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Abstract. Aedes aegypti (Diptera: Culicidae) is an urban mosquito involved in
the transmission of numerous viruses, including dengue, chikungunya and Zika. In
Argentina, Ae. aegypti is the main vector of dengue virus and has been involved in several
outbreaks in regions ranging from northern to central Argentina since 2009. In order to
evaluate areas of potential vector-borne disease transmission in the city of Córdoba,
Argentina, the present study aimed to identify the environmental, socioeconomic
and demographic factors driving the distribution of Ae. aegypti larvae through spatial
analysis in the form of species distribution models (SDMs). These models elucidate
relationships between known occurrences of a species and environmental data in order
to identify areas with suitable habitats for that species and the consequent risk for
disease transmission. The maximum entropy species distribution model was able to fit
the training data well, with an average area under the receiver operating characteristic
curve (AUC) of > 0.8, and produced models with fair extrapolation capacity (average
test AUC: > 0.75). Human population density, distance to vegetation and water channels
were the main variables predictive of the vector suitability of an area. The results of this
work will be used to target surveillance and prevention measures, as well as in mosquito
management.

Key words. Aedes aegypti, mosquito, MaxEnt, risk, prediction, species distribution
models, SDMs, Córdoba, Argentina.

Introduction

Mosquitoes (Diptera: Culicidae) are vectors of many pathogens
worldwide. Blood-feeding females of two invasive species,
Aedes aegypti and Aedes albopictus, are involved in the trans-
mission of numerous viruses, including dengue, chikungunya
and Zika. Aedes aegypti has expanded its known range in
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South America to extend at least as far as the southern city
of Neuquén (Argentina), where eggs of the species have been
recorded (Grech et al., 2012; ). The geographic distribution of
Ae. albopictus is currently restricted to northeast Argentina near
the Brazilian border (Vezzani & Carbajo, 2008).

Aedes aegypti is the principal mosquito vector of dengue,
chikungunya and Zika viruses in Argentina. Until 2007, when
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a locally transmitted dengue case was detected in Buenos Aires
(Natiello et al., 2008), dengue virus was restricted to the north-
ern provinces of Argentina. Since 2009, dengue transmission
has also affected central areas of the country, where 130 con-
firmed dengue cases (imported and autochthonous) have been
reported in the city of Córdoba, where the outbreak was started
by the import of cases from neighbouring provinces (Estallo
et al., 2014). In 2016, Argentina’s health authorities reported a
cumulative 79 455 probable cases, including 41 211 confirmed
cases, of dengue serotypes 1 and 4. As of epidemiological week
(EW) 6 of 2017, 2320 probable cases and 20 confirmed cases
of dengue had been reported. During the 2016 dengue outbreak,
more than 600 cases were recorded in Córdoba city (Ministerio
de Salud de la Provincia de Córdoba, 2016).

The first autochthonous cases of chikungunya virus in
Argentina were confirmed in EW 8 of 2016 in the provinces of
Salta and Jujuy. In 2016, 338 confirmed cases of chikungunya
were reported in Argentina, of which the majority occurred
in Salta (329 cases) and the rest in Jujuy (nine cases) [Pan
American Health Organization (PAHO), 2017]. During 2017,
there were no reports of active chikungunya virus circulation in
Argentina. Nine probable imported cases were reported in the
province of Buenos Aires (three cases), the city of Buenos Aires
(four cases) and Córdoba (two cases) (Ministerio de Salud de la
Nación, 2017a).

The first evidence of local vectorial transmission of Zika virus
in Argentina was noted in 2016, during which 26 cases were
confirmed (Ministerio de Salud de la Nación, 2017a). In May
2017, three provinces in northern Argentina showed confirmed
and probable Zika cases, in Chaco (44 cases), Salta (189 cases)
and Formosa (22 cases) (Ministerio de Salud de la Nación,
2017b). No cases of Zika were recorded in the city of Córdoba
during 2017 (Ministerio de Salud de la Nación, 2017b).

The mosquito Ae. aegypti is highly domesticated and is associ-
ated with humans and their dwellings not only because humans
represent a source of bloodmeals, but also because they provide
artificial water-holding containers in and around the home. The
mosquito lays eggs on the sides of water containers and the eggs
hatch after submersion by rain or flooding [Centers for Disease
Control and Prevention (CDC), 2018].

