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Abstract We show how to build the Auslander-Reiten quiver of the category Cn(proj �)

of complexes of size n ≥ 2, for any artin algebra �. We also give conditions over the com-
plexes in Cn(proj �) under which the composition of irreducible morphisms in sectional
paths vanishes.
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1 Introduction

Throughout this paper, unless otherwise stated, all algebras are artin algebras over an
artinian (commutative) ring R. We furthermore assume that all algebras are basic.

Let � be an artin algebra and mod � the category of finitely generated right �-modules.
We denote by proj � the full subcategory of mod � consisting of all projective �-modules.
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Campus de A Coruña, 15071 A Coruña, España

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10468-016-9643-2-x&domain=pdf
mailto:maria.souto.salorio@udc.es
mailto:claudia.chaio@gmail.com
mailto:nilprat@mdp.edu.ar


C. Chaio et al.

The Auslander-Reiten quiver of mod � (for several algebras) can be constructed by an
iterated procedure which was used since 1977. It is named “knitting of components” and the
almost split sequences yield to what are called meshes. For any artin algebra, the knitting
algorithm constructs inductively the reachable modules, according to their distance to the
simple projective modules. Note that the algorithm for constructing reachable modules may
stop for two reasons: either we have obtained all the indecomposables or else we encounter
an indecomposable direct summand of the radical of an indecomposable projective module
such that some other indecomposable direct summand is not reachable or else we encounter
an indecomposable direct summand.

The knitting procedure works well in case any indecomposable projective module to
be considered has an indecomposable radical (or all the indecomposable direct summands
are isomorphic). A criterion for dealing with the case when radical has non-isomorphic
indecomposable direct summands was given by the so called s-condition of Bautista-
Larrion-Salmeron.

Dually, the knitting algorithm can be constructed also backwards starting from the simple
injective modules.

In this work we focus our attention on the category Cn(proj �) (for a positive integer
n ≥ 2). This category consists of the complexes X, such that Xi = 0 if i /∈ {1, . . . , n} and
Xi ∈ proj � if Xi �= 0. In [7], the authors proved that Cn(proj �) is an exact category and
has almost split sequences. We recall the main properties in Section 2.

For any artin algebra there is a relationship between the arrows of the quiver and nonzero
morphisms between indecomposable projective modules. Moreover, if we deal with a hered-
itary finite dimensional algebra H , over an algebraically closed field, there is an arrow from
i to j in the ordinary quiver QH if and only if there is an irreducible morphism from Pj to
Pi in the Auslander-Reiten quiver of mod H . In Section 3, we analyze similar results for the
category Cn(proj �).

In order to “knit” the Auslander-Reiten quiver of Cn(proj �) following the construction
of the corresponding quiver of mod �, we first study analogous properties for right almost
split morphisms in Cn(proj �). This is the main aim of Section 4. Proposition 4.6 gives a
procedure to complete a minimal left almost split morphism f starting at a non-injective to
an almost split sequence in Cn(proj �). In order to do that, we only need to get the complex
Coker f from a section f . We show the procedure giving an example in Section 5.

By now, there is a vast literature dealing with translation quivers which arise for artin
algebras. For example, one of the basic ideas which R. Bautista introduced in [3], concerns
the study of sectional paths and sectional cycles. R. Bautista and S. Smalø, in [5], have
shown that an Auslander-Reiten quiver never contains sectional cyclic paths and obtained
several important consequences from this fact. In Section 6, we study the behaviour of the
compositions of irreducible morphisms in sectional paths. Some of the results can be seen as
a “natural” generalization of those in mod � but there are some important differences. We
know that in mod �, the composition of irreducible morphisms on a sectional path is non-
zero, see [5] and [12]. We show that this is not a general fact in Cn(proj �). More precisely,
we can find sectional paths such that their compositions vanish.

2 Preliminaries

2.1

Let R be a commutative artinian ring and A a Krull-Schmidt R-category, that is, a Hom-
finite additive R-category in which idempotents split. A morphism f : X → Y with X, Y ∈
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A, is called irreducible provided it does not split and whenever f = gh then either h is a
section or g is a retraction.

We say that f : X → Y with X, Y ∈ A is a minimal left almost split morphism (or a
source morphism) if f is not a section, for each morphism g : X → M that is not a section
g factories through f and if f = hf then h ∈ Aut(Y ). Dually, a minimal right almost split
morphism (or a sink morphism) is defined.

A short exact sequence X
f→ Y

g→ Z in A is called an almost split sequence if f and
g are a source and a sink morphism, respectively. The object X is called the translate of Z.
We denote by τ−1X = Z and τZ = X.

By �A we denote the Jacobson radical of the category A, which is the ideal generated
by the non-isomorphisms between indecomposable objects. For n > 1, we denote by �n

A
the set of morphisms which are composition of n morphisms lying in �A. Finally, �∞

A =
∩n≥1�n

A is called the infinite radical of A.
If X and Y are indecomposable objects in A then the set of irreducible morphisms from

X to Y can be seen as the quotient IrrA(X, Y ) = �A(X, Y )/�2
A(X, Y ). We recall that

IrrA(X, Y ) is a kY − kX-bimodule, where kZ = EndA(Z)/�A(Z,Z).
By �A we denote the Auslander-Reiten quiver of a Krull-Schmidt categoryA. The valua-

tion of an arrow X → Y in �A is defined by (αX,Y , α′
X,Y ), where αX,Y = dimkX

IrrA(X, Y )

and α′
X,Y = dimkY

IrrA(X, Y ). Furthermore, if αX,Y = 1 and α′
X,Y = 1 then we say that

the arrow has trivial valuation and we do not write it. If all arrows in a component � ⊂ �A
have trivial valuation then we say that the component � has trivial valuation.

By [13, Proposición 2.1] the Auslander-Reiten quiver of A is a valued translation
quiver, that is, if X and Y are indecomposable objects in A and Y is not injec-
tive then, dimkX

IrrA(X, Y ) = dimk
τ−1(X)

IrrA(Y, τ−1(X)) and dimkY
IrrA(X, Y ) =

dimkY
IrrA(Y, τ−1(X)).

A dual result holds if X is not projective.

2.2

Let � be an artin algebra and mod � the category of finitely generated right �-modules.
We denote by proj � the full subcategory of mod � consisting of all projective �-modules.

In [7], the authors studied the category Cn(proj �), for n ∈ Z, n ≥ 1, that is, the full
subcategory of C(proj �) whose objects are the complexes X with Xi = 0 if i /∈ {1, . . . , n}.
Moreover, given an indecomposable module P ∈ proj �, they consider the following
complexes:

Ji(P ) = (J s, ds)s∈Zfori ∈ {1, · · · , n − 1}, withJ s = 0ifs �= i, s �= i + 1, J i = J i+1

= P, di = idP ,

S(P ) = (Xi, di)i∈ZwithXi = 0fori �= 1, X1 = P, di = 0foralli ∈ Z,

T (P ) = (Y i, di)i∈ZwithY i = 0fori �= n, Y n = P, di = 0foralli ∈ Z,

and proved that all the indecomposable projective complexes in Cn(proj �) are of the form
T (P ) or Ji(P ) for i = 1, ..., n − 1, and all the indecomposable injective complexes in
Cn(proj �) are of the form S(P ) or Ji(P ) for i = 1, ..., n − 1, see [7, Corollary 3.5].
The authors also proved that Cn(proj �) is an exact category with enough projective and
injective objects.

