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This article deals with ultrasonic transmission through multilayer systems. The
equivalent ultrasonic impedance of such systems is based on the transmission
line built as a convenient model to reduce the computational time for numeri-
cal evaluation. Also, the one dimensional wave equation is considered as the
full model for the propagation of a plane wave inside the material. From
numerical simulations, we obtained signals useful to assess the equivalent
model. Results clearly depict coherence between the models since there are
full agreements in the computed velocity and stress at each interface.
The identification of the parameters involved in the model, characteristic
acoustic impedance and time of flight, related to the layer densities and propa-
gation velocities, is posed as a non-linear parameter estimation problem. An
ultrasonic transmission is set up and the complete waveform is recorded after
travelling through the layers. The minimization of a least squares objective
function defined to measure the misfit between the real and predicted wave-
forms, in frequency, was successfully performed and the estimated parameters
give useful information for the mechanical characterization of the sample.

Keywords: parameter estimation; ultrasonics; impedance; inverse problem;
transmission line

1. Introduction

The interest of an accurate identification of multilayer materials properties is constantly
growing, since they are encountered in various engineering applications, in material sci-
ence developments and in biomedical research in human tissues. Some layered materials
are the products of synthetic chemistry and represent a large class of compounds formed
by metals, ceramics, polymers or fibre-reinforced polymers. Methods for non-destructive
inspection of layered materials based on ultrasonic tests are becoming more and more
popular for a wide range of industrial applications as a way of assuring product integrity
and quality, and also as a mean to achieve its mechanical characterization [1–3].
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Ultrasonic waves are high-frequency (20 kHz–100MHz) mechanical waves adequate to
monitor in situ materials with diverse geometries, allowing their characterization when
other tests are not realizable. The ultrasonic evaluation is also applicable in the inspection
of biological tissues, as in the monitoring of the adhesion of implants in bones [4].

Because of the intricate nature of ultrasonic waves, theoretical and numerical aspects
of the physical problem have been studied in last few decades to model and explain the
behaviour of ultrasonic non-invasive phenomena [5,6]. The derived models have been
established to examine the generation, propagation and interaction of elastic waves in
solid materials for non-destructive evaluation and because of the need to find solutions
to the inverse characterization problem. Finite element models (FEM) are robust tech-
niques to predict and visualize ultrasonic propagation in complex structures. The limita-
tion in this tool is the computational time required to process the code, which is related
to the mesh refinement necessary to obtain accurate solutions. Under certain assump-
tions, tests for the characterization of layered materials, the matter of this article, can be
well represented by means of equivalent models based on electric circuits [5–7].

The goal of this paper is to detail the method to identify acoustic properties of lay-
ered materials from a transmission ultrasonic experiment using the stress waveform
measured at the end of the sample. We present a novel model-based technique to pro-
cess the data, using transmission lines (T-line). Previous articles [8,9] have reported that
T-lines can be used to represent the propagation of plane longitudinal waves (L-waves)
in a generally isotropic medium. Additionally, in Castillo et al. [8] and Maione et al.
[10], T-lines are used to model lossy transducers using a one-dimensional scheme based
on Mason’s model [11]. The ultrasonic model implemented in this manner allows the
determination of acoustical stress at any interface within the material. From an electro-
acoustical analogy, these stresses correspond to the voltages calculated along the T-line
cascade. Circuit simulation programmes are suitable and very efficient to assess the
equivalence between the models; thus, we carried out the simulation of the forward
problem by means of LTspice software.1 Nevertheless, a computer program for the
numerical calculation should be developed to implement the methodology to solve the
inverse problem. Since the solution of the forward problem is essential for the later
solution of the inverse problem, we dedicate the following two sections to the descrip-
tion and simulation of the direct problem.

Section 4 presents the formulation and analysis of the inverse problem. For the
proposed procedure, an ultrasonic transmission is simulated and the complete waveform
is recorded after travelling through the set of layers. The problem is posed as an inverse
problem, in which the unknown is a reduced set of parameters that describes the
sequence of layers. The values of the parameters that best describe the material are
obtained by minimizing the misfit between the true and the numerically predicted stres-
ses expressed in the frequency domain. This is done by defining a scalar cost functional
and minimizing it for the parameters. Finally, Section 5 describes the results obtained
applying the proposed methodology for several three-layered samples, and last section
summarizes the conclusions of the work.

