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In this paper we characterize dynamic speckle signals, obtaining selective information

through the differentiation of morphological patterns of the temporal history of each

pixel, using the morphological granulometric function. This method is applied to the

analysis of images of apples and corn seeds. Studies on the first ones were focused on

the activity on their surface, related to healthy and damaged areas, while for seeds on the

viability of the embryo and endosperm. Subsequently, the analysis was repeated using

fuzzy mathematical morphology techniques, comparing the results obtained by both

methods.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

When a surface that has physical or biological activity
is illuminated by coherent light, such as a laser, the
scattered light displays a granular structure, i.e. present-
ing randomly distributed light and dark spots, which
change over time, giving a visual effect of ‘‘water boiling’’.
This effect is known as ‘‘dynamic’’ speckle or ‘‘bio-
speckle’’. This phenomenon has been studied in various
types of biological samples, such as fruits [15] and seeds
[7]. Various methods and techniques have been developed
for measuring the activity of a speckle pattern [8,1], but,
in most cases, the results consist of a single image, with
no analysis of the temporal information. Subsequently,
selective filtering techniques were used for studying the
bio-speckle signals through spectral decomposition
[16,11]. Going in the same direction, we introduced
recently a new method for bio-speckle analysis based on
. All rights reserved.

).
the morphological spectrum obtained by morphological
granulometry [4,3,5].

This technique is based on the theory of mathematical
morphology (MM) [14,17], which is a powerful set of tools
for digital image processing. These techniques allow
enhancement of diffuse areas, object segmentation, edge
detection and structures analysis via the use of operators or
filters. This discipline is based on sets algebra and can be also
be used as a tool for signals analysis. The techniques, initially
developed for binary images, were also extended to the field
of gray level images. Another approach to extend binary
operators to gray level images, the fuzzy mathematical
morphology (FMM), is based on fuzzy sets theory. Often,
the fuzzy operators result more robust than classical mor-
phological operators [6].

When illuminated by a laser light, fruits show an
speckle activity that can be related to the degree of
maturity, turgor pressure, damage, age and mechanical
properties. For this reason, it is interesting to develop
numerical methods which allow to extract useful infor-
mation of the speckle image sequences.

On the other hand, the study of the feasibility of germina-
tion is an important topic in production and marketing seeds.
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They have been developed many tests to determine strength
and viability of seed germination. Other studies about the
reliability of the tests and equivalence between them also
exist [12]. In this context, the evaluation of laser interfero-
metry techniques as tools for seeds analysis is worthy to take
into account.

In this paper, we apply MM and FMM filters to biological
samples of red delicious apples, as a tool for the diagnostic of
early damage of the surface of the fruit, and to corn seeds, to
study its performance in the germination process.
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Fig. 2. Typical temporal evolution of a bio-speckle.

Video
Camera
(CCD)

Laser

PC
+

Frame Grabber

Sample

Fig. 3. Experimental speckle bank.
2. Methods

2.1. Dynamic speckle

When a surface, that has a certain physical or biological
activity, is illuminated by a high coherence light beam, the
scattered light by the surface has a granular structure
composed of small bright and dark areas, randomly dis-
tributed, which change over time, producing an visual
effect as a boiling liquid.

Fig. 1 shows a typical image. This effect, known as
‘‘dynamic speckle’’, is a result of coherent light scattering
by objects that exhibit some level of activity. These type
of images present variations in the local intensity corre-
sponding to the level of biological activity in the area
under observation. Fig. 2 shows the temporal evolution of
the intensity of a sample pixel, or gray levels, in a typical
sequence of dynamic speckle images. Due to the stochas-
tic nature of the signal, it would be impossible with the
naked eye recognize the correspondence of this with any
particular area of a biological sample.

The dynamics of the speckle effect is usually quite
complex due to multiple physical mechanisms involved
[18], but the activity evaluation can help to recognize the
complex processes occur in a biological sample.
Fig. 1. Typical speckle pattern.
2.2. Experiments

The test bank used to obtain the images is shown in
Fig. 3. We used a low-power He–Ne laser (5 mW,
l¼ 633 nm) to illuminate the samples, using a divergent
beam expanded to encompass a wide region. Subjective
speckle images were formed by a objective (usually
f¼50 mm, f/#¼16). Thus, measurement of average
speckle grains covered several pixels. For the experiment
with apples, an inert reference object was added in the
images. Successive images were stored on a PC by a CCD
camera connected to a acquisition board. Low lighting
levels were used so that the effect of irradiation on the
sample was negligible. The laser illumination was
adjusted to keep constant the average intensity in the
image throughout the test.

