal wedge and throughout the entanglement

wedge by imposing a stronger condition, for example that the RT formula hold not only for

segments but also for unions of segments. We leave the study of this possibility for future

work6.

Let us now comment on the implication “linearized Einstein + boundary condition ⇒ lin-

earized RT”, which, as emphasized above, is part of what we have shown in this paper. For

CFTs with a gravity dual, a perturbation of the vacuum or a thermal state has associated

a bulk metric perturbation which certainly satisfies the linearized Einstein equations and

the boundary condition (which is a standard holographic formula). Therefore, the above

implication tells us that the linearized RT formula for segments is satisfied in holographic

CFTs for perturbations of the vacuum or a thermal state. This is, of course, not new: the

RT formula is already known to hold in holographic CFTs, for generic states and bound-

ary spatial regions [8, 9]. We just point out that our arguments serve as an alternative

holographic proof of the RT formula, at the linearized level and for boundary segments.

As for future prospects, we have already mentioned one: study how the metric perturbation

is constrained when the linearized RT formula is imposed not only for segments but also

for unions of segments, and see if this allows to reconstruct the geometry past the causal

wedge and throughout the entanglement wedge in the cases where these two bulk regions

do not coincide. Another future direction is to extend the analysis of this paper to other

measures of entanglement for which holographic recipes have been proposed, of which a

recent example is the entanglement of purification [33–35].

6This is a difficult problem, because the vacuum modular Hamiltonian of a union of segments is not

known for generic CFTs, and in the cases where it is known it includes non-local contributions [31]. The

problem might be more tractable in the limit of large central charge, which, after all, is the relevant limit

for holography. For example, in this limit the vacuum entanglement entropy can be computed for arbitrary

unions of intervals [32].
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