Aedes aegypti commonly occupies urban sites in tropical and
subtropical areas. It bites during the day and breeds in a wide
variety of small water containers, such as flower vases, discarded
automobile tyres, buckets and other trash (Christophers, 1960;
Getachew et al., 2015). As mosquitoes are poikilothermic organ-
isms, they seek shaded areas during daytime to avoid severe
desiccation and heat (Paaijmans & Thomas, 2011). This sug-
gests that the daytime resting habitats for these organisms are
usually associated with vegetation, which provides shade and
thus a microclimate that is cooler than those in open areas such
as bare soil and built-up spaces (Dewald et al., 2016).

Because of the climatic characteristics of Córdoba city,
the vector population decreases during winter and increases
when the temperature rises, resulting in a particular population
dynamic that differs from that of tropical regions (Estallo et al.,
2014). The environmental niche occupied by Ae. aegypti can be
expressed geographically by identifying the environmental con-
ditions required by this vector mosquito to breed and sustain a
longterm population. Identifying a species’ environmental niche

is essential to understanding its geographic distribution (Peter-
son, 2006). Studying the distribution of breeding sites within
urban areas is a key requirement in assessing dengue transmis-
sion risk (Carbajo et al., 2004).

Careful monitoring of vector populations permits the iden-
tification of alterations in distributions and fluctuations in
the densities of the vector species and permits programme
evaluation. Careful monitoring programmes can inform and
enhance control strategies and measures. The continued success
of vector management relies upon consistent surveillance of the
vector population [World Health Organization (WHO), 2017].

Disease biogeography is an emerging field, in which the
central aim is the study of the geographic dynamics of diseases
and their vectors. This field merges epidemiology with ecology
and geography using tools that link the analysis of spatial
distributions with research on epidemics. Vector distributions
can be best understood through tools such as ecological niche
modelling (Escobar & Craft, 2016). Because of the link between
the environmental niche and spatial distribution of a species,
the terms ‘ecological niche modelling’ and ‘species distribution
modelling’ are often used interchangeably. However, niches
are characterized in an environmental dimension, whereas a
geographic distribution is the geographic expression of an
ecological niche (Warren, 2012).

Spatial analysis allows vector surveillance to be linked
with environmental and socioeconomic characteristics to pro-
duce spatially explicit maps of potential vector distribution
and disease risk (Khatchikian et al., 2010; Machado-Machado,
2012). Species distribution models (SDMs) identify relation-
ships between the known occurrence of a species (in the form
of either presence or presence/absence data) and environmental
data (e.g. meteorological data, land use and cover data, remote
sensing data), and use these relationships to make predictions
for all unsampled areas in the study region (Cianci et al., 2015;
Gill & Sangermano, 2016).

Several techniques exist for modelling the spatial distribution
of a species (Elith et al., 2006; Rogers, 2006), but they differ
in assumptions and predictive performance. Outputs from
SDMs have been interpreted to represent habitat suitability,
probability of presence, potentially occupied habitat and ranked
habitat suitability. However, in general terms, outputs refer
to the predictive distribution map of the species in question
(Franklin, 2010) and, in the context of infectious diseases, can
be considered to represent infestation risk (Khatchikian et al.,
2010; Machado-Machado, 2012).

Maximum entropy (MaxEnt) ecological niche modelling uses
an algorithm based on presence data. MaxEnt identifies the
probability distribution of highest entropy subject to distribution
constraints (in the mean and variance) extracted from the
environmental conditions within the training dataset (Phillips
et al., 2004, 2006; Elith et al., 2012). MaxEnt has been identified
as the best predictive method when only presence data are
available (Elith et al., 2006) and has been shown to work well
even when the amount of training data is limited (Elith et al.,
2006; Phillips et al., 2006). MaxEnt has been used extensively
in biodiversity conservation (e.g. Osipova & Sangermano, 2016;
Stewart et al., 2017) and invasive species modelling (e.g. Gill
& Sangermano, 2016; Skowronek et al., 2017), and has been
employed in the study of infectious diseases and disease vectors
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(e.g. Khatchikian et al., 2010; Machado-Machado, 2012; Zhao
et al., 2016).