To study variations of the speckle phenomenon in the
surface of the fruit, a controlled hit was applied to the
healthy apples. That hit was caused by a falling steel ball
(dm¼21.9 mm, weight¼33.6 g) from a height of 20 cm of
fruit surface. The damage in the sample could not be
appreciated by simple visual inspection. Images were
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Fig. 4. Morphological opening applied on a bio-speckle signal.
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Fig. 5. Example of the granulometric size distribution for a bio-speckle

signal.
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acquired in 300�300 pixels, digitized into 256 gray
levels, each 0.5 s approximately. Sequences took 500
pictures before, and immediately after the coup.

Described image sequences were stored in 3D arrays
(300�300�256) where the third variable is the time.
Thus, the temporal evolution of each pixel can be ana-
lyzed to detect changes in biological activity due to
changes in the surface of the fruit.

In the case of seeds, experiments cited by the original
paper [7] were held to explore how moisture affects
speckle activity. This work, however, was focused on the
qualitative aspects of the samples and the different
morphologies in order to segment the interest areas of
the seed, for analysis. We used specimens of corn seeds,
previously wetted, cutted in half and we took sequences
of 100 images of 256�480 pixels, using the bank
previously described, with the same configuration.

2.3. Mathematical morphology

The basic image operators of the mathematical
morphology (MM) are the dilation and the erosion. Many
other operators of the MM are built combining these two
operators.

We will describe in this section the morphological
operators used for the analysis of the unidimensional bio-
speckle signals, defined by f : D � Z-f0,1,2, . . . ,255g,
where Z is the set of integer numbers.

The dilation of the signal f by the signal b, called also
structuring element (SE) is defined by [17]

dðf ,bÞðxÞ ¼ sup
y2Db

ff ðx�yÞþbðyÞg ð1Þ

where x 2 Df , and Df and Db are the support of f and b,
respectively.

The same way we define the erosion of the signal f by
the signal b, by [17]

eðf ,bÞðxÞ ¼ inf
y2Db

ff ðx�yÞ�bðyÞg ð2Þ

Based on these two operators of dilation and erosion,
the opening is defined as the combination of a erosion
followed by a dilation:

gðf ,bÞ ¼ dðeðf ,bÞ,bÞ ð3Þ

Both, the operator and the SE chosen, will determine
the characteristics of the resulting processed signal.

Fig. 4 shows the effect on the signal obtained by the
application of a morphological opening to a bio-speckle
signal, with a linear SE of length 2.

If we consider Oðf 0Þ the area under the original signal,
and Oðf nÞ the area under the signal fn, obtained by
applying an opening to f0 with a lineal SE of length n,
we can define the granulometric size distribution fðnÞ, or
GSD [9], by

fðnÞ ¼ 1�
Oðf nÞ

Oðf 0Þ
, n¼ 0, . . . ,N ð4Þ

fðnÞ is a non-decreasing function, similar to statistical
cumulative distribution, but without reaching the value
one, which is fixed later by a normalization factor. It
represents the variation of the area under the signal as it
is probed by increasing shapes (the SE), which can be
compared to a selective filtering of the shape of the signal,
since the signal is smoothed with more strength in each
iteration. The operation ends for a value n¼N, which
depends on the shape of the signal, when there is no
variation between two consecutive openings.

Fig. 5 shows an example of GSD calculated for the
signal of Fig. 4.
2.4. Fuzzy mathematical morphology

The fuzzy mathematical morphology (FMM) provides a
way to extend mathematical morphology’s binary operators
to gray level images, extending the set operations to fuzzy set
ones, based on the theory of fuzzy sets. Fuzzy sets are defined
by their ‘‘membership’’ function, with values in the interval
[0,1] [10].

For the unidimensional case, gray level signals with
range between 0 and 255 can be ‘‘fuzzified’’ to fit in the
[0,1] range, via the function g : f0,1,2 . . . ,255g-½0,1�

gðxÞ ¼
x

255
ð5Þ

It is important to note that this does not mean that the
signal represents a fuzzy membership function for some
object, this is just a way to model the gray level signal
to be able to apply morphological operators defined via
fuzzy set operations. Signals can be defuzzified by applying
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h : ½0,1�-f0,1,2 . . . ,255g defined by

hðxÞ ¼ ½255 � x� ð6Þ

where ½:� : R-Z represents the function

½a� ¼ supfk 2 Z=krag ð7Þ

In this framework, the fuzzy morphological dilation of
a signal f by a SE b is defined by [2,6]

dF
ðf ,bÞðxÞ ¼ sup

y2Db

fTðf ðyÞ,bðy�xÞÞg ð8Þ

where T½a,b� is a T-norm [10].
The fuzzy morphological erosion of the signal f by the

SE b is defined by [2,6]

eF ðf ,bÞðxÞ ¼ inf
y2Db

fSðf ðyÞ,cðbðy�xÞÞÞg ð9Þ

where S½a,b� is a T-conorm and cðaÞ ¼ 1�a is the fuzzy
complement [13].