We denote by X1 d1→ X2 d2→ · · · dn−1→ Xn a complex X ∈ Cn(proj �).
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For each indecomposable non-projective X ∈ Cn(proj �), the authors defined the
Auslander-Reiten translate of X, denoted by An(X), which they proved that it is also inde-
composable in Cn(proj �). By [7, Theorem 8.2], we know that Cn(proj �) has almost split
sequences.

2.3

We denote by Cn(proj �) (respectively, Cn(proj �)) the category whose objects are the
same of Cn(proj �) and the morphisms are the morphisms in Cn(proj �) modulo the ones
that factor through injective objects (respectively, projective objects).

Consider X = (X1 dX→ X2) and Y = (Y 1 dY→ Y 2) in C2(proj �). We know that there
is a functor κ = Cok : C2(proj �) → mod � defined as follows; κ(X) = Coker dX if X

in C2(proj �), and if f = {f 1, f 2} : X → Y is a morphism in C2(proj �) then κ(f ) :
κ(X) → κ(Y ) is the induced morphism. By [4, Proposition 3.3] such a functor induces an

equivalence between C2(proj �) and mod �. For each M ∈ mod � if we consider X1 dX→
X2 → M → 0 a minimal projective presentation of M then the complex PM = X1 dX→ X2

is in correspondence with M by the inverse equivalence of κ .

2.4

In [10] and [6] the authors studied the irreducible morphisms in categories of chain com-
plexes taking into account their entries. We recall Corollary 2 and Proposition 3 stated in
[10] which shall be important for further purposes.

If f = {f i}ni=1 : X → Y is an irreducible morphism in Cn(proj �) then, one of these
conditions hold:

(sec) For each i ∈ {1, ..., n}, the morphisms f i are sections in proj �.
(ret) For each i ∈ {1, ..., n}, the morphisms f i are retractions in proj �.
(ret-irred-sec) There is an i ∈ {1, ..., n} such that f i is irreducible in proj �, the

morphisms f j are sections for all j > i and the morphisms f j are retractions for all j < i.

2.5

Let P be an indecomposable projective �-module, · · · d−3→ R−2 d−2→ R−1 d−1→ P →
P/radP → 0 a minimal projective resolution of P/radP in mod � and 0 → P/radP →
I 0 g0

→ I 1 g1

→ · · · gn−j−1

→ In−j → · · · a minimal injective co-resolution of P/radP in mod �,
ν the Nakayama functor; for s = 0, · · · , n − j, Ls = ν−1(I s) and ds

L = ν−1(gs). Consider
the following morphisms of complexes:
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On Sectional Paths in Cn(proj �)

and

By [7, Proposition 8.5, 8.7, and 8.8] we know that for j = 1, · · · , n − 1 the morphism
λj : Jj (P ) → Lj (P ) is a minimal left almost split morphism, ρj : Rj (P ) → Jj (P ) is a

minimal right almost split morphism and Rj (P )
(ρj ,σj )t−→ Jj (P ) ⊕ Bj (P )

(λj ,τj )−→ Lj (P ) is an
almost split sequence.

3 Irreducible Morphisms in Cn(proj �)

We start recalling the fact that if we fix a set of orthogonal primitive idempotents {e1, ..., em}
in �, then for each 1 ≤ i ≤ m there is an indecomposable projective �-module Pi = ei �

and an indecomposable injective �-module Ii = D(�ei).

For the convenience of the reader, we state the next well known result from [2, VIII,
Proposition 1.15] and [1, VII, Lemma 1.6]), where Q� denote the ordinary quiver of �.

Proposition 3.1 Let � be a finite dimensional k-algebra over an algebraically closed field
k. Then, the following conditions hold.

(1) If there is an arrow i → j in Q� then there is a non-zero morphism Pj → Pi in
mod �.

(2) If there is an irreducible morphism Pj → Pi in mod � then there is an arrow i → j

in Q�.

Moreover, if � is an hereditary algebra then the following statements are equivalent:

(3) There is an arrow i → j in Q�.
(4) There is an irreducible morphism Pj → Pi in mod �.

Our first result shows how the existence of irreducible morphisms in Cn(proj �) is
related with the existence of irreducible morphisms in mod �.

Proposition 3.2 Let � be an artin algebra. Consider Pi = ei � an indecomposable pro-
jective �-module and Ii = D(�ei) an indecomposable injective �-module defined as
above.

(a) There is an irreducible morphism T (Pj ) → T (Pi) in Cn(proj �) if and only if there
is an irreducible morphism Pj → Pi in mod �.

(b) There is an irreducible morphism S(Pj ) → S(Pi) in Cn(proj �) if and only if there is
an irreducible morphism Ij → Ii in mod �.
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In case � is a finite dimensional algebra over an algebraically closed field then the
following statements hold.

(c) If there is an arrow i → j in Q� then there is a non-zero morphism T (Pj ) → T (Pi)

in Cn(proj �).
(d) If there is an irreducible morphism T (Pj ) → T (Pi) in Cn(proj �) then there is an

arrow i → j in Q�.

Proof (a). Let f : T (Pj ) → T (Pi) be an irreducible morphism in Cn(proj �). Then, we
can assume that f is of the form

T (Pj ) : 0 −→ 0 −→ ... −→ 0 −→ Pj

↓f ↓ ↓ ↓ ↓f n

T (Pi) : 0 −→ 0 → ... → 0 −→ Pi

It is clear that f is irreducible in Cn(proj �) if and only if the morphism

0 −→ Pj

↓ ↓f n

0 −→ Pi

is irreducible in C2(proj �). Moreover, by [4, Lemma 5.1] this fact holds if and only if the
morphism Pj → Pi is irreducible in mod �.

(b). The morphism S(Pj ) → S(Pi) is irreducible in Cn(proj �) if and only if the mor-
phism (Pj → 0) → (Pi → 0) is irreducible in C2(proj �). By [7, Proposition 6.2]
we know that A2(Pj → 0) = PIj

, where PIj
is the complex defined in (2.3). Hence

A2(Pj → 0) → A2(Pi → 0) is irreducible in C2(proj �), that is, P
Ij

→ P
Ii

is irreducible
in C2(proj �). We conclude that Ij → Ii is irreducible in mod � by using the equivalence
between mod � and C2(proj �) defined in [4, Proposition 5.9, Lemma 5.3].

(c). By Proposition 3.1, if there is an arrow i → j in Q� then there is a non-zero
morphism f : Pj → Pi in mod �. Hence, there is a non-zero morphism φ : T (Pj ) →
T (Pi) in Cn(proj �) where φn = f and φi = 0 if i �= n.

(d). If T (Pj ) → T (Pi) is irreducible in Cn(proj �) then by (a) there is an irreducible
morphism Pj → Pi in mod �. By Proposition 3.1 we conclude that there is an arrow i → j

in Q�.