Species distribution models require the use of predictive
variables that are related to the ecology of the species to be
modelled. Remotely sensed data allow for the extraction of
localized environmental predictors. The normalized difference
vegetation index (NDVI) represents vegetation greenness and
has been applied in mosquito studies as a surrogate measure of
humidity and precipitation (Estallo et al., 2016). The normal-
ized difference water index (NDWI) is sensitive to changes in
the liquid water content of vegetation canopies and is comple-
mentary to the NDVI (Gao, 1996). The normalized difference
built-up index (NDBI) highlights highly reflective urbanized
areas (Zha et al., 2003).

In order to evaluate areas of potential vector-borne disease
transmission in Córdoba city, Argentina, this project aimed to
identify the environmental, socioeconomic and demographic
factors driving the distribution of Ae. aegypti larvae through
spatial analysis in the form of species distribution modelling.

Materials and methods

Study area

Córdoba is the second largest city in Argentina and has a
surface area of 576 km2 and a population of 1 330 023 inhabi-
tants [Instituto Nacional de Estadística y Censos de la República
Argentina (INDEC), 2010]. It is located in the central province
of Córdoba (31∘24′ S, 64∘11′ W), at an elevation of 360–480 m
a.s.l. (Fig. 1). Córdoba city has a temperate climate, with mean
annual precipitation of 800 mm. The winter is markedly dry and
most precipitation occurs in the summer months (National Mete-
orological Service, 2018). The Suquía River, its tributary La
Cañada and numerous additional water channels run through the
city. Human activities have resulted in a landscape characterized
by a highly developed urban core represented by buildings with
0.66 km2 of green areas in the form of urban parks. Suburban
areas are characterized by residential neighbourhoods, primar-
ily single-family houses with yards, interspersed with parks and
other green spaces (total green areas: 9.27 km2) (Fenoglio et al.,
2009; Municipalidad de Córdoba, 2017).

Entomological data

In each month, 30 neighbourhoods were randomly selected
and 20 houses within each neighbourhood were surveyed (a
total of 600 houses were surveyed in each month). A fine scale
for containers in which Ae. aegypti breeding had occurred was
adopted, using data corresponding to neighbourhoods found to
be positive for Ae. aegypti larvae during a survey conducted
from December 2012 to May 2013. Each neighbourhood in
which at least one larva was found in a container was geocoded
and recorded as positive.

Predictor variables

Predictor variables were used based on availability and a priori
expectations of influences on the mosquito population. Factors

considered included layers depicting potential vector breeding
sites (PBSs), environmental variables, and socioeconomic and
demographic parameters (Tables 1 and 2).

Potential breeding sites. Potential breeding sites in the
city were identified as places in which unused water-holding
containers were available as breeding sites for Ae. aegypti
mosquitoes. The different variables were created within a
geographic information system (GIS) and different layers were
generated digitizing informal settlements (suburban slums),
garbage dumps, water channels across the city, cemeteries,
abandoned train depots, parks, train tracks and tyre storage
centres. The layers were generated using ArcGIS 10.4.1 [Envi-
ronmental Systems Research Institute, Inc. (Esri), Redlands,
CA, U.S.A.]. Maps of the Suquía River and Córdoba city streets
were acquired from open data sources (www.openstreetmap
.org). These particular PBSs were chosen because they accu-
mulate man-made containers that might hold water after rain
in the form of trash on riverbanks or along the sides of city
water channels. Although Ae. aegypti mosquitoes do not breed
in running water, numerous small containers were observed
amongst rubbish that had accumulated along the river and water
channels (see File S1). Tyre disposal areas store tyres outdoors,
where they accumulate rainwater and where mosquito larvae
were observed. Using ArcGIS 10.4.1, the distance from each
of the PBSs was calculated and a fuzzy variable from each dis-
tance layer was created using TerrSet (Eastman, 2016). Through
fuzzy variables, risk can be scaled in terms of degree of risk
along a range. A sigmoidal monotonically decreasing function
was used with a control point distance of 500 m, implying that
areas closer to roads would be more suitable for the mosquito
and that suitability would drop to zero at 500 m from roads.
This distance was selected as it approximates the flight range
of Ae. aegypti female mosquitoes. Studies on the flight range of
this vector indicate that females generally fly 100–500 m from
their larval habitat (Muir & Kay, 1998).