2. Model description

The displacement of the material particles of an isotropic elastic solid, in which an
ultrasonic plane wave is propagating in the x-direction at time t, is denoted as a
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function u(x,t). The well-known wave equation describes the displacement dynamics,
which in a medium having constant propagation velocity, c, is expressed as:

@2u

@x2
¼ 1

c2
@2u

@t2
: ð1Þ

The case of a layered material formed by homogeneous layers can be considered as
a piecewise medium, where Equation (1) holds in each layer for a different value of the
propagation velocity. Additionally, continuity conditions for particles stress

rðx; tÞ ¼ @uðx;tÞ
@x

� �
and velocity vðx; tÞ ¼ @uðx;tÞ

@t

� �
must be fulfilled at the interfaces. In

this work, we consider an equivalent circuit as an alternative representation of the same
problem.

An equivalent circuit is a one-dimensional model that describes the analogue electri-
cal characteristics of an acoustic structure. The task to develop such a model has been
done for piezoelectric and non-piezoelectric materials [5,6]. The voltage and current in
the equivalent system stand for stress and velocity of the material particles, respectively.
The circuit in Figure 1 is a valid description of a non-piezoelectric medium. It is a
lumped element representation of an acoustic transmission, or delay line. For a two-
layer medium, considered as generally isotropic, i.e. all the individual layers are inde-
pendently isotropic, the equivalent circuit is that shown in Figure 2. It can be derived
[6,7] that the involved impedances are

Z11 ¼ jZ1tanðxs1=2Þ
Z21 ¼ �jZ1=sinðxs1Þ
Z12 ¼ jZ2tanðxs2=2Þ
Z22 ¼ �jZ2=sinðxs2Þ

ð2Þ

where, Z1, Z2, τ1, τ2 are impedances and delays of the electric circuit. Voltage (V2) and
current (I2) at the interface are related to the input and output voltages and currents by
relations (3) and (4).

Figure 1. Equivalent circuit for a homogeneous isotropic medium.
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V2ðxÞ
I2ðxÞ

� �
¼ cosðxs1Þ �jZ1 sinðxs1Þ

�j sinðxs1Þ=Z1 cosðxs1Þ
� �

V1ðxÞ
I1ðxÞ

� �
ð3Þ

V3ðxÞ
I3ðxÞ

� �
¼ cosðxs2Þ �jZ2 sinðxs2Þ

�j sinðxs2Þ=Z2 cosðxs2Þ
� �

V2ðxÞ
I2ðxÞ

� �
: ð4Þ

For a multilayer material, the model is made up of as many transmission lines
connected in series as layers as present in the sample. Thus, for an N-layered medium,
considered as generally isotropic, the equivalent circuit is that shown in Figure 3. Using
the electrical–acoustical analogy, we consider that the signals actuating in the circuit are
the stress and velocity of the material particles and that the parameters involved are the
characteristic acoustic impedance and the ultrasonic pulse time of flight corresponding
to the material of each layer, expressed as:

Zi ¼ qici; si ¼ di=ci; ð5Þ

Figure 2. Equivalent circuit for a medium composed by two isotropic layers.

Figure 3. Equivalent circuit for a medium composed by N-isotropic layers.
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where, ρi, ci and di are specific mass, propagation velocity and thickness of layer i,
respectively. The transference of stress and velocity between both ends of the specimen
is obtained, similarly to Equations (3) and (4), multiplying the corresponding N
matrices:

r�
Nþ1ðxÞ
v�Nþ1ðxÞ

� �
¼ cos ðxsN Þ �jZN sin ðxsN Þ

�jsin ðxsN Þ=ZN cos ðxsN Þ
� �

cos ðxs1Þ Z1sin ðxs1Þ
�jsin ðxs1Þ=Z1 cos ðxs1Þ

� �
r�
1ðxÞ
v�1ðxÞ

� �
: ð6Þ

It is worth noticing that relations (3), (4) and (6) are derived strictly from the full
model [5,6], and that they give a closed form of the signals in the frequency domain at
the interfaces of the specimen, considering that σ1 is the excitation signal applied to one
end of the sample.