In general, an irreducible morphism Pj → Pi in mod � does not induce an irreducible
morphism S(Pj ) → S(Pi) in Cn(proj �). For example, consider the path algebra of Q�

1
α−−→ 2

β−−→ 3

with βα = 0. Assume that an irreducible morphism P3 → P2 in mod � induces an irre-
ducible morphism g = {g1, 0} : (P3 → 0) −→ (P2 → 0) in C2(proj �). Hence, g1 is
neither a retraction nor a section. By [10, Proposition 3, Corollary 2] the morphism g1 is
irreducible in proj �. Since there is an irreducible morphism h : P2 → P1 in proj � and
Hom�(P3, P1) = 0, we infer that hg1 = 0. Therefore, we get the following commutative
diagram:
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On Sectional Paths in Cn(proj �)

Then, g = {id, 0}{g1, 0}. Note that {id, 0} is not a retraction and that {g1, 0} is not a
section which contradicts the fact that g is irreducible.

We finish this section with some results for the hereditary case.

Lemma 3.3 Let H be a hereditary artin algebra and X, Y ∈ proj H . Then, f : X → Y is
irreducible in proj H if and only if f : X → Y is irreducible in mod H .

Proof Let f : X → Y be an irreducible morphism in proj H . Assume that f = βα for some
M ∈ mod H , with α : X → M and β : M → Y in mod H . Then, Im f ⊂ Im β ∈ proj H .
Therefore, β |M,Im β : M → Im β is a retraction. Hence, there is a morphism β ′ : Im β → M

such that ββ ′ = idIm β , M = Ker β ⊕ Im β ′ and Im β ′ � Im β ∈ proj H . Then, there is a
diagram as follows:

Let π : Ker β ⊕ Im β ′ → Im β ′ be the projection morphism. Consider α̃ = πα : X →
Im β ′. If x ∈ X and α(x) = k+u ∈ Ker β ⊕ Im β ′, then β |Im β ′ α̃(x) = βπα(x) = β(u) =
β(k + u) = β(α(x)) = βα(x) = f (x). Since f is irreducible in proj H then either β |Im β ′
is a retraction or α̃ is a section. If β |Im β ′ is a retraction then β is a retraction. Now, if α̃

is a section then there is a morphism γ̃ : Im β ′ → X such that γ̃ α̃ = idX . We define the
morphism γ : M → X by γ = γ̃ π . Then, γα = γ̃ πα = γ̃ α̃ = idX . Hence, α is a section
and therefore f : X → Y is irreducible in mod H .

The converse follows easily.

Proposition 3.4 Let H be a finite dimensional hereditary algebra over an algebraically
closed field. Let Pi and Pj be the projective H -modules corresponding to the vertices i and
j in QH , respectively. The following statements are equivalent:

(a) There is an arrow i → j in QH .
(b) For every n ≥ 2, there is an irreducible morphism T (Pj ) → T (Pi) in Cn(proj H).
(c) For every n ≥ 2, there is an irreducible morphism S(Pj ) → S(Pi) in Cn(proj H).

Proof (a) ⇔ (b). Since H is hereditary, there is an arrow i → j in QH if and only if
there is an irreducible morphism Pj → Pi in mod H . By Proposition 3.2, (a), T (Pj ) →
T (Pi) is an irreducible morphism in Cn(proj H), for any n ≥ 2. The converse follows by
Proposition 3.2, (d).

(a) ⇔ (c) If there is an arrow i → j in QH then by Proposition 3.1 there is an irreducible
morphism Ij → Ii in mod H . By Proposition 3.2, (b), we infer the result.

Conversely, if there is an irreducible morphism f : S(Pj ) → S(Pi) in Cn(proj H), by
[10, Proposition 3, Corollary 2], we have that f 1 : Pj → Pi is an irreducible morphism in
proj H . By Lemma 3.3, f 1 : Pj → Pi is an irreducible morphism in mod H . Then, there is
an arrow i → j in QH since H is hereditary.

4 On Almost Split Sequences

By [7, Theorem 8.2] we know that there exists a minimal right (left) almost split morphism
in Cn(proj �), ending (starting) at any indecomposable non-projective (non-injective,
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respectively) complex. Moreover, the authors studied the right (left) almost split morphisms
in Cn(proj �) ending (starting, respectively) at Ji(P ), for P an indecomposable projective
�-module. We shall complete their study proving the existence of almost split morphisms
in Cn(proj �) ending at a projective complex of the form T (P ) or starting in an injective
complex S(P ), for P is an indecomposable projective �-module. These results will allow
us to construct the Auslander-Reiten quiver of Cn(proj �).

Remark 4.1 Let P be an indecomposable projective �-module, π : R−1→rad P the pro-
jective cover of rad P and j : rad P → P a minimal right almost split morphism in mod �.
Then, d−1 = jπ is a minimal right almost split morphism in proj �. In fact, consider
β : Q → P a non-split morphism in proj �. Then, there is a morphism γ : Q → rad P

such that jγ = β. Moreover, since Q is projective and π is an epimorphism then there is a
morphism α : Q → R−1 such that πα = γ . Hence, d−1γ = (jπ)α = j (πα) = jγ = β,
proving that d−1 is a right almost split morphism. In order to see that d−1 is minimal we
consider a morphism h : R−1 → R−1 with d−1h = d−1. Then, jπh = jπ . Since j is a
monomorphism we infer that πh = π . Hence, πh is an epimorphism. Moreover, h is an
epimorphism and therefore an isomorphism.

Theorem 4.2 Let P be an indecomposable projective �-module. Consider

· · · d−3→ R−2 d−2→ R−1 d−1→ P → P/rad P → 0

a minimal projective resolution of P/rad P in mod � and

0 → P/radP → I 0 g0

→ I 1 g1

→ · · · gn−j−1

→ In−j → · · ·
a minimal injective co-resolution of P/radP in mod �. Let Ls = ν−1(I s) and ds

L =
ν−1(gs) where ν = DHom�(− ,�) : mod � → mod � is the Nakayama functor and
s = 0, · · · , n − j . The following statements hold.

(a) If R−1 �= 0 then the morphism ρ : R(T (P )) → T (P ) defined as follows

is a minimal right almost split morphism in Cn(proj �).
(b) If L1 �= 0, the morphism λ : S(P ) → L(P ) given by

is a minimal left almost split morphism in Cn(proj �).
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Proof (a). By the above remark the morphism d−1 : R−1 → P is irreducible in proj �.
Therefore, ρ is neither a section nor a retraction. Consider g = {gi}ni=1 : Q → T (P ) in
Cn(proj �) not to be a retraction. We illustrate the situation as follows:

Observe that gi = 0 if i �= n and that gn is not a retraction, since otherwise g is a
retraction. We shall prove that there is a morphism μ : Q → R(T (P )) such that ρμ = g.

Since R−1 d−1→ P is a right almost split morphism in proj � there exists a morphism
μn : Qn → R−1 such that d−1μn = gn. Assume that μn, · · · , μj , are defined for some 1 <

j ≤ n and that dn−i+1μi = μi+1di
Q for i = j, j +1, · · · , n. We write α = n−j +1. Next,

we prove that we can define μj−1 : Qj−1 → R−(α+1) such that d
−(α+1)
Q μj−1 = μjd

j−1
Q .