Environmental variables. The environmental variables con-
sidered for this study were calculated from two SPOT 5 (Sys-
teme Probatoire de l’Observation de la Terre) satellite images
(February and May 2013) using high-resolution geometric
(HRG) sensors. All image processing and analyses were car-
ried out in TerrSet software (Eastman, 2016). The NDVI, NDWI
and NDBI were calculated. The quality of the images was good,
with no cloud cover over the study area. Continuous NDVI,
NDWI and NDBI images were used to calculate mean, max-
imum, minimum and standard deviation images. The derived
images were spatially filtered using a mean filter for a window
of 500 m because the 20 houses chosen randomly for the sam-
pling were located within a radius of 500 m around the defined
sample site.

The variable ‘proximity to vegetation’ has a value of 1 for
areas with NDVIs of > 0, which represent vegetated areas.
Non-vegetated areas are represented with values ranging from
0 to just under 1, where values approaching 0 correspond to
non-vegetated areas located far from vegetated areas. Values
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Fig. 1. Points of occurrence of Aedes aegypti larvae monitored during December 2012 to May 2013 in Córdoba city, Argentina. [Colour figure can be
viewed at wileyonlinelibrary.com].

approach 1 for non-vegetated areas that are in close proximity to
vegetated areas. This variable represents not only the presence
of vegetated areas, but also the isolation of non-vegetated
areas. The variable ‘less urbanized’ has a value of 1 for
areas of heterogeneous urban habitats such as suburbs, where
constructions alternate with open spaces, by contrast with areas
where construction density is higher (downtown areas), which
are designated as the variable ‘highly urbanized’. These two
variables represented the density of urban construction, obtained

from a categorical map defined through a maximum likelihood
classification of satellite images (Vergara Cid et al., 2013).

Socioeconomic and demographic parameters

Socioeconomic parameters, such as the number of houses by
neighbourhood with different types of water supply, the pro-
portions of houses with and without bathrooms, and housing
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Table 1. Predictor variables considered included layers depicting
potential vector breeding sites (PBSs), environmental variables, and
socioeconomic and demographic parameters.

PBS
Environmental
parameters

Socioeconomic and
demographic parameters

Informal settlements
(suburban slums)

Max NDVI WS 1

Garbage dumps Min NDVI WS 2
Water channels SD NDVI WS 3
Cemeteries Mean NDVI WS 4
Abandoned train

depots
Max NDWI WS 5

Parks Min NDWI
Train lines SD NDWI Homes with a bathroom
Tyre storage depots Mean NDWI Homes without a bathroom
Suquía River Max NDBI BNU homes

Min NDBI Proportion of homeless
people

SD NDBI Proportion of apartments
Mean NDBI Proportion of houses
Proximity to

vegetation
Proportion of ranchos

Highly urbanized Human population density
Less urbanized

Of the 37 original variables considered, 17 variables were selected based
on correlation (r < 0.70). Those shown in italics are the variables used
with the MaxEnt algorithm.
BNU homes, homes in which basic needs are unmet; Max, maximum;
Min, minimum; NDBI, normalized difference built-up index; NDVI,
normalized difference vegetation index; NDWI, normalized difference
water index; SD, standard deviation; WS, water supply (1, cistern; 2,
river, channel or natural source of water; 3, well; 4, water mains; 5,
perforation).

conditions, were used to assess conditions of hygiene. The fol-
lowing types of household water supply were identified: (a)
cistern; (b) river, channel or other natural source of water;
(c) well; (d) water mains, and (e) perforation. Water sup-
ply is an important factor as households without water mains
or perforation supplies usually store water in uncovered con-
tainers that are used by mosquitoes as breeding sites. Hous-
ing conditions, which determined in many cases the type

and amount of vector breeding in the vicinity, included the
proportion of apartments, proportion of houses and propor-
tion of ‘ranchos’ (houses in informal settlements or suburban
slums). Neighbourhood population density according to the
national 2010 census was considered an important demographic
parameter as humans are a source of bloodmeals for female
mosquitoes.

Evaluation of model performance

The capacity of the models to predict Ae. aegypti presence
was evaluated using the area under the receiver operating
characteristic (ROC) curve (AUC).