3. Simulations and results for the forward problem

The solution of the forward ultrasonic transmission problem (Equation (1)) gives, in
principle, the displacement field of the material particles u(x,t) at any time and position.
Also, from the displacement, the particles stress field σ(x,t) is obtained in a straightfor-
ward way. Using the equivalent model just introduced, particles velocity and stress can
be known only at the interfaces, where we expect them to coincide with those obtained
from the full model. It is worthwhile to compare the computational effort required to
obtain the numerical solutions for both models. We have used available simulation tools
as well as computer programs specifically developed. For the numerical solution of
Equation (1) using FEM, COMSOL Multiphysics® software2 is suitable; on the other
hand, the environment provided by LTspice efficiently simulates T-lines.

Among different physical problems where multilayer material properties are the
matter of study, we consider first, as an example, one related to the detection and char-
acterization of features in human tissue [4,9]. The particular case of a three-layers speci-
men representing part of a tooth structure (Figure 4(a)) is referred as Material 1 in
Table 1, where the physical parameters’ true values are transcribed [9].

Curves shown in Figure 4(b) depict stress profiles, σ(x,t), due to the ultrasonic wave
travelling through the layers within the material at four different times. The curves are
obtained by COMSOL® using the following conditions: continuity of stress and veloc-
ity at each interface and sound-hard boundary at the material faces perpendicular to the
interfaces, in order to assure the validity of the plane wave propagation assumption.
The stress in the material is a consequence of a radio frequency pulse (Figure 5(a))
applied as a boundary condition for the stress at one end of the sample, i.e. for x = 0,
while at the other end, an impedance condition is considered, represented by RL in the
equivalent circuit of Figure 3. For the transmission test, we are assuming that the
sample is initially at rest, so all initial conditions are zero.

The temporal stress waveforms at the interfaces of the same tooth structure obtained
by COMSOL® are the signals plotted in dashed lines in Figure 5(b)–(d), which are
almost coincident to those obtained by the equivalent model (solid lines), as expected.
These curves represent the solution calculated by the computer programs specifically
developed to implement the hybrid methodology consisting of the following steps:

(1) The analytic computation of r�Nþ1ðxÞ, according to (6).
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(2) The numerical computation of the temporal stress waveform, rNþ1ðtÞ, accom-
plished approximating the direct calculation of the inverse Fourier transform in
terms of the real and imaginary components of the Fourier Transform as:

Figure 4. Stress profiles along the material at four specific times.

Table 1. Physical and acoustical parameters of analyzed samples.

Material 1 Material 2 Material 3

Enamel Dentin Pulp Acrilic Aluminium Steel Aluminium HDPE LDPE

ρ (kgm�3) 3000 2000 1000 1190 2795 7870 2700 950 920
c (m s�1) 6250 3800 1570 2654 6419 5960 6419 1124 1950
d (mm) 1.88 2.36 3.76 12.14 6.05 6.05 10 1 6
Z (MRayl) 18.75 7.6 1.57 3.158 17.941 46.905 17.333 1.0678 1.7941
τ (μs) 0.3008 0.62105 2.395 4.5742 0.9425 1.0151 1.5577 0.8896 3.0768
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rNþ1ðtÞ ffi 1

p

XW2

xi¼W1

R r�
Nþ1ðxiÞ

� �
cos ðxitÞDx� 1

p

XW2

xi¼W1

Ifr�
Nþ1ðxiÞg sinðxitÞDx: ð7Þ

Notice that it is necessary to compute v�1ðxÞ to fulfil step 1. Defining as Zin, the
input equivalent impedance of the T-Line and using Ohm’s law to relate the analogue
quantities, the calculation of v�1ðxÞ is done as:

v�1ðxÞ ¼ r�
1ðxÞ=ZinðxÞ: ð8Þ

The best approximation in Equation (7) is obtained, asymptotically, as W1 and Δω
values are set close to zero, and W2 value is chosen to be as large as possible. Particularly,
for the case shown in Figure 5, setting Δω= 2� 104 rad s�1, W1 = 0.001 rad s

�1,
W2 = 2� 107 rad s�1, differences can be neglected as can be observed in Figure 5(b)–(d),
with relative mean square errors of 1.6, 2.3 and 4.8%, respectively.

