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Algebraic sequences for ζ(3) and a hybrid Catalan’s constant†
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We give two examples of algebraic sequences arising from modular forms which are good approxima-
tions for ζ(3) and the hybrid constant 8C + (π2/

√
2) where C = ∑∞

0 (−1)n/(2n + 1)2 is Catalan’s
constant.
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1. Introduction

Apery was the first to prove the irrationality of ζ(3) in a very striking way (see [11]). For an
elegant proof of this, see [1]. In [2] F. Beukers used modular forms in a surprising way to prove
irrationality results for certain constants obtaining Apery’s results among others. Tanguy Rivoal
was the first to obtain general results concerning irrationalities of the zeta function at odd integers
n ≥ 5 and later he proved that among ζ(5), ζ(7), . . . , ζ(21) at least one is irrational. Zudilin went
further to prove that among ζ(5), ζ(7), ζ(9), ζ(11) one is irrational ([8,9,14]).

Our aim in this note is to give two examples of ‘interesting’ sequences in the spirit of Beukers’
paper [2].

We will use Beukers’ ideas heavily: one generates a function
∑∞

1 (an − ξbn)t
n which has an

apparent singularity at t1. It is shown that such singularity does not exist and that the radius
of convergence is t2 (at least): the point where the next singularity appears, 0 < |t1| < |t2|. The
construction of such function is done using modular forms and functions and the ‘jump’ from t1
to t2 yields the algebraic numbers an, bn which are rapidly convergent sequences to ξ .

This paper is organized as follows. In Section 2, we give the general ideas for the construction
of the above function

∑∞
1 (an − ξbn)t

n. Then in Section 3, we give our main results, namely,
Theorems 3.1 and 3.2.
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342 P. Panzone and L. Piovan

For example in Theorem 3.2, we show for the hybrid constant 8C + (π2/
√

2) that non-trivial
sequences an, bn exist such that

an −
(

8C + π2

√
2

)
bn = O

(
1

33.7n

)

and that for an infinite number of natural n one has

|bn| � 1

0.252n

where bn, an lcm{1, . . . , n}2 are numbers of the form m + p
√

2 with m, p integers.
Similarly in Theorem 3.1, we show that non-trivial sequences an, bn exist such that

an − ζ(3)bn = O

(
1

67.9n

)

and that for an infinite number of natural n one has

|bn| � 1

0.0148n

where bn, an lcm{1, . . . , n}3 are numbers of the form m + p
√

2 with m, p integers.
The sequences for ζ(3) are given neatly, as a generating function in t (up to a constant) by∫ 1

0

∫ 1

0

∫ 1

0

dxdydz

{1 − (1 − xy)z − t (2 + t (−17 + 12
√

2))xyz(1 − x)(1 − y)(1 − z)} .

2. Geometrical ideas

Here we outline the general ideas and the tools used in the construction.
Denote by H = Im(τ = τ1 + iτ2) > 0, the upper half plane and by R1 an open hyperbolic

polygonal region in the upper half plane bounded by the lines iτ2 and 1/2 + iτ2, 0 < τ2 < ∞,
and a finite number of arcs of circles with centres on the real line as shown in Figure 1. We number
the vertices (or cusps) of this region R1 counted in an counterclockwise way with i∞ = c0, c1,
c2, …, 1/2 + i∞ = cn+1 = c0. We assume that the arc of circle joining c1 and c2 belongs to the
circle |τ | = 1/

√
N for some positive number N , that is, the line joining i∞ with c1 meets the arc

of this circle at an angle of π/2.
Assume that:

(i) t (τ ) : R1 → H is a conformal mapping and t (c0 = i∞) = 0.
(ii) 0 < t(c1) < t(c2) � mini=3,...,n |t (ci)|.

(iii) Assume that we have functions E(τ), f (τ ) holomorphic in |q| < 1, q = ei2πτ , and a number
ξ ∈ C such that E(τ)(f (τ) − ξ) = E(−1/Nτ)(f (−1/Nτ) − ξ).

(iv) E(τ)(f (τ) − ξ) = E(τ + 1)(f (τ + 1) − ξ).

(v) E(τ)(f (τ) − ξ) = ∑∞
1 γnq

n, in some neighbourhood of q = 0 with γ1 �= 0.

In the following we show that if we have functions E(τ), f (τ ), t (τ ) meeting conditions (i),
…, (v) and we know in an explicit way the values t (c1), . . . , t (cn), then we can generate the
function

∑∞
1 (an − ξbn)t

n as stated in the introduction. Note that such a map t (τ ) always exists
by Riemann’s mapping theorem.