All PBS, environmental, socioeconomic and demographic fac-
tors were considered as potential factors in the development of
the MaxEnt model. The 37 original predictor variables, grouped
by PBS, environmental, socioeconomic or demographic factors,
were evaluated for multicollinearity by calculating the pairwise
Pearson’s correlation coefficient (r) (Table 1). After reducing
pairs of variables that correlated strongly with one another
(r > 0.7) to a single factor, 17 variables were selected to develop
preliminary MaxEnt models.

Preliminary MaxEnt models were run in order to refine
the final selection of variables (Phillips et al., 2004). Variable
importance was measured through permutation importance and
response curves. This approach evaluates the contribution of
each variable independently of the ordering of the variables and
is therefore less sensitive when correlated variables are present
(Phillips et al., 2006). The final selection of variables was based
on the results of these two methods (permutation importance
and response curves). Of the 37 original variables considered,
only the 11 most relevant variables (Table 2) were included in
the final model. Although human population density, proportion
of houses and proportion of ranchos were highly correlated with
one another (r > 0.90), these socioeconomic and demographic
variables capture environmental conditions important in the
development and persistence of Ae. aegypti mosquitoes (Stewart
Ibarra et al., 2013), and therefore were retained as predictor
variables to run the model.

Risk maps, representing areas of potential vector-borne dis-
ease transmission, were produced by training the MaxEnt model

Table 2. Spatial data sources and properties for variables used with MaxEnt.

Source Spatial resolution Period of data collection

Human population density Argentina National Census Neighbourhood level 2010
Less urbanized Landsat 5 TM 30 m February 2010
NDVI SPOT 5 HRG 10 m February and May 2013
NDBI SPOT 5 HRG 10 m February and May 2013
Informal settlements (suburban slums) Map from municipal documents source 10 m 2010
Proportion of houses Argentina National Census Neighbourhood level 2010
Tyre storage depots Map from municipal documents source 10 m 2010
Household water supply by river, creek or other Argentina National Census Neighbourhood level 2010
Proportion of ranchos Argentina National Census Neighbourhood level 2010
Abandoned trains Mapped through Google Earth 10 m 2012
Cemeteries Mapped through Google Earth 10 m 2012

HRG, high-resolution geometric; NDBI, normalized difference built-up index; NDVI, normalized difference vegetation index; TM, thematic mapper.
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with the presence of Ae. aegypti larvae from December 2012 to
May 2013 as the response variable. Because MaxEnt ecological
niche models eliminate duplicate occurrence points within the
same pixel, data collection included a total of 51 spatial occur-
rence records for Ae. aegypti larvae (neighbourhood level). The
occurrence points were randomly partitioned into calibration
and evaluation datasets. A four-fold cross-validation method
(four replicate MaxEnt runs) was used to partition the data into
training and testing, which left 38 observations for training and
13 for testing the model. A 1.5 regularization multiplier was used
in order to decrease model overfitting.

Finally, overall performance was gauged via visual inspections
of risk maps and the AUC (Phillips et al., 2006). The AUC is
a threshold-independent measure with values ranging from 0
to 1. All AUC values of > 0.5 represent models that are better
than random and higher AUC values indicate a better discrim-
inatory resolution (Phillips et al., 2006). When using the ROC
procedure, Swets (1988) recommends interpreting range values
as ‘excellent’ (AUC > 0.90), ‘good’ (0.80<AUC< 0.90), ‘fair’
(0.70<AUC< 0.80), ‘poor’ (0.60<AUC< 0.70), and ‘failing’
(0.50<AUC< 0.60). Training accuracy refers to the goodness
of fit of the model, which indicates how much the model is
capable of predicting the observation used for training. Test-
ing refers to the capability of the model to predict observa-
tion points not used during training and is considered an inde-
pendent evaluation. It is expected that the model capability
for data fitting will be better than for prediction and there-
fore testing accuracy is commonly lower than training accuracy
(Phillips et al., 2004).