The verification that the equivalent model, simulated using MATLAB®, provides
predictions similar to the full model, is as important as the fact that the gain in the com-
putational time is very high. For the example considered, we found that to calculate the
stress waveforms plotted in Figure 5, the processing time is 30 times less than the time
required by FEM using COMSOL®. The efficiency in the numerical computation of the

Figure 5. Stress waveforms at: (a) enamel face; (b) enamel/dentin interface; (c) dentin/pulp
interface; (d) pulp end. (Grey line: FEM. Black line: equivalent model.)
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forward problem is essential since the inverse problem requires the repeated solution of
the direct problem.

4. Inverse problem analysis

We approach the identification of the acoustical parameters of the layers of a compound
material formulating an inverse problem. For this problem, the data available come
from the stress signal in the frequency domain, r�mðxÞ, registered at the end of the sam-
ple, since we are considering a transmission test. In this article, the measurement,
rmðtÞ, is simulated adding noise, ɛ(t), to the temporal stress waveform at the material
end, rNþ1ðt; ptÞ,

rmðtÞ ¼ rNþ1ðt; ptÞ þ eðtÞ; ð9Þ

where rNþ1 ðt; ptÞ is obtained solving theoretically the problem defined in Equation (7)
for the true values of the unknown parameters, pt and ɛ(t) is represented by a white-
gaussian random process. The Fourier transform of the simulated measurement
r�mðxÞ ¼ FfrmðtÞg is numerically computed using the well-known fast Fourier trans-
form algorithm [12].

A minimization problem formulated by a least squares functional (Equation (10)) is
to be solved to obtain the parameter vector, p, i.e.:

Min
p

JðpÞ ¼ kr�
m � r�

Nþ1ðpÞk2; ð10Þ

where r�Nþ1ðpÞ is the stress obtained from the equivalent model (Equation (6)), for a
given p. The searched parameter vector p contains the ultrasonic pulse time of flight, τ,
and the characteristic acoustic impedance, Z, of each layer. For the numerical solution
of the problem, we consider an alternative cost functional based on the real components
of the complex quantities present in Equation (10):

JðpÞ ¼
XxM

xi¼x1

R r�
mðxiÞ � r�

Nþ1ðp;xiÞ
� �� 	2

; ð11Þ

for discrete measurements registered at M different frequencies.
To evaluate JðpÞ, the computation of r�Nþ1ðp;xÞ for each p, and also, the velocity

v�1ðxÞ as in Equation (8) are required. The non-linear relation between the unknown
parameters and r�Nþ1ðp;xÞ is evident from Equation (6). Since in general, it is not pos-
sible to assess uniqueness and existence of the solution of the least squares problem
defined by the cost functional of Equation (11) for cases where the formulation of the
forward problem is non-linear, we analyzed the problem features considering particular
cases. In this article, we focus on different compound materials formed by three layers,

so we expect to obtain an estimation of p ¼ ½s1 s2 s3 Z1 Z2 Z3�T as the solution of the
inverse problem. We also consider two different cases regarding the excitation signal
applied, r1, which temporal and frequency representations are illustrated in Figure 6.
Case 1 corresponds to a signal with a narrow frequency bandwidth, and case 2, to one
with a broad bandwidth.
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The formulated problem can in principle be minimized implementing a numerical
optimization methodology, such as the well-known Levenberg–Marquardt [13]. The
updating process for the estimation of parameter p is carried out doing

pkþ1 ¼ pk þ dk ; ð12Þ

where δk is computed solving:

bJ ðpkÞTJ ðpkÞ þ kk Ic dk ¼ �J ðpkÞTFðpkÞ: ð13Þ

J is the Jacobian matrix of F and λk is a scalar which controls the magnitude and
direction of δk in order to ensure convergence, determined internally in the algorithm at
each iteration. In our problem, according to Equation (11):

F ¼
Rfr�

mðx1Þ � r�
Nþ1ðp;x1Þg

..

.

