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Abstract: We study the scaling properties of Fisher’s information measure (FIM) and show that from these one can
straightforwardly deduce significant quantum-mechanical results. Specifically, we investigate the scaling
properties of Fisher’s measure I and encounter that, from the concomitant operating rules, several interest-
ing, albeit known, results can be derived. This entails that such results can be regarded as pre-configured
by the conjunction of scaling and information theory. The central notion to be arrived at is that scaling
entails that I must obey a certain partial differential equation (PDE). These PDE-solutions have properties
that enable the application of a Legendre-transform (LT). The conjunction PDE+LT leads one to obtain
several quantum results without recourse to the Schrödinger’s equation.
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1. Introduction

In this communication we wish to show that from the scale-transformation rules obeyed by Fisher’s information mea-
∗E-mail: angeloplastino@gmail.com

sure (FIM) some interesting quantum results immediatelyfollow.
1.1. Scaling

Symmetry in physics means invariance, i.e. lack of changeunder some transformation, e.g. coordinate transforma-tions. The concept is one of the most powerful tools of
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physics as practically all laws of nature originate in sym-metries. Anderson wrote in 1972 that “it is only slightlyoverstating the case to say that physics is the study ofsymmetry” [1]. Here we will concern ourselves with scal-
ing symmetry, that refers to the idea that if a system isexpanded or reduced in size, the transformed system ex-hibits the same properties as the original. This symmetryis notable for the fact that it does not exist for most phys-ical systems.Thus, scale invariance is a feature of objects or laws thatdo not change if scales of length, energy, or other vari-ables, are multiplied by a common factor. A technical termfor this transformation is “dilatation” (or dilation). The di-latations can also form part of a larger conformal symme-try. It is possible for the probability distributions of ran-dom processes to display this kind of scale invariance. Inclassical field theory, scale invariance most commonly ap-plies to the invariance of a whole theory under dilatations.In quantum field theory, scale invariance has an interpre-tation in terms of particle physics. In a scale-invarianttheory, the strength of particle interactions does not de-pend on the energy of the particles involved. In statisticalmechanics, scale invariance is a feature of phase transi-tions. The key observation is that near a phase transitionor critical point, fluctuations occur at all length scales, andthus one should look for an explicitly scale-invariant the-ory to describe the phenomena. Such theories are scale-invariant statistical field theories, and are formally verysimilar to scale-invariant quantum field theories [2].
1.2. Fisher’s information
Physical applications of Fisher’s information measure(FIM) have grown exponentially in the last two decades(see [3, 4, 6] and the vast references therein). A very re-stricted list of papers is given in [7–13].
A very common Fisher-technique replaces Shannons’ en-tropy by FIM in applications of the celebrated Jaynes’MaxEnt technique [15, 16]. We do not require employ-ment of such technique here.
1.3. Our program
We review in Sec. 2 some fundamentals of the FIM, de-noted by I . In Sec. 3 we investigate I’s behavior underscale-changes. From the concomitant scaling rule we de-rive in Sec. 4 a partial differential equation for I . In Sec. 5a Legendre transform (LT) is applied to its solution and wefind that some quantum results immediately emerge (forinstance, the virial theorem). Such procedure allows, nowin Sec. 6, to derive the scaling-behavior of the eigenval-ues of Schrödinger’s equation. Finally, some conclusions

are drawn in Sec. 7.
2. Fisher’s information measure
(FIM)
FIM arises as a measure of the expected error in a mea-surement [4]. We restrict here ourselves just to a par-ticular but quite significant FIM-case, that of translationfamilies [4, 6–10], i.e. distribution whose form does notchange under displacements of a shift parameter. The en-suing distributions are shift-invariant –à la Mach, no ab-solute origin– and the ensuing FIM obeys Galilean invari-ance [4]. This FIM-type refers to translations of an one-dimensional observable x with probability density f (x). Itreads, setting first f = ψ2 for a real amplitude ψ [11]
I = ∫ dx f (x) (∂ ln f (x)

∂x

)2 = 4∫ dx (∂ψ(x)
∂x

)2
. (1)