First, we need to observe that conditions (i), (ii) imply
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Integral Transforms and Special Functions 343

Figure 1. The conformal mapping τ .

(vi) in a neighbourhood of t = 0 one has q = q(t) = ∑∞
1 αnt

n, α1 �= 0 and q = ei2πτ .
The proof of (vi) is as follows (Figure 2): extending by continuity the map t (τ ) to the boundary

and using Schwarz reflecting principle, one may reflect R1 through the line (i∞, c1) obtaining a
conformal mapping from R1 ∪ R′

1 ∪ (i∞, c1) to H ∪ −H ∪ (0, t (c1)), where R′
1 is the reflection

of R1 through the line Im(τ). But by construction t (−1/2 + iτ2) = t (1/2 + iτ2) for large τ2 > 0
and therefore one may look at the (extended) function t (τ ) as a function of q = ei2πτ , that is
t (τ ) = ∑

n βnq
n. The condition t (i∞) = 0 gives βn = 0 for n = 0, −1, −2, . . .. Since t (τ ) has

no branching at 0, we have β1 �= 0, therefore one may invert the series giving the desired property
(vi) with α1 = 1/β1.

Condition (iv) says that E(τ)(f (τ) − ξ) may be viewed as a function of q. Condition (v)
requires that this function be holomorphic at q = 0 with a simple zero.

The main point of the above construction is to look at this last function as a function of t , that
is, using (v), (vi)

E(τ)(f (τ) − ξ) =
∞∑
1

γnq(t)n =
∞∑
1

(an − ξbn)t
n

Figure 2. Extending τ by reflection.
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344 P. Panzone and L. Piovan

The radius of convergence of this last series is at least mini=1,...,n |t (ci)|, but at t (c1) there is
no branching because of (iii). Indeed, we can still extend the map t (τ ) to the regions R2, R

′
2 as

shown in Figure 2 (they are the images of regions R1, R
′
1 by the transformation τ → −(1/Nτ)).

This extended map t (τ ) is a 2 to 1 covering of the t-plane branched at t (c1). The series in t of the
function E(τ)(f (τ) − ξ) can be extended by analytic continuation around t (c1) and eventually
may have branching there. However, taking a curve encircling t (c1) once it lifts to an arc in
R1 ∪ R′

1 and we reach the same value for E(τ)(f (τ) − ξ). That is, this function is uniform in
the t-plane and therefore t (c1) is not a branching point. Thus, the radius of convergence of the
series is at least mini=2,...,n |t (ci)| = t (c2) by (ii). This suggests that the sequences an, bn may
be ‘good’ approximations for the number ξ if the ‘jump’ from t (c1) to t (c2) is large.

To generate functions E(τ), f (τ) and a constant ξ with properties (iii), (iv), (v), one uses the
following lemma proved by Beukers ([2], p. 273), classical modular forms and theta functions
whose definitions we recall later.

Lemma 2.1 Let F(τ) = ∑∞
1 anq

n, q = e2πiτ be a Fourier series convergent for |q| < 1, such
that for some k, n ∈ N , then

F

(
− 1

Nτ

)
= ε(−iτ

√
N)kF (τ)

where ε = ±1. Let f (τ) be the Fourier series

f (τ) =
∞∑
1

an

nk−1
qn.

Let

L(F, s) =
∞∑
1

an

ns

and finally,

h(τ) = f (τ) −
∑

0�r<(k−2)/2

L(F, k − r − 1)

r! (2πiτ)r .

Then

h(τ) − D = (−1)(k−1)ε(−iτ
√

N)k−2h

(
− 1

Nτ

)

where D = 0 if k is odd, and D = L(F, k/2)(2πiτ)1/2(k−1)/((1/2)k − 1)! if k is even. Moreover,
L(F, k/2) = 0 if ε = −1.

Recall the classical modular forms defined by

E2(τ ) = 1 − 24
∞∑

n=1

σ1(n)qn

E4(τ ) = 1 + 240
∞∑

n=1

σ3(n)qn
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Integral Transforms and Special Functions 345

(σi(n) = ∑
d/n di), and the theta functions [7] defined by θ3(τ ) = ∑

m∈Z qm2/2, θ2(τ ) =∑
m∈Z q(m+1/2)2/2, θ4(τ ) = ∑

m∈Z(−1)mqm2/2 (recall that q = e2πiτ ), with the properties

θj (τ + 2) = θj (τ ), j = 3, 4; θ2(τ + 2) = iθ2(τ )

θ3

(
− 1

τ

)
=

√
τ

i
θ3(τ )

θ2

(
− 1

τ

)
=

√
τ

i
θ4(τ )

θ4

(
− 1

τ

)
=

√
τ

i
θ2(τ ).