Rfr�
mðxM Þ � r�

Nþ1ðp;xMÞg

2
64

3
75: ð14Þ

Figure 6. Temporal representation and amplitude spectra of the excitation signals: (a) narrow
bandwidth signal; (b) broad bandwidth signal.
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The iterative procedure of Equation (13) is schematically depicted in the flow dia-
gram of Figure 7. The parameters’ initial values, chosen following the methodology
explained below, are used only to start the process which continues until the change in
J is less than the tolerance level. The solution of the inverse problem is given by the
values obtained for the parameters in vector ep.

The complete diagram in Figure 8 shows the necessary data pre-processing in order
to succeed in finding the global minimum. In this figure, the block labelled as ‘Fre-
quency transformation’ indicates the calculation of the Fourier transform and the selec-
tion of the frequency band window (BW) used to evaluate the stress signals at both
ends of the material. The methodology to choose the parameter initial values, indicated
in the ‘Prior estimation’ block, is based on the echoes of the transmitted registered
signal.

4.1. Selection of the frequency BW

Properties of the inverse problem can be analyzed from features of the cost functional,
J(p). In this problem, we have observed that some of them are related to the frequency
range used to compute Equation (11). For instance, in Figure 9, we show the surface
obtained when J(p) is plotted against τ1 and τ2, fixing all other parameters at their true
values, for the sample named in this work as Material 1 (Table 1). This surface is not
independent of the frequency range involved in the evaluation of J(p). Figure 9(a) is
obtained for a frequency BW centred at the maximum of the power spectrum, as indi-
cated in Figure 6(a). The smoother surface shown in Figure 9(b) was found using in
Equation (11) a frequency range [ω1:ωM] defined for lower frequencies.

Although the global minimum is perfectly defined for the same values of the param-
eters in both surfaces, the evolution of the algorithm will not be the same. We note
three aspects which lead us to the choice of the frequency BW. Fewer local minima are
observed in Figure 9(b) than those in Figure 9(a); apparently, it would be more likely
to achieve the global minimum as the problem solution in the situation described in

Figure 7. Flow diagram of the iterative optimization procedure.
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Figure 8. Flow diagram of the data pre-processing methodology.

Figure 9. J(p) vs. p ¼ ½s1 s2�T, (a) 8.35.106 <ω < 12.53� 106; (b) 0 <ω < 5� 106 (ω [rad s�1]).
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Figure 9(b). Besides, other two issues arise: the smoother surface shown in Figure 9(b)
that implies slow convergence and worst efficient algorithm performance and the small
signal to noise relation present that will degrade the precision of the parameter
estimations.

Because of the disadvantages stated, working with the BW centred at the maximum
of the frequency spectra is recommended. The problem related to the fact that the sur-
face bears multiple minima can be tackled selecting the initial values of the times of
flight not far from the true values.

4.2. Selection of the parameter initial values

The selection of proper initial values for a non-linear optimization procedure is often
crucial to find the global minimum. In the particular problem in hand, we have detected
that the complete uncertainty of the characteristic impedances values does not imply an
increase in the difficulty of solving the inverse problem; actually, from random initial
values, the right solution is found. Contrarily, the times of flight must be initialized
properly. They appear in the argument of trigonometric functions in the forward prob-
lem of Equation (6) and these cyclic non-linear relations produce many local minima in
functional of Equation (11), as addressed above.

Based on the single transmission waveform measured, we were able to obtain good
prior estimations of the times of flight detecting the echoes corresponding to the differ-
ent layers. This is possible for different kinds of layered materials with combinations of
thickness and propagation velocities such that the arrival times are related to the times
of flight by simple relations (Figure 10). Thus, measuring the total time of flight,
τα= τ1′+ τ2' + τ3′, the arrival time for the first echo, τα+ 2τ1′ and for the second one,
τα+ 2τ′2, prior estimations of the times of flight (τ1′, τ2′, τ3′) can be obtained. Actually,
these values cannot be assigned to a particular layer, but they can be used as trial initial
values as far as no echoes overlapping occur. Whether the assumed order for the
obtained times of flight, τ1′, τ2' and τ3', is different from the true one, the optimization
procedure will most likely fail in finding the global minimum, but it will succeed only
for the right order.

In the cases considered in this article, this methodology was tested trying all
possible order combinations and actually, only for the right order, the optimization was
successfully performed and the global minimum was reached. In addition, the imple-
mentation of a pulse echo set-up scheme as in [14] could be applied.