Fuzzy opening is defined in the same way as in the
MM. The fuzzy opening gF

bðf Þ of the signal f by the signal b

is defined by

gðf ,bÞFb ¼ dF
ðeF ðf ,bÞ,bÞ ð10Þ

In this work we used a set of T-norms and T-conorms,
which provide different fuzzy morphology operators
(Tables 1 and 2), choosing to show only results for the
best ones: standard and Dubois & Prade.
Table 1
T-norms.

T-norm

Standard Tða,bÞ ¼minða,bÞ

Algebraic Tða,bÞ ¼ ab

Bounded Tða,bÞ ¼maxð0,aþb�1Þ

Drastic

Tða,bÞ ¼

a for b¼ 1

b for a¼ 1

0 cc

8><
>:

Dubois & Pradea

Tða,bÞ ¼ 1�
ð1�aÞð1�bÞ

maxð1�a,1�b,gÞ
Hamacherb

Tða,bÞ ¼
ab

gþð1�gÞðaþb�abÞ

a g belong to the interval ð0,1Þ.
b g must be positive.

Table 2
T-conorms.

T-conorm

Standard Sða,bÞ ¼maxða,bÞ

Algebraic Sða,bÞ ¼ aþb�ab

Bounded Sða,bÞ ¼minð1,aþbÞ

Drastic

Sða,bÞ ¼

a for b¼ 0

b for a¼ 0

1 cc

8><
>:

Dubois & Pradea

Sða,bÞ ¼ 1�
ð1�aÞð1�bÞ

maxð1�a,1�b,gÞ
Hamacherb

Sða,bÞ ¼
aþbþðg�2Þab

1þðg�1Þab

ag belong to the interval ð0,1Þ.
a g must be positive.
Fuzzy granulometry is obtained applying the fuzzy
opening. Oðf 0Þ is the area under the original signal, and
Oðf F

nÞ is the area under the signal fn
F
, which is obtained by

opening of f0 using a SE of length n. The fuzzy granulo-

metric size distribution fF
ðnÞ, or FGSD, is defined by

fF
ðnÞ ¼ 1�

Oðf F
nÞ

Oðf 0Þ
, n¼ 0, . . . ,N ð11Þ

fF
ðnÞ is a non-decreasing function, similarly to fðnÞ.
3. Results

Fig. 6, shows the results of the GSD for on the speckle
signal for apples, using three different SEs, (a)–(c), and the
results of the FGSD for the same signal and SEs, (d)–(f),
using the Dubois & Prade norms, and finally the results of
the FGSD using the standard norm, (g)–(i).

In the images displayed in Fig. 6, showing the results of
the analysis of bio-speckle for apples, the lower left corner
shows a dark region, with no activity, associated to a steel
plate placed in the area for reference. On the right side of
the images we can see a brighter round area, displaying
higher activity, corresponding to the place where the
apple was hit. The rest of the apple, free of mechanical
damages, shows intermediate values of activity.

Fig. 6(a), (d) and (g) shows a light filtering, removing
only the most prominent peaks of the signals, due to the
small length of the SE, of 2 pixels. Fig. 6(b), (e) and (h)
shows a stronger filtering, with SE of length 10, which
removed larger peaks of the signal. Finally, Fig. 6(c), (f)
and (i) shows a strong filtering of most of the peaks of the
signals, with an SE of length 30. Larger SEs were tried,
with no further results, which may suggest a spectral
density, compatible with previous works based on filter
banks [16].

Fig. 6(b) and (c), processed with MM, shows clearly the
place where the apple was hit, while the images pro-
cessed with FMM do not show higher sensibility to the
hit, except for Fig. 6(d) and (g), but made visible some
dark regions, no visible in the images of the MM, with
some specific activity not associated to the mechanical
damage, worthy to study in subsequent research.