If N is a natural number with many divisors, one takes the test function F(τ) =∑
d/N const(d)Ek(dτ), where Ek(τ) are the normalized modular forms. Recall that Ek(dτ) is

invariant under �0(N) (defined below) for d a divisor of N . Then one looks for constants const(d)

subject to the conditions F(−1/Nτ) = ±(−iτ
√

N)kF (τ), F(τ) = q + . . . (or what is the same
F(i∞) = 0) and L(F, k − r − 1) = 0 for r = 1, 2, . . . < (k − 2)/2, L(F, k − 1) = ξ . If N has
many divisors, then the number of constants can be enough to meet conditions (iii), (iv), (v).

For the function E(τ), one does the same but requiring only that E(−1/Nτ) =
±(−iτ

√
N)k−2E(τ).

In example 3.2, we will use combinations of theta functions.

2.1. An important observation

The mapping t (τ ) will be constructed from the Hauptmoduln of a certain discrete subgroup �S of
the modular group. An element of the modular group is a fractional linear transformation T of the
Riemann sphere: T τ = (aτ + b)/(cτ + d), with a, b, c, d ∈ Z and ad − bc = 1. We will loosely
speak of T as the transformation (aτ + b)/(cτ + d). As usual, such elements are identified with
matrices

(
a b
c d

)
modulo ± (

1 0
0 1

)
, namely PSL(2, Z).

We will restrict to the following case which is enough for our situation. Here, as usual, �0(N)

is the subgroup of the modular group generated by the matrices
(

a b
c d

)
, with c = 0 (modN),

a, b, c, d ∈ Z and ad − bc = 1.
Denote by �S a group such that:

(a) �S is a finite index subgroup of �0(N).
(b)

(
1 1
0 1

) ∈ �S .
(c) �S has a finite set of generators

(
a b
c a

)
such that the involution ιN

(
a b
c a

) = (
a c/N

b.N a

)
is a

bijection on that set.

From (b) and (c), it is clear that
(

1 0
N 1

) ∈ �S . Moreover, �S is invariant under ιN .
We will need the following

Lemma 2.2 If y(τ) is any function invariant under �S i.e. y(τ) = y(aτ + b/cτ + d) for
(

a b
c d

) ∈
�S then y(−1/Nτ) is invariant under �S . Moreover if y(τ) is a Hauptmoduln, then y(−1/Nτ) =
Ay(τ) + B/Cy(τ) + D for some numbers A, B, C, D.
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346 P. Panzone and L. Piovan

Proof If
(

a b
c a

) ∈ �S , then also
(

a −c/N
−b.N a

) ∈ �S . Let y(τ) be invariant by �S . We have

y

(
− 1

N (aτ + b/cτ + a)

)
= y

(−c/N − a/(Nτ)

a + (bN)/(τN)

)

= y

(
a(−1/(Nτ)) − c/N

−bN(−1/(Nτ)) + a

)
= y

(
− 1

Nτ

)
. �

Finally we recall Dedekind’s eta function η(τ) = q1/24�∞
1 (1 − qn) and �(τ) = η(τ)24,

q = e2πiτ .

3. Examples

We recall that in the examples below, the arcs of circles are all centred at the real line in the
τ -plane.

3.1. Example 1

Denote �S the subgroup of �1(6) generated by the transformations τ + 1, τ/6τ + 1,
11τ + 4/30τ + 11, 49τ + 20/120τ + 49, 11τ + 5/24τ + 11. Recall [2] that �1(6) is generated
by transformations τ + 1, τ/6τ + 1 and 5τ + 2/12τ + 5, with Hauptmoduln given by

y(τ) = �(τ)1/6�(6τ)1/3

�(2τ)1/3�(3τ)1/6
(1)

and values at the cusps y(i∞) = 0, y(0) = 1/9, y(1/3) = 1, y(1/2) = ∞. Then τ → y(τ) maps
in a conformal way the shaded region R1 in Figure 3 onto H.

To obtain a Hauptmoduln for �S , we apply Schwartz reflection principle to the arc of Figure 3
going from 1/3 to 1/2, that is the isometric circle of the transformation 5τ − 2/−12τ + 5.