5. Results

The proposed methodology was tested on simulated examples for three-composed lay-
ered materials with true properties transcribed in Table 1. As addressed in last section,
we considered two different cases regarding the excitation pulse applied; case 1 refers
to a stress waveform, depicted in Figure 6(a), with a narrow frequency bandwidth, and
case 2 corresponds to the broad frequency bandwidth signal of Figure 6(b). RL is
assumed to be 1.5 MRayls for Materials 1 and 3, and 50 MRayls for Material 2. The
measurements were simulated solving the forward problem, based on Equations (6)–(8)
and perturbed by noise of different levels to consider more realistic situations (Equation
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(9)). Figure 11 shows, for each case, the temporal and frequency representation of the
stress waveform transmitted to the end of the different samples. These curves were
obtained adding a single realization of zero-mean non-correlated noise with standard
deviation stdɛ = 1% related to the maximum value of the temporal stress. The frequency
BW selected to be used in the optimization procedure is highlighted on the plots.

The selection of the parameter initial values required to start the optimization proce-
dure was properly accomplished using each transmitted waveform stress. The plots, at
higher resolution in Figure 12, show that the echoes can be detected and quite good
prior estimations of the times of flight of the layers were calculated for the six cases
considered in this article. It should be emphasized that the shorter the excitation pulse
is, the easier the identification of the echoes will be. Thus, the estimations obtained
using cases 2 were more accurate. From these values, transcribed in Table 2, and sev-
eral sets of initial values for the characteristic impedances Z1, Z2, Z3 randomly selected,
the minimization of the cost functional in Equation (11) was successfully performed.
The final estimated values for the layers’ parameters corresponding to the three
analyzed materials are shown in the last two columns of Table 2.

Although often inverse problems are unstable due to their ill-condition nature, the
problem in hand was stable. In fact, as the noise level increases, the error in the estima-
tions increases but it remains in the range of the measurement error. The stability analy-
sis was performed observing the evolution of the cost functional for different initial
values of the characteristic impedances and different noise levels. Particularly, in
Figure 13, this evolution is shown for Material 2 using three levels of noise and an

Figure 10. Principal wave reflections inside the material and their corresponding arrival times.
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arbitrary initial values given by Z1 = Z2 = Z3 = 5 MRayls. As expected, the cost func-
tional converges to a value that is in concordance to the noise level.

As addressed before, T-line models represent exactly a one-dimensional problem,
adequate to represent materials with perfectly parallel interfaces. When this requirement
is not fulfilled, the application of the equivalent model to predict the waveform in the
inverse problem introduces modelling errors. We carried out the study of some particu-
lar samples where the interfaces are plane but not parallel, in which wave diffraction
effect will be present; then, the true stress waveform can be rigorously computed using
FEM. Three cases have been studied considering a perturbed geometry obtained modi-
fying the angle α of one of the interface planes as shown schematically in Figure 14
(A: α= 1.14° and B: α= 2.52° at interface 1; C: α = 1.14° at interface 2). This situation

Figure 11(a). Temporal representation and amplitude spectra of simulated stress measurements in
case 1.
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was considered for samples composed by layers like those of Material 1 and where the
excitation pulse used for transmission test was that of case 1. Since the application of
the equivalent model will introduce modelling errors, the simulated stress will be differ-
ent from that obtained using FEM. The amplitude spectra of both transmission wave-
forms simulated by FEM and by the equivalent model are shown in Figure 15.

The inverse problem was solved based on the equivalent model, and the same itera-
tive procedure described in Section 4 was followed. The obtained estimations for the
layers parameter are shown in Table 3. Although the errors have increased, the values
obtained are good approximations and give useful information about the layer character-
istic acoustic impedances. The robust performance of the methodology for modelling
errors can be assessed for the analyzed cases.

Figure 11(b). Temporal representation and amplitude spectra of simulated stress measurements in
case 2.
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6. Conclusions

In this work, we have successfully assessed the usage of electric equivalent circuits to
obtain the stress waveforms that appear at the interfaces of a layered material under a
transmission ultrasonic simulated experiment. The forward problem that takes a closed
form in the frequency domain, and a numerical approximation of the inverse Fourier
transform were implemented to obtain the stress waveforms. The waveforms simulated
using the equivalent model have the same level of accuracy as those obtained by FEM
with a significant saving of computational time, crucial in applications which demand
fast decisions based on model predictions.