We recall that d−(α+1) = iπ , where i : Ker d−α → R−α is the inclusion morphism and
π : R−(α+1) → Ker d−α is the minimal projective cover of Ker d−α . Since d−αμjd

j−1
Q =

μj+1d
j
Qd

j−1
Q = 0 then μjd

j−1
Q factorizes through Ker d−α . That is, there is a morphism μ′ :

Qj−1 → Ker d−α such that iμ′ = μjd
j−1
Q . Since Qj−1 is projective there is a morphism

μj−1 : Qj−1 → R−(α+1) such that πμj−1 = μ′. Then, iπμj−1 = iμ′ and we infer
that d−(α+1)μj−1 = μjd

j−1
Q . Therefore, we prove the existence of a morphism μ : Q →

R(T (P )) such that ρμ = g. Hence, ρ is a right almost split morphism. Furthermore, the

fact that ρ is minimal is a consequence that · · · → R−2 d−2→ R−1 d−1→ P → P/rad P → 0 is
a minimal projective resolution of P/rad P .

(b). We get (b) by using the equivalence ν : Cn(proj �) → Cn(inj �) stated in
[7, Sec. 6].

By general Auslander-Reiten theory we know that Irr�(−, S) = 0 if and only if S is a
simple projective �-module. Next, we shall prove a similar result for Cn(proj �).

Proposition 4.3 Let X be an indecomposable complex in Cn(proj �). Then, the following
conditions hold.

(a) IrrCn(proj �)(−, X) = 0 if and only if X = T (S) for S a simple projective �-module.
(b) IrrCn(proj �)(X,−) = 0 if and only if X = S(P ) for P an indecomposable projective

�-module such that ν(P ) is a simple injective, where ν is the Nakayama functor.

Proof (a). Let X be an indecomposable complex of the form Ji(P ) or T (P ) where P is
not a simple projective �-module. By Theorem 4.2 (a) and [7, Proposition 8.5] there are
irreducible morphisms ending in X.

If X is an indecomposable complex, not projective, by [7, Sec. 6 and 8] there is an almost
split sequence in Cn(proj �) of the form An(X) → E → X, and therefore E → X is an
irreducible morphism ending in X. In all these cases, IrrCn(proj �)(−, X) �= 0.

Conversely. Assume there is an irreducible morphism f = {f i}ni=1 : X → T (S) in
Cn(proj �) with S a simple projective �-module. Hence, f i = 0 for i �= n and f n :
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Xn → S is a non-zero morphism in mod �. Since S is simple projective then f n is a
retraction. Hence, f is a retraction contradicting the fact that f is irreducible. Therefore,
IrrCn(proj �)(−, T (S)) = 0.

(b). Similarly, using Theorem 4.2 (b), [7, Proposition 8.7] and the equivalence ν :
Cn(proj �) → Cn(inj �) from [7, Sec.6], we get the result.

As an immediate consequence of the above result we get the following corollary.

Corollary 4.4 Let S be a simple projective �-module and T (S) → X an irreducible
morphism in Cn(proj �) with X indecomposable. Then, X is projective.

The next result in Cn(proj �) is similar to the one given for mod � in [2, V].

Proposition 4.5 Let f : X → Y be a morphism in Cn(proj �). The following conditions
hold.

(a) If f is a right almost split morphism and Y is not projective then Y is indecomposable
and f is an epimorphism.

(b) If f is a left almost split morphism and X is not injective then X is indecomposable
and f is a monomorphism.

Given f : X → Y in Cn(mod �), we denote by Ker f the complex with entries Ker f i

and induced differentials. We denote by Coker f the complex with entries Cokerf i and
induced differentials.

The following result is fundamental to obtain the Auslander-Reiten quiver of Cn(proj �).

Proposition 4.6 Let � be artin algebra. If f : X → Y is a minimal left almost split
morphism in Cn(proj �) with X not injective, then X → Y → Coker f is an almost split
sequence in Cn(proj �).

Proof Let X
g→ E

h→ A−1
n (Y ) be an almost split sequence starting in X. Since f and g

are minimal left almost split morphisms, then there exists an isomorphism u : E → Y such
that ug = f .

Consider the exact sequence X
f→ Y

t→ Coker f in Cn(mod �). Since tug = 0, there
exists a morphism α : A−1

n (Y ) → Coker f in Cn(mod �) such that tu = αh. We get the
following commutative diagram in Cn(mod �)

with α an isomorphism. Therefore, Coker f � A−1
n (Y ) ∈ Cn(proj �).

The following result is fundamental for our further purposes.

Proposition 4.7 Let � be an artin algebra and P be an indecomposable projective �-
module. The following conditions hold.
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(a) dimkRi (P )
IrrCn(proj �)(Ri(P ), Ji(P )) = dimkJi (P )

IrrCn(proj �)(Ri(P ), Ji(P )) = 1.
(b) dimkJi (P )

IrrCn(proj �)(Ji(P ), Li(P )) = dimkLi (P )
IrrCn(proj �)(Ji(P ), Li(P )) = 1.

Proof (a). Consider ρi : Ri(P ) → Ji(P ) a minimal right almost split morphism.
Since Ri(P ) is indecomposable, then for any irreducible morphism f : Ri(P ) →
Ji(P ) there is an automorphism δ : Ri(P ) → Ri(P ) such that f = ρiδ. Hence,
dimkRi (P )

IrrCn(proj �)(Ri(P ), Ji(P )) = 1.
To prove that dimkJi (P )

IrrCn(proj �)(Ri(P ), Ji(P )) = 1 it is enough to show that Ji(P )

is not a direct summand of Bi(P ). Let · · · d−3→ R−2 d−2→ R−1 d−1→ P → P/rad P → 0

be a minimal projective resolution of P/rad P in mod � and 0 → P/radP → I 0 g0

→
I 1 g1

→ · · · gn−j−1

→ In−j → · · · a minimal injective co-resolution of P/radP in mod �.
For s = 0, · · · , n − j let Ls = ν−1(I s) and ds

L = ν−1(gs). Then, Bi(P ) is the complex

R−i d−i−→ . . . −→ R−1 d0
Ld−1

−→ L1 d1
L−→ L2 d2

L−→ . . . −→ Ln−i , see Section 2.5.
Assume that Ji(P ) is a direct summand of Bi(P ). Hence, there exists a section γ :

Ji(P ) → Bi(P ). This means that there are retractions μ : R−1 → P and η : L1 → P such
that μγ i = idP and ηγ i+1 = idP . Since the following diagram is commutative

we have that μ = ηd0
Ld−1 and γ i+1 = d0

Ld−1γ i . Therefore, (ηd0
L)(d−1γ i) =

(ηd0
Ld−1)γ i = μγ i = idP . As a consequence we get that ηd0

L : P → P is a
retraction and d−1γ i : P → P is a section. Moreover, they are isomorphisms. We
conclude that d−1 is a retraction contradicting that d−1 is irreducible in proj �. Then,
dimkJi (P )

IrrCn(proj �)(Ri(P ), Ji(P )) = 1.

(b). Statement (b) follows from the fact that Li(P ) = A−1
n (Ri(P )) and that �Cn(proj �)

is a valued translation quiver, see [13, Proposition 2.1].

The next result is useful to study the irreducible morphisms ending in a complex T (P ).

Lemma 4.8 Let � be an artin algebra and P an indecomposable non-simple projective �-
module. Let R(T (P )) = R−n → · · · → R−2 → R−1 be the complex in Cn(proj �) defined
in Theorem 4.2, (a). If X1 → · · · → Xn−1 → Xn is an indecomposable direct summand
of R(T (P )) then Xn−1 → Xn is an indecomposable direct summand of R−2 → R−1 in
C2(proj �).