Ecological niche modelling shows a promising future in
modern epidemiology, but its usefulness depends upon the
quantitative robustness and biological realism of a model’s
products. In accordance with Escobar & Craft (2016), risk was
defined and considered as the areas suitable for the occurrence of
Ae. aegypti. In environmental terms, factors at local scale may
be a good complement to risk delimitation (Escobar & Craft,
2016). Therefore, the present ecological niche model considered
not only potential breeding sites for the vector at a fine scale,
but also an enrichment of the model with demographic data
such as human population density (Table 1). Suitable habitat
for Ae. aegypti larvae, and therefore the potential geographic
distribution of the vector, was mapped based on the results of the
MaxEnt model. These outputs characterize the ecological niche
of Ae. aegypti larvae, and were used, as suggested by Peterson &
Vieglais (2001), to anticipate suitable areas for the vector outside
the known sampled range.

Results

MaxEnt produced models with a good goodness of fit (train-
ing accuracy and ‘fair’ extrapolation capacity with an aver-
age training AUC of > 0 and average testing AUC of > 0.75,
respectively) (Table 3). According to the permutation impor-
tance results, human population density appears to be the most
influential factor in the model, followed by proximity to vegeta-
tion and proximity to water channels (Table 4).

Human population density is considered as a proxy of
human influence on the mosquito population because, in

Table 3. Accuracy of each of the four models (fold cross-validation)
performed, where training accuracy refers to the goodness of fit of
the model (i.e. the model’s ability to predict the observations used for
training).

Species Training AUC Testing* AUC

AedesCBA_0 0.84 0.76
AedesCBA_1 0.85 0.79
AedesCBA_2 0.85 0.82
AedesCBA_3 0.87 0.68
AedesCBA (average) 0.85 0.76

*Testing refers to the ability of the model to predict observation points
not used during training and is considered an independent evaluation.
CBA, denotes the model for Aedes in Córdoba city. 0 to 1 are the fourth
models developed, along with the average model for Cordoba city.

Table 4. Importance of variables measured according to permutation
importance.

Variable
Permutation
importance

Human population density 35.8
Proximity to vegetation 11.2
Proximity to water channels 8.3
Proportion of houses 8.1
Proportion of ranchos 7.7
Proximity to informal settlements (suburban slums) 6.1
Household water supply by river, creek or other 6.0
Less urbanized 5.2
Proximity to abandoned trains 3.9
Proximity to cemeteries 3.5
Proximity to tyre storage places 3.0
Maximum NDBI 1.3

NDBI, normalized difference built-up index.

addition to serving as a blood source, humans provide both
breeding habitats (artificial containers and other breeding
grounds) and dispersal opportunities through the movement
of containers colonized by eggs or larvae (Khatchikian et al.,
2010).

In general, suitable habitats for Ae. aegypti were concentrated
in sites proximal to vegetated areas, which accords with the
findings of other research in which a close association between
the abundance of a mosquito species and NDVI was found
(Ferraguti et al., 2016). Higher NDVI values reflect higher
vegetation cover that provides shelter that potentially increases
the availability of breeding and resting habitats for mosquitoes
and other insect vectors (Reisen et al., 1990). Previous studies
conducted in the U.S.A. and Europe have also reported positive
associations between NDVI values and mosquito presence,
abundance and diversity (Diuk-Wasser et al. 2006; Roiz et al.
2015). Moreover, studies of Ae. aegypti reported that more of
this species breeds in areas with high vegetation cover (Philbert
& Ijumba, 2013).

Proximity to water channels suggested the importance
of the availability of artificial water containers at water
channels as breeding sites. This factor, together with human
population density and proximity to vegetation, contributes

© 2018 The Royal Entomological Society, Medical and Veterinary Entomology, doi: 10.1111/mve.12323
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Fig. 2. Model response curves for the presence
of Aedes aegypti larvae in relation to 12 envi-
ronmental factors. Black lines show averages and
grey shading represents 1 standard deviation in
either direction after four iterations of the model.
NDVI, normalized difference vegetation index;
NDBI, normalized difference built-up index.

© 2018 The Royal Entomological Society, Medical and Veterinary Entomology, doi: 10.1111/mve.12323
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Fig. 3. Risk map identifying habitats suitable for Aedes aegypti and therefore risk for disease transmission through spatial analysis in the form of
species distribution modelling (maximum entropy modelling). [Colour figure can be viewed at wileyonlinelibrary.com].

significantly towards making an environment suitable for the
vector Ae. aegypti because this mosquito requires bloodmeals
and access to shallow artificial water containers in which
to lay eggs.