The associated Cramer–Rao bound [4, 11, 17] is the in-equality
I e2 ≥ 1, (2)

where e is the variance of the stochastic variable x [11]
e2 = ∫ dx f (x) x2 −

(∫ dx f (x) x)2
, (3)

representing the mean-square error associated to the per-tinent measurement.
2.1. The independent variables on which I de-
pends
Now focus on a stochastic system specified by a set of Mphysical parameters µk , of the form µk = 〈Ak〉, with Ak =
Ak (x). The set of µk-values is taken to represent someavailable, accessible empirical information out of whichone constructs I , via a MaxEnt procedure [15], for instance.We choose here not to do so.
If the probability distribution function (PDF) that ade-quately describes the system is f (x), it has to reproducethe known expectation values, i.e.

〈Ak〉 = ∫
dx Ak (x) f (x), k = 1, . . . ,M. (4)

Also, one has, of course, a normalization condition∫
dxf (x) = 1 . (5)

Notice however that we are not claiming here that I exhibit
any maximal or minimal character.
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2.2. The scenario we are working with
We put forward at this point the details of the scenariowe are here contemplating.

• A Hilbert space is separable if and only if it hasa countable orthonormal basis (labelled by integernumbers k). In particular, L2 is one such space.
• A particularly convenient basis we use is1, x, x2, x3, . . . , xn, . . . (“power-basis”). Remem-ber that all basis are equivalent.
• We take it that the Ak (x), f , ψ, and any other func-tion we might use here (generically called U(x))belong to L2. Thus, any Ak (x) or U(x) admits of aseries expansion in the power-basis [19]. This en-ables us to base our considerations on the assump-tion that the a priori knowledge refers to moments
xk of the independent variable, i.e.
〈Ak〉 = 〈xk〉 = ∫ dx xk f (x); k = 1, . . . ,M, (6)
and that one possesses information about M ofthese moments 〈xk〉.

• Eq. (1) can be recast, after integration by parts, inthe fashion
I = −4 ∫ dx ψ(x) ∂2ψ(x)

∂x2 = − 4〈 ∂2
∂x2

〉
ψ
. (7)

• We will actually use below the arbitrary function
U(x) ∈ L2 and assume that the first M terms of itsbasis-expansion suffice to represent it with what-ever precision one might require. Consequently, weare enabled to cast U(x) in the fashion

U(x) = 18 M∑
k

ck xk , (8)
where the constants ck remain unspecified at thisstage, since U is arbitrary. The set

{c1, c2, . . . , cM} (9)
will play an important role in future considerations.

• I is a function of the known mean values only, i.e.
I = I(〈x1〉, ..., 〈xM〉). (10)

3. Scaling transform and FIM
In a scaling transformation by a constant “length” a ≥ 0we have x → ax. Remember now (10) and consider thatunder the scaling transformation (ST) of the theory theFIM I goes over to an equivalent ST-FIM Ī , given by

Ī = ∫ dx f̄ (x) (∂ ln f̄ (x)
∂x

)2
, (11)

where f̄ is the pertinent ST-PDF. Now, the system is spec-ified by a set of M physical parameters µ̄k = 〈xk〉T whichare to be regarded as our prior knowledge,
〈xk〉T ≡

∫
dx xk f̄ (x), k = 1, . . . ,M. (12)

The relation between the PDF and the ST-PDF under thescaling transformation, is given by
f̄ (x) = N f (ax) , (13)

with N fixed requiring that both PDF be normalized tounity
1 = ∫ f̄ (x)dx = ∫ Nf (ax)dx = N

a

∫
f (u)du, (14)

entailing N = a. The scaling transformed moments (12)are given by
〈
xk
〉
T

= ∫
xk f̄ (x) dx = a

∫
xk f (ax) dx

= a−k
∫
xk f (x) dx = a−k

〈
xk
〉
, (15)

and the scaling transformed FIM Ī can be obtained from Ias
Ī = ∫

f̄ (x) (∂ ln f̄ (x)
∂x

)2
dx =

= ∫
af (ax) (∂ ln [af (ax)]

∂x

)2
dx =

= a2 ∫ f (x) (∂ ln f (x)
∂x

)2
dx = a2I. (16)