To quantify the segmentation performance of the
different filtering methods, based on our knowledge about
the three interest regions, we chose the best classified
image to build a synthetic image, as a gold standard, with
the mean values of the three regions, segmented manu-
ally, which was compared to the apple images (a)–(g)
obtained by the morphological analysis, computing their
mean square error (MSE). Lower values mean better
segmentation performance. Table 3 shows the MSE for
the different techniques and SE lengths. Results show that
classic filtering with a SE of length 10 perform the best
segmentation.

Same morphological techniques were applied on the
corn seed, previously hydrated to force it to start the
germination process, and cut in two parts. Fig. 7 displays a
characterization of such seed. In this kind of seed the
cotyledon absorbs the food reserves from the endosperm.
The coleoptile is the protective sheath covering the



Fig. 6. Apple images after morphological filtering (SE lengths: 2, 10 and 30): (a)–(c) fð2Þ, fð10Þ and fð30Þ, respectively. (d)–(f) fF
ð2Þ, fF

ð10Þ and fF
ð30Þ,

using Dubois & Prade norms. (g)–(i) fF
ð2Þ, fF

ð10Þ and fF
ð30Þ, using standard norms.

Table 3
Mean of square quadratic errors between gold standard apple image and

filtered speckle image. Lower values mean better segmentation

performance.

Granulometry SE¼2 SE¼10 SE¼30

Classic 0.5356 0.3978 0.7796

Dubois & Prade 0.7691 2.0664 2.2075

Standard 0.7691 2.9491 2.9472

Fig. 7. Constitutive parts of a corn seed.
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hypocotil, and it is the first structure to raises from the
soil during germination.

Fig. 8, shows the results of the GSD for on the speckle
signal for corn, using three different SEs, (a)–(c), and the
results of the FGSD for the same signal and SEs, (d)–(f),
using the Dubois & Prade norms, and finally the results of
the FGSD using the standard norm, (g)–(i).

Fig. 8 shows the results for corn. In images (a)–(c),
obtained by using MM, we can see a major contrast
between the different regions, while images (d)–(i),
obtained by FMM (Dubouis & Prade and standard norms),
show uniform gray levels in the embryo region.
Table 4 shows the MSE computed for corn seed,
contrasted to a hand-drawn image, with optimal segmen-
ted corn regions of embryo and endosperm. Lower values
mean better segmentation performance.



Fig. 8. Corn seed images after morphological filtering (SE lengths: 2, 10 and 30): (a)–(c) fð2Þ, fð10Þ and fð30Þ, respectively. (d)–(f) fF
ð2Þ, fF

ð10Þ and

fF
ð30Þ, using Dubois & Prade norms. (g)–(i) fF

ð2Þ, fF
ð10Þ and fF

ð30Þ, using standard norms.

E. Blotta et al. / Signal Processing 93 (2013) 1864–1870 1869



Table 4
Mean of square quadratic errors between gold standard corn seed image

and filtered speckle image. Lower values mean better segmentation

performance.

Granulometry SE¼2 SE¼10 SE¼30

Classic 6.1600 2.0376 1.4473

Dubois & Prade 2.3611 2.1571 2.0519

Standard 2.3611 2.7069 2.8384

E. Blotta et al. / Signal Processing 93 (2013) 1864–18701870
In most of the images, mainly for (a)–(c), we can detect
constitutive elements of the embryo, brighter that the rest
of the image, with different degrees of detail. The other
important region, regarding seed viability, the endosperm,
shows darker level. We can also see that FMM tends to
uniform the gray levels for embryo, differentiating
correctly embryo from endosperm. In order to improve
the analysis of the results, further analysis by biologist
will be required.

4. Conclusions

Application of dynamic speckle techniques for determin-
ing properties in various biological samples, such as fruits
and seeds, has been considered in several studies using
different approaches and getting different results. In this
paper we showed the advantages of the use of morphological
tools in the analysis of bio-speckle signals and we also made
a comparison with latest widespread tools as is the fuzzy
mathematical morphology.

Good results were obtained by calculating the granulo-
metric size distribution of the speckle sequences, with a
satisfactory level of detail. The granulometry is a ‘‘sieving’’
method with a reduced computational cost, in part because
of its use of integer arithmetic.

On the other hand, the computational cost of using
granulometry based on fuzzy mathematics does not
increase significantly over classical granulometry. As for
the feasibility to become a viable technique for the
analysis of dynamic speckle signals, deeper studies of
the biological field must be done by specialists to draw
major conclusions, but a priori, it can be observed that
may be effective as complementary tools.

The application of these methods could be useful when
high resolution and low computational cost are required.
This makes it very suitable to be implemented on micro-
controllers, DSPs and logic programmable devices for
future implementations in real time, for example for the
development of field instruments.
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