Proof We know that · · · → R−n → · · · → R−2 → R−1 → rad P → 0 is a minimal
projective resolution of rad P . Let rad P = ⊕s

i=1Mi , with Mi indecomposable �-modules
for i = 1, . . . , s and R(T (P )) = ⊕s

i=1PMi
in Cn(proj �), where PMi

= P 1
i → · · · →

P n−1
i → P n

i is such that · · · → P 1
i → · · · → P n−1

i → P n
i → Mi → 0 is a minimal

projective resolution of Mi , for i = 1, · · · , s. Since each Mi is indecomposable, then the
indecomposable summands of R(T (P )) are the complexes PMi

. Since P 2
i → P 1

i → Mi →
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0 is a minimal projective presentation of Mi , then P 2
i → P 1

i is an indecomposable direct
summand of R−2 → R−1 in C2(proj �).

Proposition 4.9 Let � be an artin algebra. Let P be an indecomposable non-simple
projective module and rad P = ⊕s

i=1Mi , where Mi are indecomposable �-modules for

i = 1, . . . , s. Let PMi
= P 1

i → · · · → P n−1
i → P n

i be the complex such that

· · · → P 1
i → · · · → P n−1

i → P n
i → Mi → 0 is a minimal projective resolution of Mi , for

i = 1, · · · , s. Then, the following conditions hold.

(a) ⊕t
j=1PMi

→ T (P ) is irreducible in Cn(proj �) if and only if ⊕t
j=1Mi → P is

irreducible in mod �.
(b) PMi

→ ⊕t
j=1T (P ) is irreducible in Cn(proj �) if and only if Mi → ⊕t

j=1P is
irreducible in mod �.

Proof (a). The result follows from Theorem 4.2, Lemma 4.8 and the equivalence between
C2(proj �) and mod � given in (2.3).

(b). If PMi
→ ⊕s

j=1T (P ) is irreducible in Cn(proj �), by Lemma 4.8 we have that

(P n−1
i → P n

i ) → ⊕s
j=1(0 → P) is irreducible in C2(proj �). Hence, Mi → ⊕s

j=1P is
irreducible in mod �, see (2.3) and [4, Proposition 5.9, Lemma 5.3].

Conversely, if Mi → ⊕s
j=1P is irreducible in mod � then (P n−1

i → P n
i ) → ⊕s

j=1(0 →
P) is irreducible in C2(proj �). Therefore, PMi

→ ⊕s
j=1T (P ) is irreducible in Cn(proj �).

Dual results hold for irreducible morphisms of the form S(P ) → L(P ), see Theorem 4.2.

Proposition 4.10 Let � be an artin algebra such that �� has trivial valuation. Then, any
arrow X → Y , with X and Y in a pre-projective or a pre-injective component of �Cn(proj �)

has trivial valuation.

Proof We only prove the case where X and Y are pre-projective. If Y = T (P ) or Y = Ji(P )

for some indecomposable projective �-module P then by Proposition 4.7 and Proposi-
tion 4.9, we get the result. Otherwise, there is a natural number m such that Am

n (Y ) is
projective. If Am

n (X) is defined then as in the above case the arrow Am
n (X) → Am

n (Y ) has
trivial valuation. Therefore, X → Y has also trivial valuation since �Cn(proj �) is a valued

translation quiver. If Am
n (Y ) is projective then A

j
n(X) is projective for j < m. We get that

the arrow A
j+1
n (Y ) → A

j
n(X) has trivial valuation, proving the result.

As an immediate consequence of the above proposition and [2, VII, Proposition 2.3] we
get the next result.

Corollary 4.11 Let � be a finite dimensional algebra over an algebraically closed field
of finite representation type. If Cn(proj �) is representation-finite without An-periodic
complexes then �Cn(proj �) has trivial valuation.

Our next result compares the valuation of the arrows in �C2(proj �) and in ��.

Proposition 4.12 Let � be an artin algebra. The following conditions hold.
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(i) If an arrow X → Y in �� has valuation (a, b) then there is an arrow PX → PY with
valuation (a, b) in �C2(proj �), where PX is defined in (2.3).

(ii) If (X1 dX→ X2) → (Y 1 dY→ Y 2) has valuation (a, b) in �C2(proj �), (X1 dX→ X2) and

(Y 1 dY→ Y 2) do not have injective direct summands then X → Y in �� has valuation
(a, b), where X = Coker dX and Y = Coker dY .

(iii) �� has trivial valuation if and only if �C2(proj �) has trivial valuation.

Proof By [4, Lemma 5.1] we get Statements (i) and (ii). Statement (iii) follows from
Proposition 4.7, Proposition 4.9, (i) and (ii).

5 The Auslander-Reiten Quiver of Cn(proj �)

In general, the Auslander-Reiten quiver of Cn(proj �) is not easy to build, since we must
know all the almost split sequences in the category. The above results allow us to build
such a quiver by using the same “knitting technique” that we use to build ��. As in the
module category, the mentioned technique is efficient for finite acyclic components of the
Auslander-Reiten quiver.

Consider the function of complexes, defined by W. Weeler in [14], that sends a com-
plex X = (X1 → · · · → Xn) ∈ Cn(proj �) to the length of a composition series of
⊕n

i=1X
i . Observe that all complexes in Cn(proj �) have bounded length. Then, for a cate-

gory Cn(proj �) we can prove an analogous of Auslander’s theorem that states that if there
is a finite connected component � in the Auslander-Reiten quiver of mod � then � is the
whole Auslander-Reiten quiver.

Example 5.1 Consider the path algebra of the quiver Q�

1
α−−→ 2

β−−→ 3

with βα = 0. The Auslander-Reiten quiver of mod � is:

We show how to construct �C3(proj �). We start considering the minimal almost split
morphisms from Rj (Pi) to Jj (Pi) for i = 1, 2, 3 and j = 1, 2 and from R(T (Pi)) to T (Pi)

for i = 1, 2, 3. We compute such complexes in the next table.

R2(Pi) P3 → P2 → P1 0 → 0 → P3 0 → P3 → P2

J2(Pi) 0 → P1 → P1 0 → P3 → P3 0 → P2 → P2

R1(Pi) P2 → P1 → 0 P3 → P2 → 0 0 → P3 → 0
J1(Pi) P1 → P1 → 0 P2 → P2 → 0 P3 → P3 → 0

R(T (Pi)) 0 → 0 → P3 0 → P3 → P2

T (Pi) 0 → 0 → P2 0 → 0 → P1

By Proposition 4.7, the valuation of the arrows from Rj (Pi) to Jj (Pi) for i = 1, 2, 3
and j = 1, 2 is trivial. Moreover, by Proposition 4.9 since �� has trivial valuation then the
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arrows from the indecomposable direct summands of R(T (Pi)) to T (Pi) have also trivial
valuation for i = 1, 2, 3.