The above simple relation rules the FIM-behavior undera change of scale.
392



Silvina P. Flego, Angelo Plastino, ,, Angel R. Plastino,

4. Equations governing scaling
We start presenting our original results at this stage, in-voking again (10). The FIM I under the scaling transfor-mation x → ax , goes over to an equivalent FIM Ī satis-fying the ST-relation (16). In somewhat more detail onehas [with 〈xk〉T = a−k〈xk〉],

a2I(〈x1〉, · · · , 〈xM〉) = Ī(〈x1〉T , · · · , 〈xM〉T ). (17)
Differentiating relation (17) with respect to the
a−parameter we obtain
∂
∂a [a2I(〈x1〉, · · · , 〈xM〉)] = ∂

∂a [̄I(〈x1〉T , · · · , 〈xM〉T )],
i.e.

2aI = M∑
k=1

∂Ī
∂〈xk〉T

∂〈xk〉T
∂a . (18)

Note that
∂〈xk〉T
∂a = ∂

∂a
(
a−k〈xk〉

) = −ka−1〈xk〉T , (19)
entailing

2aI = − a−1 M∑
k=1 k 〈xk〉T

∂Ī
∂〈xk〉T

, (20)
or

a2 I = −
M∑
k=1

k2 〈xk〉T ∂Ī
∂〈xk〉T

. (21)
Using the ST-equalities (15) and (17) we arrive then to a
linear, partial differential equation (PDE) for I ,

I = −
M∑
k=1

k2 〈xk〉 ∂I
∂〈xk〉 . (22)

The above is an important relation that describes FIM’sbehavior with respect to the scaling transform of the meanvalues that represent our prior knowledge. A similar equa-tion was derived in [20], but for a totally different, MaxEnt-
I−extremal Fisher-scenario [21]. The counterpart of (22)was derived in [20] starting from Schrödinger’s equation(SE) and using:

1. the virial theorem plus
2. properties of a Legendre transform (LT) of the SE.

A detailed mathematical discussion of this partial differ-ential equation (22) is available, including its so-calledcomplete solution [20]. One finds from such considera-tions
I(〈x1〉, ..., 〈xM〉) = M∑

k=1 Ak
∣∣〈xk〉∣∣−2/k , (23)

where Ak are positive real numbers (integration con-stants).
• The I - domain is

DI = {(〈x1〉, ..., 〈xM〉)|〈xk〉 ∈ <o} .

• Eq. (23) states that for 〈xk〉 > 0, I is a monotoni-cally decreasing function of 〈xk〉 [20].
• As one expects from a “good” information measure[4], I is a convex function [20].
• The general solution for the I-PDE does indeedexist [20].
• Uniqueness can be proved from an analysis of theassociated Cauchy problem by following the sameprocedure employed in Ref. [20]. In our presentsituation, the Lipschitz condition can be seen tobe always verified since we can argue that, froma physics’ stand-point, no amount of informationcan experience an abrupt, infinite change whenevera physical measurements suffers a small variation.Thus,

∂I
∂〈xk〉 < ∞ . (24)

5. Changing independent variables
from the 〈xk〉 to the ck of Eq. (9)
The LT is an operation that transforms one real-valuedfunction of a real variable into another. Specifically, theLT of a convex (or concave) function f is the function fLdefined by [22]

fL(p) = sup
x

[px − f (x)] . (25)
393



Physical implications of Fisher-information’s scaling symmetry

If f is differentiable, then fL(p) can be interpreted as thenegative of the y-intercept of the tangent line to the graphof f that has slope p. In particular, the value of x thatattains the maximum has the property that
f ′(x) = p , called a “reciprocity relation”. (26)

That is, the derivative of the function f becomes the ar-gument to the function fL. In particular, if f is convex (orconcave), then fL satisfies the functional equation
fL(f ′(x)) = xf ′(x)− f (x). (27)

The LT is its own inverse. Like the familiar Fourier trans-form, the LT takes a function f (x) and produces a functionof a different variable p. However, while the Fourier trans-form consists of an integration with a kernel, the LT usesmaximization as the transformation procedure. The func-tional relationship specified by f (x) can be representedequally well as a set of (x, y) points, or as a set of tan-gent lines specified by their slope and intercept values.
FIM expresses a relation between the independent vari-ables or control variables (the mean values) and the func-tion I . Such information is encoded into the functionalform of