Figure 3. Conformal map τ → y1(τ ) in Example 1.
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Integral Transforms and Special Functions 347

Therefore

y1(τ ) = 1 + √
1 − y(τ) (2)

with
√

z taken with a cut in the positive real axis, maps in a conformal way the region R1 ∪ R2

shown in Figure 3 onto H. But R1 ∪ R2 ∪ R′
1 ∪ R′

2, where ′ denotes the reflection through the line
iτ2 for τ2 real on the τ -plane, is the fundamental region of �S . Thus using Poincare’s theorem
([5,6]), one checks that y1(τ ) is the Hauptmoduln of �S .

Values at the cusps are given by (using analytic continuation) y1(i∞) = 0, y1(0) = 1 − 2
√

2/3,
y1(1/3) = 1, y1(2/5) = 1 + 2

√
2/3, y1(5/12) = 2, y1(1/2) = ∞. Notice the expansion y1(τ ) =

q/2 − 15q2/8 + 65q3/16 − . . . in the neighborhood of q = 0.
Using Lemma 2.2, one sees that y1(−1/6τ) is invariant under �S and therefore y1(−1/6τ) =

(y1(τ ) − 1 + 2
√

2/3)/(y1(τ ) − 1). For later use, notice that z = (z − 1 + 2
√

2/3)/(z − 1) has
solutions z = 1 ± (8/9)1/4 (*). Moreover the function

t (τ ) = y1(τ )
(y1(τ ) − 1 + 2

√
2/3)

(y1(τ ) − 1)
· 3(3 + 2

√
2) (3)

is invariant for −1/6τ , that is,

t (τ ) = t (−1/6τ) (4)

and therefore maps the region shown in Figure 4 onto H. Values at c1 = i/
√

6 and c2 = (120 +
i
√

6)/294, where c2 is the intersection of the circle of radius 1/
√

6 centred at zero and the isometric
circle of the transformation (49τ − 20)/(−120τ + 49), can be calculated using (3), (4) and (*)
to give t (i∞) = 0, t (c1) = 3(3 + 2

√
2)(1 − 23/4/

√
3)2 = 0.01472 . . ., t (c2) = 3(3 + 2

√
2)(1 +

23/4/
√

3)2 = 67.926 . . ., t (1/2) = ∞.
Recall Beukers’ formulae (see [2]),

40F(τ) = E4(τ ) − 36E4(6τ) − 7(4E4(2τ) − 9E4(3τ))

24E(τ) = −5(E2(τ ) − 6E2(6τ)) + 2E2(2τ) − 3E2(3τ)) (5)

These functions transform like E(−1/6τ) = −6τ 2E(τ), F(−1/6τ) = −62.τ 4F(τ),
F(i∞) = 0.

The Dirichlet series of F(τ), in the sense of Lemma 2.1, is (see [2,10]) L(F, s) = 6(1 −
62−s − 7.22−s + 7.32−s)ζ(s)ζ(s − 3) and therefore L(F, 3) = ζ(3). Again, applying Lemma 2.1

Figure 4. The map t in Example 1.
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348 P. Panzone and L. Piovan

with f (τ) defined by (d3/dτ 3)f (τ ) = (2πi)3F(τ), f (i∞) = 0, we obtain

E

(
−1

6
τ

) (
f

(
−1

6
τ

)
− ζ(3)

)
= E(τ)(f (τ) − ζ(3)) =: W(q) (6)

We gather this into:

Theorem 3.1 Define t (τ ) by (1), (2), (3). Also let (d3/dτ 3)f (τ ) = (2πi)3F(τ), f (i∞) = 0,
E(τ), F(τ) defined by (5) and W(q) defined by (6).

Then as a function of t, the function W(q(t)) has radius of convergence (at least) 3(3 +
2
√

2)(1 + 23/4/
√

3)2 ∼ 67.92 . . .. If one writes

W(q(t)) =
∞∑
0

(an − ζ(3)bn)t
n

then bn and an.lcm{1, . . . , n}3 are numbers of the form m1 + m2

√
2 with m1, m2 ∈ Z.

The function
∑∞

1 bnt
n has (exactly) radius of convergence 3(3 + 2

√
2)(1 − 23/4/

√
3)2 ∼

0.01472 . . . and one has

W(q(t)) = −1

2

∫ 1

0

∫ 1

0

∫ 1

0

dx dy dz

{1 − (1 − xy)z − t (2 + t (−17 + 12
√

2))xyz(1 − x)(1 − y)(1 − z)}

Moreover an − ζ(3)bn �= 0 for infinitely many n.