To start knitting the Auslander-Reiten quiver first we consider the complex T (P3) : (0 →
0 → P3). By Proposition 4.3 there are no morphisms ending in this complex, since P3 is a
simple projective. Then, we get the following subquiver:

By Corollary 4.4 if there is a morphism T (P3) → X then X is projective. Moreover,
the morphism in (1) is a minimal left almost split morphism. By Proposition 4.6, we get an
almost split sequence as follows:

(0 → 0 → P2) −→ (0 → 0 → P3) ⊕ (0 → P3 → P2) −→ (0 → P3 → P3). (1)

Now, we consider the irreducible morphisms from (0 → P3 → P2) to the projective
complexes (0 → 0 → P1) and (0 → P2 → P2) and since there exists the translate of
(0 → 0 → P2) we get the subquiver:

Assume there is another arrow from (0 → P3 → P2) to X. Since X �= (0 → 0 → P1),
X �= (0 → P2 → P2) and X �= (0 → P3 → 0), because such arrows have trivial
valuation then X is not projective. Therefore, there is an arrow A(X) → (0 → P3 → P2)

contradicting that (2) is an almost split sequence and proving that (0 → P3 → P2) −→
(0 → P3 → 0) ⊕ (0 → 0 → P1) ⊕ (0 → P2 → P2) is a minimal left almost split
morphism. Iterating the above construction in each step we get the Auslander-Reiten quiver
of C3(proj �).
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In [7], the authors show that the study of the morphisms in Db(mod �) can be replaced
by the study of morphisms between complexes in Cn(proj �) see [11] for a detail account on
the derived category. More precisely, they proved that, if f is irreducible in Db(mod �) then
there exists an n such that f is irreducible in Cn(proj �). Similarly, an Auslander-Reiten tri-
angle of Db(mod �) can be seem as an almost split sequence of Cn(proj �). Next, we illus-
trate this fact with an example. First, we recall the following result from [6, Corollary 4.5].

Corollary 5.2 [6] Let X and Y be complexes without injective direct summands, Y inde-
composable with Y 1 = 0 = Yn and f : X → Y irreducible in Cn(proj �). Then, f is
irreducible in K−,b(proj �) if and only if d1

X is a monomorphism.

Notation We denote by P
n1
1 P

n2
2 · · · P nh

h the direct sum
⊕h

i=1 P
ni

i and by P
n1
1 · · · P nh

h −
R

s1
1 · · ·Rst

t − Q
m1
1 · · ·Qmr

r the complex
⊕h

i=1 P
ni

i → ⊕t
i=1 R

si
i → ⊕r

i=1 Q
mi

i of
C3(proj �).

Example 5.3 Consider � the path algebra given by the quiver

with γβα = 0 and γ δε = 0.
The Auslander Reiten quiver of C5(proj �) has the following subquiver (we denote by j

the complex Pj ):

By the above corollary all the irreducible morphisms of such a subquiver are irreducible
in K−,b(proj �) and therefore in Db(mod �).

6 Sectional Paths

Some of the results in this section can be seen as a “natural” generalization of those in
mod �, but there are some important differences. We know that the composition of irre-
ducible morphisms on a sectional path in mod � is non-zero. This result was first proved
by R. Bautista and S. Smalø in 1983, see [5]. At the same time, H. Igusa and G. Todorov

Author's personal copy



C. Chaio et al.

also studied sectional paths in mod � and proved that the composition of m irreducible mor-
phisms on a sectional path does not belong to �m+1(mod �) and as a consequence does not
vanish. In this section we prove that, in general, such a property is not true in Cn(proj �).

We start recalling the notion of sectional path.

Definition 6.1 A path of irreducible morphisms between indecomposable complexes in
Cn(proj �) X0 −→ X1 −→ · · · −→ Xm is sectional if A−1

n Xi �� Xi+2 for every i =
0, . . . , m − 2.

The following example shows that there are irreducible morphisms in Cn(proj �) which
belong to a sectional path with zero composition.

Example 6.2 Let � be the path algebra of the quiver Q� : 1
α→ 2

β→ 3
γ→ 4 with

βα = γβ = 0. The Auslander-Reiten quiver of C3(proj �) is the following

and the paths

J2(P4) = (0 − P4 − P4) −→ (0 − P4 − P3) −→ T (P2) = (0 − 0 − P2),

J1(P4) = (P4 − P4 − 0) −→ (P4 − P3 − P2) −→ J2(P2) = (0 − P2 − P2),

S(P3) = (P3 − 0 − 0) −→ (P2 − P1 − 0) −→ J1(P1) = (P1 − P1 − 0),

are zero sectional paths.

In [13], S. Liu studied the behaviour of sectional paths in left or right Auslander-Reiten

categories, A. More precisely, he proved that any sectional path X0
f1→ X1

f2→ · · · fm→ Xm

in these categories verify that fm · · · f1 /∈ �m+1
A (X0, Xm), see [13, Lemma 2.7].

Now, we consider a hereditary artin algebra H . In this case we shall prove that
Cn(proj H) is a left Auslander-Reiten category. As an immediate consequence we get that
the composition of irreducible morphisms in a sectional path is always non-zero.

We recall the following definitions from [13].
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Definition 6.3 An object X in Cn(proj �) is called pseudo-projective if there exists a sink
monomorphism M → X, and dually, it is called pseudo-injective if there exists a source
epimorphism X → N .

Definition 6.4 A Krull-Schmidt category A is called a left Auslander Reiten category if
each indecomposable object in A is either pseudo-projective or the end-term of an almost
split sequence. A is called a right Auslander-Reiten category if each indecomposable object
in A is either pseudo-injective or the starting term of an almost split sequence. A is called
an Auslander-Reiten category if it is a left and a right Auslander-Reiten category.

Proposition 6.5 Let � be an artin algebra. The category Cn(proj �) is a left Auslander-
Reiten category if and only if � is hereditary.

Proof Assume that � is not hereditary. Then, there exists an indecomposable projective �-
module P such that the projective dimension of P/radP is greater than one. Therefore, we
infer that Cn(proj �) is not a left Auslander-Reiten category since the irreducible morphism
ρ : R(T (P )) → T (P ) is not a sink monomorphism and clearly T (P ) is not the ending of
an almost split sequence.

Now, let � be a hereditary algebra. Consider X an indecomposable complex in
Cn(proj �). If X is not projective then X is an end-term of an almost split sequence. If
X = T (P ) (or X = Ji(P )) then ρ : R(T (P )) → T (P ) (or ρi : Ri(P ) → Ji(P )) is a sink
morphism ending in X. Since � is hereditary then the above sink morphisms are monomor-
phisms. In fact, for every P ∈ proj H we have that the projective dimension of P/rad P

is less than or equal to one. We conclude that, d−1 : R−1 → P is a monomorphism and
Rj = 0 for every j < 1, proving the result.

Corollary 6.6 Let H be a hereditary algebra and X0 → X1 → · · · → Xm be a sectional
path in Cn(proj H). If fi : Xi−1 → Xi are irreducible morphisms for i = 1, · · · ,m then
fm · · · f1 /∈ �m+1

Cn(proj H)
(X0, Xm) In particular, fm · · · f1 �= 0.

Next, we show an example of a category Cn(proj H), with H a hereditary algebra, which
is not a right Auslander-Reiten category.

Example 6.7 Consider H the path algebra given by the quiver

1 −−−→ 2 −−−→ 3

The Auslander-Reiten quiver of C2(proj H) is the following:
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We observe that there is not a source epimorphism starting in the injective (P3 → 0)

since the irreducible morphism (P3 → 0) → (P2 → 0) is a monomorphism and, further-
more there is not an almost split sequence starting in such a complex. Therefore, C2(proj H)

is not a right Auslander-Reiten category.