Areas with high proportions of houses were also important
for assessing risk. In general, houses with back yards are char-
acteristic of Córdoba’s neighbourhoods and form a heteroge-
neous urban habitat in which built-up sites alternate with open
spaces, by contrast with areas in which the density of construc-
tion is high.

The response curve for the proportion of ranchos (Fig. 2E)
does not show variability, which suggests that other socioeco-
nomic variables capture environmental conditions important to
the development and persistence of Ae. aegypti mosquitoes, in
accordance with Stewart Ibarra et al. (2013). The accumulation

around ranchos of unused containers that provide larval habitats
is common. Other variables of influence included proximity to
informal settlements (suburban slums), household water supply,
a lower level of urbanization, proximity to abandoned trains,
proximity to cemeteries, proximity to tyre storage depots, and
maximum NDBI. The distribution of Ae. aegypti is known to
be influenced by environmental factors, such as temperature,
and demographic factors, such as urbanization (Brown et al.,
2014). The survival of Ae. aegypti is highly dependent on tem-
perature and the availability of water; the variable ‘proxim-
ity to vegetation’ can be used as indicating proximity to areas
with suitable soil surface-level moisture that could be associ-
ated with the availability of mosquito larval development sites
(Nihei et al., 2014). Vegetation canopy cover reduces evapora-
tion and wind speed in the sub-canopy, which protects mosquito

© 2018 The Royal Entomological Society, Medical and Veterinary Entomology, doi: 10.1111/mve.12323
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development sites and favours adult flight activity (Service,
1980). The response curve of the maximum NDBI indicates that
the development of an area positively affects mosquito presence
(Fig. 2L).

Discussion

The Ae. aegypti risk map (Fig. 3) shows a wider geographic dis-
tribution in areas with high human population density (Fig. 2),
as well as in places in which container habitats are avail-
able for egg laying and larval development, such as city chan-
nels, informal settlements (which are frequently close to chan-
nels or crossed by channels), abandoned train depots and
cemeteries.

Study of the biogeography of diseases has much to gain from
ecological niche modelling and this approach will become
increasingly useful to epidemiologists who are attempting
to anticipate disease transmission risk, to predict changes in
disease risk brought about by climate change, and to elucidate
possible landscape-level causes of outbreaks (Escobar & Craft,
2016). Disease prevention and control will benefit from a more
evidence-structured approach developed by integrating risk
mapping methods (Alimi et al., 2015). Risk assessment is an
important component of public health strategy and provides
information that may aid decision making by public health
agencies.

Conclusions

Small-container mosquito surveillance data were used to
produce a general vector exposure risk map that represents
the potential risk for the transmission of dengue and other
vector-borne diseases, rather than the current risk for dengue
(which is reflected in maps of dengue cases). The suitability
map is a representation of where human individuals are likely
to be exposed to Ae. aegypti and therefore at greater risk for
infection. This risk map points towards potential measures that
can be put in place to reduce the mosquito population, such as
targeted, location-specific vector management campaigns. The
areas identified as including suitable habitats by the ecological
niche model should be considered to carry a risk for disease
transmission, as suggested by Escobar & Craft (2016), because
even when the vector is present in a population, disease per
se may be absent. Moreover, this study highlights the impor-
tance of both local socioeconomic and demographic studies, as
well as the initiation of city cleaning campaigns to reduce the
availability of man-made containers in public places. Many of
the PBSs and socioeconomic variables included are associated
with the presence of litter, which increases the likelihood of
containers. Therefore, the variables used in this study may not
be applicable to other modelling environments; this highlights
the importance of intrinsic knowledge of the area in question
in the production of empirical models of mosquito vectors.
The risk maps produced in this study will allow public health
workers to identify and target high-risk areas with appropriate
and timely control measures.

Supporting Information

Additional supporting information may be found online in the
Supporting Information section at the end of the article.

File S1. Remotely sensed variables. Brief description of nor-
malized difference vegetation index (NDVI), normalized differ-
ence water index (NDWI) and normalized difference built-up
index (NDBI). Photographic representation of socioeconomic
variables.
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