Figure 12. Measured temporal stress [Pa] at higher resolution. (Grey line: case 1. Black line:
case 2.)
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We investigated the feasibility of identifying multilayer material acoustical proper-
ties formulating an inverse problem for the ultrasonic transmission experiment. The
proposed procedure is based on the recording of the complete waveform after travelling
through the set of layers. The problem is posed as an inverse problem, in which the
unknown is a reduced set of parameters related to the ultrasonic properties of
the sequence of layers. The model that depends on the parameters is used to predict the
transformation of the waveform and compare to the measurement. A scalar cost
functional was defined to quantify the misfit between the data, a synthetic waveform in
this work, and the numerically predicted waveforms based on the equivalent model.

Table 2. Estimated parameter values. (Noisy measurements (stdɛ = 1%).)

Prior estimation Case 1 Case 2

Material 1 Z1 (MRayl) – 18.7507 18.7425
Z2 (MRayl) – 7.5997 7.6112
Z3 (MRayl) – 1.5700 1.5745
τ1 (μs) 0.2625 0.3008 0.3008
τ2 (μs) 0.7225 0.6211 0.6211
τ3 (μs) 2.3150 2.3949 2.3950

Material 2 Z1 (MRayl) – 3.1609 3.1677
Z2 (MRayl) – 17.9519 17.9608
Z3 (MRayl) – 46.9777 46.9884
τ1 (μs) 4.535 4.5742 4.5742
τ2 (μs) 0.945 0.9425 0.9425
τ3 (μs) 1.030 1.0153 1.0153

Material 3 Z1 (MRayl) – 17.3364 17.2352
Z2 (MRayl) – 1.0690 1.0634
Z3 (MRayl) – 1.7943 1.7849
τ1 (μs) 1.5475 1.5577 1.5577
τ2 (μs) 0.8825 0.8895 0.8897
τ3 (μs) 3.085 3.0770 3.0762

Figure 13. Cost functional evolution. Data with different noise levels.
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Figure 15. Amplitude spectra of simulated stress measurements. Material sample with non-
parallel interfaces. FEM (black, dash line); equivalent model (grey, full line).

Table 3. Estimated parameter values. Modelling errors are considered.

Case A Case B Case C

Material 1 Z1 (MRayl) 19.1760 20.5590 18.9920
Z2 (MRayl) 6.6468 7.2173 6.9716
Z3 (MRayl) 1.4750 1.4750 1.3979
τ1 (μs) 0.3206 0.3271 0.3103
τ2 (μs) 0.6343 0.6105 0.6300
τ3 (μs) 2.4449 2.3712 2.5140

Figure 14. Schematic representation of a material sample with non-parallel interfaces.
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Issues like the existence of a unique solution and the stability of the numerical
solution were analyzed. Also, the connection between the frequency range used to eval-
uate the functional and the existence of multiple minima, the convergence time and the
signal to noise relation was studied. As a result, a proper frequency BW for solving the
inverse problem could be selected and the optimization algorithm succeeded in finding
the global minima provided that the initial values of the times of flight were close to
the true ones. Particularly, the values of the characteristic impedances and the times of
flight of several three-layered composed materials were precisely calculated, although
the times of flight required a previous estimation based on the observation of the trans-
mitted stress waveform. The stability of the solution is supported by the results obtained
from many simulated experiments developed using noisy data, in which the algorithm
converged without the necessity of adding any regularization term.

The methodology was also applied to some cases where the hypotheses for the
equivalent model do not hold. In all the analyzed samples, the six parameters were well
estimated, verifying the robust condition of the proposed strategy for measurement and
modelling errors.

Acknowledgements
The authors acknowledge the financial support from CONICET, Universidad Nacional de Mar del
Plata (Argentina) and Universidad de Santiago de Chile (Chile).

Notes
1. LTspice IV made by Linear Technology. Available free from Linear Technology at: http://

www.linear.com/company/software.jsp.
2. COMSOL Multiphysics® Multiphysics is a registered trademark of COMSOL AB.
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