The next result is a consequence of Proposition 4.7 and the shape of an almost split
sequence in Cn(proj �) with an indecomposable projective-injective direct summand of its
middle term.

Lemma 6.8 If X0 → X1 → · · · → Xm is a sectional path with Xi = Jt (P ) for some
i ∈ {0, · · · ,m} and where P is an indecomposable projective module then i = 0 or i = m.

Lemma 6.9 Let� be an artin algebra andX0 → X1 → · · · → Xm be a non-zero sectional
path in Cn(proj �), with m > 1. Then, one of the following statements hold.

(a) The complexes X1, X2, · · · , Xm are not projective.
(b) The complexes X0, X1, · · · , Xm−1 are not injective.
(c) X0 = Jt (P ) and Xm = Js(Q) with P,Q indecomposable projective �-modules,

1 ≤ t, s ≤ m − 1 with s = t or s + 1 = t . Moreover, X1, · · · , Xm−1 are neither
projective nor injective.

Proof Let X0 → X1 → · · · → Xm be a non-zero sectional path. If there are no projec-
tives (no injectives, respectively) in such a path then condition (a) ((b), respectively) holds.
Assume i ∈ {0, · · · ,m} is the least integer such that Xi is projective or injective.

Case 1: If Xi = S(Q) then Xj are not projective for j > i, otherwise the path is zero.
Case 2: If Xi = Jt (Q), by Lemma 6.8 we have that i = 0 or i = m. If i = 0 then for

j > 0 the complexes Xj are not projective of the form T (P ), since otherwise the path is
zero. We have the following two situations: the path is of the form Jt (Q) = X0 → · · · →
Xm = Js(P ), where Xj are neither projective nor injective for j = 1, . . . , m − 1, and
s = t or s + 1 = t or of the form Jt (Q) = X0 → · · · → Xm with X1, · · · , Xm not
projective.

If i = m then X0, · · · , Xm−1 are not injective.
Case 3: If Xi = T (Q) then for j > i the complexes Xj are different from S(P ), since

the path is non-zero. If there is a complex of the form Js(P ) then by Lemma 6.8 we have
that s = m. In this case, X0, · · · , Xm−1 are not injective.

Our next aim is to show conditions under which the composition of irreducible mor-
phisms on a sectional path in Cn(proj �) does not belong to �m+1

Cn(proj �)
whenever � is

an artin algebra. We start adapting [12, Lemma 13.2] to Cn(proj �). The proof follows
by induction on the length of the sectional path. We state the result below. A dual result
holds.

Proposition 6.10 Let X0 → X1 → · · · → Xm be a sectional path in Cn(proj �) with
X2, · · · , Xm non-projective complexes. If fi : Xi−1 → Xi are irreducible morphisms for
i = 1, · · · , m then there do not exist morphisms g : X0 → Z and f ′

m : Z → Xm such
that (fmf ′

m) : Z ⊕ Xm−1 → Xm is a right almost split morphism and f ′
mg + fm · · · f1 ∈

�m+1
Cn(proj �)(X0, Xm).
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In [8, Corollary 3.3] the authors studied when the composition of irreducible mor-
phisms between indecomposable modules in a generalized standard component with length
belongs to the n + 1 power of the radical of their module category. Such a result can be
adapted to similar components in �Cn(proj �). More precisely, if � ⊂ �Cn(proj �) is a gener-
alized standard component with length then the composition f of m irreducible morphisms
between indecomposable complexes in � belongs to �m+1

Cn(proj �) if and only if f = 0. As an
immediate consequence we get the following result.

Proposition 6.11 Let � be an artin algebra and � ⊂ �Cn(proj �) a generalized standard
component with length. Let X0 → X1 → · · · → Xm be a sectional path with Xi ∈ �

for i = 0, . . . , m with m ≥ 3. For each irreducible morphism fi : Xi−1 → Xi with
i ∈ {1, · · · ,m} we have that fm · · · f1 ∈ �m+1

Cn(proj �)
(X0, Xm) if and only if fm · · · f1 = 0.

Theorem 6.12 Let � be an artin algebra. Consider a sectional path X0 → X1 →
· · · → Xm with m > 0 in Cn(proj �). If there are irreducible morphisms fi :
Xi−1 → Xi for i ∈ {1, · · · , m} such that fm · · · f1 ∈ �m+1

Cn(proj �)
(X0, Xm), fm−1 · · · f1 /∈

�m
Cn(proj �)

(X0, Xm−1) and fm · · · f2 /∈ �m
Cn(proj �)

(X1, Xm) then the following conditions
hold.

(a) The complexes X1, · · · , Xm−1 are neither projective nor injective.
(b) X0 is injective.
(c) Xm is projective.
(d) If there is no positive integer s such that X0 = Js(P ) and Xm = Js(Q), for P and Q

indecomposable projective modules then fm · · · f1 = 0.

Proof By hypothesis the sectional paths (1) X0
f1→ X1

f2→ · · · fm−1→ Xm−1 and (2) X1
f2→

X2
f3→ · · · fm→ Xm are non-zero.

(a). We consider two cases:
Case 1: X0 or Xm are projective-injective. Without loss of generality, we may assume

that X0 is projective-injective. Since the path (1) satisfies Lemma 6.9 (a), (b) or (c),
Xm−1 is not projective-injective and X0 is injective then we infer that satisfies (a). Hence,
X1, · · · , Xm−1 are not projective.

On the other hand, if the path (2) satisfies (a), by Proposition 6.10 we have that
fm · · · f1 /∈ �m+1

Cn(proj �)(X0, Xm) a contradiction to the hypothesis. The path (2) satisfies
(b), therefore X1, · · · , Xm−1 are neither projective nor injective.

Case 2: X0 and Xm are not projective-injective. If the path (1) satisfies Lemma 6.9 (a)

then X1, · · · , Xm are not projective. Hence, by Proposition 6.10 we have that fm · · · f1 /∈
�m+1

Cn(proj �)(X0, Xm). If the path (2) satisfies (b) then X0, · · · , Xm−1 are not injective.

Therefore, by the dual of Proposition 6.10 we have that fm · · · f1 /∈ �m+1
Cn(proj �)(X0, Xm).

Clearly, the paths (1) and (2) satisfies only condition (a) and (b), respectively. Then,
X1, · · · , Xm−1 are neither projective nor injective.

(b). Assume that X0 is not injective. Since (a) holds, by the dual of Proposition 6.10 we
have that fm · · · f1 /∈ �m+1

Cn(proj �)(X0, Xm). Therefore, X0 is injective.
(c). If Xm is not projective then by Proposition 6.10 we have that fm · · · f1 /∈

�m+1
Cn(proj �)(X0, Xm). Then, Xm is projective.
(d). Assume that fm · · · f1 �= 0. By (b) and (c) we know that X0 is injective and Xm

is projective. It is not hard to prove that there are not non-zero paths from S(P ) to T (Q),
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from S(P ) to Js(Q) and from Js(P ) to T (Q). Then, X0 = Js(P ) and Xm = Jt (Q) with
t = s − 1 since fm · · · f1 �= 0. Bellow, we illustrate the situation:

Consider X0 = Js(P ), Xm = Js−1(Q). Since fm · · · f1 ∈ �m+1
Cn(proj �)(Js(P ), Js−1(Q))

then fm · · · f1 = tf with t ∈ �Cn(proj �)(Z, Js−1(Q)) and f ∈ �m
Cn(proj �)

(Js(P ), Z),
for some complex Z. Moreover, t does not split and fm is a minimal right almost
split morphism. Hence, there is a morphism g such that t = fmg. Let γ = gf ∈
�m

Cn(proj �)
(Js(P ),Xm−1). Then, fm(fm−1 · · · f1 − γ ) = 0.