Proof The stated radius of convergence of W(q(t)) follows from Section 2 because conditions
(i), …, (v) are met and therefore W(q(t)) has radius of convergence t (c2) (at least) instead of
t (c1). The only thing that was not proved was that, by construction, t (τ ) has locally an inverse as
a function of q = e2πiτ with coefficients of the form m1 + m2

√
2 with m1, m2 ∈ Z. The assertion

follows from the fact that in (3) the inverse of y1 as a function of t , that is

y1 = 1 + t −
√

1 − 34t − 24
√

2t + t2

2(9 + 6
√

2)

has, due to Lagrange’s theorem [12], coefficients of the form m + n
√

2 with m, n ∈ Z. From this
and (1), (2) the assertion follows.

Observe that
∑∞

1 bnt
n is the function E(τ) = E(τ + 1) viewed as a function of t, which has,

at least, radius of convergence t (c1). But it is seen that t (c1) must be a branching point because
E(−1/6τ) = −6τ 2E(τ). Therefore,

∑∞
1 bnt

n has radius of convergence t (c1) as stated.
The integral expression for W(q(t0)) with t0 = y(τ)(9y(τ) − 1)/(y(τ ) − 1) is well-known

([1,3,4]), so it is a matter of writing t0 in terms of t . This is given, using (2),(3), by t0(t) =
t (2 + t (−17 + 12

√
2)) which gives the desired integral form for W(q(t)).

If W(q(t)) were a polynomial in t , then by an argument similar to Beukers’ paper ([3], p. 276)
f (τ) − ζ(3) would be a modular form of weight −2 for �S , which is impossible. �
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Integral Transforms and Special Functions 349

Indeed one calculates

q(t) = 2t + (31 + 12
√

2)t2 + 192(5 + 3
√

2)t3 + (40036 + 27072
√

2)t4

+ (1915220 + 1338144
√

2)t5 + 6(16424771 + 11577300
√

2)t6 + . . . ,

∞∑
0

bnt
n = 1 + 10t + (207 + 60

√
2)t2 + (6596 + 3504

√
2)t3

+ (275357 + 178296
√

2)t4 + . . . ,

∞∑
0

ant
n = 12t + (249 + 72

√
2)t2 + (71359/9 + 4212

√
2)t3

+
(

11915809

36
+ 214322

√
2

)
t4 + . . .

3.2. Example 2

Denote � the group generated by the transformations τ + 1, τ/8τ + 1 and 3τ + 1/8τ + 3 where
the Hauptmoduln is given by

y(τ) = 1 −
√

1 − 16q�∞
1

{
1 + q2n

1 + q2n−1

}8

= 1 − �∞
1

(
1 − q2n−1

1 + q2n−1

)4

(7)

The values at the cusps are y(i∞) = 0, y(0) = 1, y(1/4) = 2 and y(1/2) = ∞, and y(τ) maps
in a conformal way R1 onto H as shown in Figure 5. Next denote �S the subgroup of � generated
by the transformations τ + 1, τ/8τ + 1, 7τ + 2/24τ + 7, 17τ + 6/48τ + 17, 7τ + 3/16τ + 7.
If one reflects on the arc of circle going from 1/4 to 1/2, that is the isometric circle of the
transformation 3τ − 1/−8τ + 3, then one obtains the shadowed region R1 ∪ R2 of Figure 5. But
R1 ∪ R2 ∪ R′

1 ∪ R′
2 is the fundamental region of �S , where ′ denotes the reflection through the

imaginary line in the τ -plane.

Figure 5. Conformal map τ → y1(τ ) in Example 2.
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Thus

y1(τ ) = 1 +
√

1 − y(τ)

2
(8)

(here
√

z is taken with a cut in the real positive axis) is a Hauptmoduln of �S (again using Poincare’s
theorem [6]). The values at the cusps, obtained by analytical continuation are: y1(i∞) = 0,
y1(0) = 1 − (1/

√
2), y1(1/4) = 1, y1(1/3) = 1 + (1/

√
2), y1(3/8) = 2 and y1(1/2) = ∞.

Now it is seen using Lemma 2.2 that y1(τ ) is invariant under τ → −1/8τ , and therefore

y1

(
−1

8
τ

)
= y1(τ ) − 1 + (1/

√
2)

y1(τ ) − 1
.