I = I(〈x1〉, ..., 〈xM〉).
For later convenience, we will also denote such a relationor encoding as {I, 〈xk〉}. FIM’s properties enable us tointroduce the LT of F = −I , to be called α , which is goingto be a function depending on a new set of independentvariables ck [cf. Eq. (9)]. We are changing independentvariables from the {〈xk〉} to the {ck}.
This is accomplished via the LT [22]

α(c1, · · · , cM ) = M∑
k=1 ck 〈xk〉 − F

or,
α = I + M∑

k=1 ck 〈xk〉 ; (28)
with the associated reciprocity relation [22]

ck ≡
∂F
∂〈xk〉 = − ∂I

∂〈xk〉 . (29)
At this point, from purely formal reasons, one should beable to guarantee that ∂I/∂〈xk〉 < ∞, as demonstrated in

relation to Eq. (24), so as to legitimately claim that a LT
α of FIM can be constructed. For appropriately dealingwith α we would face the F-function [22]

F (〈x1〉, · · · , 〈xM〉) = M∑
k=1 ck 〈xk〉 − α (30)

or
I = α −

M∑
k=1 ck 〈xk〉 , (31)

with the associated “reciprocity relation” [22]
〈xk〉 ≡ ∂α

∂ck
. (32)

We see that the LT-structure of FIM displays the informa-tion encoded in I , via ck−parameters, in α = α(c1, ...cM ) ,
{I, 〈xk〉} LT←→ {α, ck} .

Using (22) and (29) we can now write
I = M∑

k=1
k2 ck 〈xk〉, (33)

and the ck−parameters can be obtained via (23) and (29)
ck = − ∂I

∂〈xk〉 = 2
k Ak

∣∣〈xk〉∣∣−(2+k)/k . (34)
Substituting (33) in (28), the FIM-LT reads

α = M∑
k=1

k + 22 ck 〈xk〉. (35)
Then, from (35) and taking into account (32), we are led toa partial differential equation underlying the α−function

α = M∑
k=1

k + 22 ck
∂α
∂ck

, (36)
The above equation was first derived from a constrained
Fisher variational problem in [23]. We are not appealingto this equation here but only to the FIM scaling symmetry
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instead. A complete solution for α-PDE (36) is given by[23],
α(c1, ..., cM ) = M∑

k=1 Bk |ck |2/(2+k) , (37)
where the Bks are positive real numbers (integration con-stants). Eq.(37) states that for ck > 0, α is a monotoni-cally increasing function of the ck , and as one expect fromthe LT of I , we end up with a concave function. We mayobtain the 〈xk〉’s from the reciprocity relations (32). For
ck > 0 one gets
〈xk〉 = ∂α

∂ck
= 2(2 + k) Bk c− k/(2+k)

k > 0. (38)
and then, using (31) one us able to build up I . The gen-eral solution for α-PDE does exist. Uniqueness is, again,proved from an analysis of the associated Cauchy problem[23].
We add now some reflections on Fisher-scaling and thevirial theorem, reminding the reader that, although the re-lationship virial-scaling is well known (see the excellentmonograph of Fernandez and Castro [24]), the novel in-
gredient here is Fisher’s measure. Note first that Eq. (7)entails that I is proportional to the expectation value ofthe kinetic energy of a putative physical state representedby ψ, a well-known fact [4]. More physical ramificationswill emerge now. From (33) and (8) we have

I = M∑
k=1

k2 ck〈xk〉 = 〈 M∑
k=1

k2 ckxk
〉 =

= 12
〈
x ∂∂x

M∑
k=1 ckx

k

〉 = 4〈x ∂∂x U(x)〉 , (39)
Comparing (7) and (39) we are then led to

〈
− ∂2
∂x2

〉 = 〈x ∂∂x U(x)〉 , (40)
which can be interpreted as the quantum virial theoremfor a polynomial potential of the form (8). More specif-ically, suppose that a physical potential U , after beingseries-expanded, is found to be well-represented by (8).Then, from scaling and the LT of I one derives the virialtheorem, without appealing to an equation of motion likethe Schrödinger’s equation.