Notice that the equation z = z − 1 + (1/
√

2)/z − 1 has roots 1 ± 1/21/4 (**).
Finally define

t (τ ) = y1(τ )
(y1(τ ) − 1 + (1/

√
2))

(y1(τ ) − 1)

(3 + 2
√

2)

(2 − √
2)

. (9)

This function is invariant under �S and −1/8τ and maps in a conformal way the shading area
in Figure 6 onto H.

Using (**) and the invariance properties one calculates for c1 = i/
√

8 and c2 =
6/17 + i(1/17

√
8) (this is the intersection of the isometric circle of the transforma-

tion −17τ + 6/48τ − 17 and a circle of radius 1/
√

8 centred at zero) that t (c1) =
(1 − (1/21/4))2(3 + 2

√
2)/2 − √

2 = 0.251 . . ., t (c2) = (1 + (1/21/4))2(3 + 2
√

2)/2 − √
2 =

33.71 . . ., t (1/2) = ∞.
Define

F(τ) = θ2(2τ)4θ3(2τ)2 − 8θ2(4τ)4θ3(4τ)2 − √
8θ4(2τ)4θ3(2τ)2 + √

8θ4(4τ)4θ3(4τ)2,

E(τ) = θ3(2τ)2 + √
2θ3(4τ)2. (10)

These functions transform like F(τ + 1) = F(τ), F(−1/8τ) = i(
√

8τ)3F(τ), E(τ + 1) =
E(τ), E(−1/8τ) = (−i

√
8τ)E(τ). Also F(i∞) = 0.

One calculates, using Jacobi’s formulae as given in [13], that (here β(s) =∑∞
0 (−1)n/(2n + 1)s)

L(F, s) = 16ζ(s − 2)β(s) − 128
1

2s
ζ(s − 2)β(s) + 4

√
8ζ(s)β(s − 2) − 4

√
8

1

2s
ζ(s)β(s − 2)

L(F, 2) = 8 C + π2

√
2

where C = ∑∞
0 (−1)n/(2n + 1)2, is Catalan’s constant.

Figure 6. The map t in Example 2.
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Therefore defining the unique function f (τ) as (d2/dτ 2)f (τ ) = (2πi)2F(τ), f (i∞) = 0 and
using Lemma 2.1 one obtains

E

(
−1

8
τ

) {
f

(
−1

8
τ

)
−

(
8 C + π2

√
2

)}
= E(τ)

{
f (τ) −

(
8 C + π2

√
2

)}
=: W(q). (11)

We have then the following:

Theorem 3.2 Define t (τ ) using (7–9).
Also let (d/dτ)2f (τ) = (2πi)2F(τ), f (i∞) = 0, where F(τ), E(τ), are defined by (10) and

W(q) is defined by (11).
Then as a function of t the function W(q(t)) has radius of convergence (1 +

1/21/4)2(3 + 2
√

2)/2 − √
2 ∼ 33.71 . . .. Moreover if one writes

W(q(t)) =
∞∑
0

{
an −

(
8 C + π2

√
2

)
bn

}
tn

then bn and an.lcm{1, . . . , n}2 are numbers of the form m + p
√

2 with m, p ∈ Z.
Moreover an − (8 C + (π2/

√
2))bn �= 0 for infinitely many n and

∑∞
0 bnt

n has radius of
convergence (1 − (1/21/4))2(3 + 2

√
2)/2 − √

2 ∼ 0.251 . . .

Proof The inverse of each function in (7–9) is a Taylor series with coefficient in Z or has
coefficients of the m + n

√
2 with m, n ∈ Z. Thus the function t (τ ) as a function of q = e2πiτ has

an inverse q = q(t) with coefficients in m + n
√

2 with m, n ∈ Z.
Again, the construction implies that conditions (i), …, (v) are met and therefore W(q(t)) has

radius of convergence t (c2). The rest of the proof is the same as in theorem 1. �

One calculates

q(t)s = (3 − 2
√

2)t + (37 − 26
√

2)t2 + (668 − 472
√

2)t3 + (15716 − 11112
√

2)t4

+ (408106 − 288572
√

2)t5 + . . . ,

∞∑
0

bnt
n = (1 + √

2) + (12 − 8
√

2)t + (120 − 84
√

2)t2 + (1960 − 1384
√

2)t3

+ (44504 − 31464
√

2)t4 + (1144176 − 809040
√

2)t5 + . . . ,

∞∑
0

ant
n = 8

√
2t + (368 − 248

√
2)t2 +

(
13792

9
− 1056

√
2

)
t3

− 32

9
(−1033 + 710

√
2)t4 − 64

75
(−370719 + 261893

√
2)t5 + . . .
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