6. Energy eigenvalues

Let us continue emphasizing that we have never appealedin this communication to Schrödinger’s equation (SE) toderive any result. We may establish a suggestive link withit at the present stage.
From (28) and taking into account (7) we can write

α = − 4〈 ∂2
∂x2

〉 + M∑
k=1 ck 〈xk〉; (41)

which, using (8), can be recast as
α8 = 〈

−12 ∂2
∂x2 + U(x)〉 = 〈E〉 . (42)

Then, the LT of FIM plays the role of an energy. Further-more, the α−PDE (36) can be recast in the fashion

α8 = 〈E〉 = M∑
k=1

k + 22 ck
∂〈E〉
∂ck

. (43)

The above equation can be found in Ref. [25], that dealswith the WKB approach to the SE. Eq. (43) is in thatreference depicted as a relationship that rules the scalingbehavior of SE-energy-eigenvalues. We have thus demon-strated here, via a rather serendipitous route, that the LTof Fisher’s I , given as a solution of the PDE (22), behavesunder scaling in identical fashion as that of a Schrödingerenergy-eigenvalue.
7. Conclusions

We investigated the scaling transform of Fisher’s measure,in an one-dimensional scenario. Surprisingly enough, weencountered that, from the operating scaling-rules, sev-eral interesting, albeit known results can be derived, thatare now seen to be pre-configured by the conjunction ofscaling and information theory. See please the schemebelow, that illustrates the path we followed here:
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Derive Fisher ′s I − scaling rule
7→ manipulate it and get

7→ PDE for I.
Now solve PDE and study the

conditions that allow for a Legendre transform.
Apply the Legendre transform!

7→ derive associated reciprocity relations
7→ find then interesting quantum results.

In particular, we highlight that one derives in a few linesthe partial differential equation that governs the FIM-scaling transformation, i.e. Eq. (22). That very equationwas obtained, albeit rather laboriously, in [20] from
• first appealing to the Schrödinger equation (SE)via the virial theorem and
• taking advantage afterwards of the properties ex-hibited by the Schrödinger equation when it is sub-jected to a LT.

After having gotten the FIM-solution of the scaling-derived Eq. (22), one can apply a LT to its solution bychanging variables (from available mean values to a newset of coefficients which can be identified as Lagrangemultipliers in a MaxEnt-language or potential’s series-expansion’s coefficients in a quantum scenario). When thisis accomplished, the ensuing reciprocity relations allowone to re-obtain two important quantum features
1. the virial theorem, now as a consequence (not as apre-requisite as in [20]) and
2. the scaling behavior of the eigenvalues of theSchrödinger’s equation reported Ref. [25].

Summing up, we have seen that the here advanced jux-taposition of scaling rules plus information measures(Fisher’s) constitutes a rather powerful theoretical tool.
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Appendix A: A QUANTUM RESULT
Consider a wave function Ψ(x) satisfying the Shrödingereigenvalue equation,

− h̄22m d2Ψ
dx2 + V (x)Ψ(x) = EΨ(x), (A1)

That is, Ψ(x) is an eigenfunction corresponding to thepotential V (x) with corresponding energy eigenvalue E .Since the potential function V (x) and the energy E arereal, it is clear that the complex conjugate wave functionΨ∗(x) is also a solution of the above equation, with thesame eigenvalue E ,
− h̄22m d2Ψ∗

dx2 + V (x)Ψ∗(x) = EΨ∗(x). (A2)
Consequently, it follows from the linearity of theSchrödinger equation that the (real) linear combination,

Ψr(x) = 12(Ψ(x) + Ψ∗(x)), (A3)
is also an eigenfunction corresponding to the potential
V (x) with the same eigenenergy E as before. That is,for any energy eigenvalue E it is always possible to findan associated real eigenfunction Ψr(x). In the case ofbound eigenstates of one-dimensional potentials, thesereal eigenfunctions are (up to an arbitrary global multi-plicative phase) unique since the eigenenegies of boundeigenstates of one-dimensional potentials are nondegen-erate [26]. Summing up, the eigenfunctions correspondingto bound states of one dimensional potentials can alwaysbe taken as real.
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