On the other hand, because of the shape of X0 and Xm both morphisms fm(fm−1 · · · f1−
γ ) and fm−1 · · · f1 − γ have their entries zero, for all entries different from s. More pre-
cisely, f s

m = idQ. Then, 0 = f s
m(f s

m−1 · · · f s
1 − γ s) and we get that fm−1 · · · f1 = γ ∈

�m
Cn(proj �)

(X0, Xm−1) a contradiction to the hypothesis. We conclude that fm · · · f1 = 0.

In [9, Lemma 3.1], the authors omitted to analyzed the case where the complex R(P )

is not indecomposable, whenever P is an indecomposable projective module. Even though,
the statement of the result is true. For the convenience of the reader we complete the proof
below.

Lemma 6.13 Let � be an artin algebra and X, Y,Z indecomposable complexes in
Cn(proj �). If there are irreducible morphisms h : X → Y and h′ : Y → Z en Cn(proj �)

such that 0 �= h′h ∈ �3
Cn(proj �)

(X,Z) then Z is not projective.

Proof Assume that Z is projective. The idea of this proof is to show that under our
assumption X is an indecomposable injective and this fact will lead us to a contradiction.

Since Z is an indecomposable projective then Z = Jj (P ) for 1 ≤ j < n − 1 or Z =
T (P ) with P an indecomposable projective module. By Theorem 4.2, there is a minimal
right almost split morphism ρ(P ) : R(P ) → Z in Cn(proj �).

In any case we have an exact sequence in Cn(mod �) of the form

0 −−−→ X1
(l,l′)t−−−−→ Y ⊕ Y ′ (h′,k)−−−−→ Z

where R(P ) = Y ⊕ Y ′. Observe that if X1 �= 0 then it is a complex in Cn(mod �).
On the other hand, X1 admits a right Cn(proj �)-approximation, v : W → X1, see

[7, Theorem 4.5]. We will show that X is an indecomposable injective direct summand of
W . First, we prove that W is a direct sum of indecomposable injective complexes, W =
⊕r−1

j=1S(Nj ) ⊕ ⊕r−1
i=1Ji(M

i).
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In order to compute the approximation, by [7, Theorem 4.5] we consider a quasi-
isomorphism q : Q → X1 with Q ∈ C≤n(proj �) and the morphism F(q) : F(Q) → X1.
We have that v = (F (q), ψ) : F(Q) ⊕ ⊕r−1

i=1Ji(M
i) → X1 is a right Cn(proj �)-

approximation, where Mi is the projective cover of Xi
1.

To calculate Q we have into account that X1 has all its homologies being zero except for
the first one, that we denote by M . Moreover, in the derived category we can identify X1
with the shift of the module M .

In the case Z = Jj (P ) with j �= n, it is enough to consider the projective resolution

of M = ker d
−j
R , that is, the exact sequence · · · → R−j−2 → R−j−1 → 0 → 0 · · · in

Cn(proj �). Then, F(Q) is the complex R−j−1 → 0 → 0 · · · in Cn(proj �).
In case Z = T (P ), we consider M = Ker d−n

R and F(Q) : R−n−1 → 0 → 0 · · · . Note
that F(Q) is an injective complex sum of indecomposable injective complexes of the form
S(Nj ).

Now, we will concentrate on proving that X is a direct summand of W . Since h′h ∈
�3

Cn(proj �)(X,Z), there is a morphism f ′ ∈ �2
Cn(proj �)(X,N) and f ∈ �Cn(proj �)(N,Z)

such that ff ′ = h′h. Since (h′, k) is a right almost split morphism in Cn(proj �) and f ∈
�Cn(proj �)(N,Z) there is a morphism (k1, k2)

t : N → Y ⊕ Y ′ such that (h′, k)(k1, k2)
t =

f . We write (a, b)t = (k1, k2)
tf ′ ∈ �2

Cn(proj �)
(X, Y ⊕ Y ′). Then, h′h = (h′, k)(a, b)t =

h′a + kb. Hence, (h′, k)(a − h, b)t = 0. Therefore, (a − h, b)t factorize through X1. Then,
there is g′ : X → X1 such that lg′ = a − h and l′g′ = b.

Since v : W → X1 is a right Cn(proj �)-approximation of X1, and there is a morphism
g : X → W in Cn(proj �) such that vg = g′. Then, l′vg = b and a−h = lvg. We illustrate
the situation:

Assume that g ∈ �Cn(proj �)(X,W), then lv /∈ �Cn(proj �)(W, Y ) otherwise h = l′vg +
a ∈ �2

Cn(proj �)(X, Y ), a contradiction to the fact that h is irreducible. The morphism lv is
a retraction since Y is indecomposable. Hence, Y is a direct summand of W . Since W is
injective then Y is an indecomposable injective. But this contradicts the fact that there are no
irreducible morphisms from an indecomposable injective to an indecomposable projective.
Then, g /∈ �Cn(proj �)(X,W). Therefore, g is a section since X is indecomposable. This
proves that X is injective.

Since there is a non-zero morphism from X to Z, we get that X �= S(P ). Moreover, if
X = Ji(P ) then Z �= T (Q). Hence, Z = Jt (Q) and k = 0, Y ′ = 0 and h′(a − h) =
0. Finally, by the shape of the minimal almost split morphisms if X = Ji(P ) and h′h :
Ji(P ) → Jt (Q) is a non-zero morphism then i = t . This leads us to a contradiction since
h′(a − h) = 0 and h′(a − h) : Ji(P ) → Ji(Q) is a composition of irreducible morphisms.

If X1 = 0 the pair (h′, k) is a monomorphism and 0 �= hh′ ∈ �3
Cn(proj �)(X,Z). As we

explain before, (h′, k)(a − h, b)t = 0 then a − h = 0 and h = a ∈ �2
Cn(proj �)

(X, Y ) is a
contradiction since h is irreducible.
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For a sectional path of length m starting and ending in Js(P ) and Js(Q), respectively,
with P and Q indecomposable projective modules, we still do not have an answer to decide
in which power of the radical the composition of the morphisms in such a path belongs. We
have only an affirmative answer in case the length of the path is two. We expect to have a
similar answer for any length.

Proposition 6.14 If X0 = Js(P ) → X1 → · · · → Xm−1 → Js(Q) = Xm is a path
between indecomposable complexes in Cn(proj �) with P,Q indecomposable projective
�-modules and there are irreducible morphisms fi : Xi−1 → Xi for each i ∈ {1, · · · , m}
then the following conditions hold.

(1) The path Js(P )
f1→ X1

f2→ Js(Q) is sectional, f2f1 �= 0 and f2f1 /∈
�3

Cn(proj �)
(Js(P ), Js(Q)).

(2) If m = 3 then Js(P ) → X1 → X2 → Js(Q) is a non-zero sectional path.
(3) If the path is sectional and the projective dimension ofQ/rad Q is one then fm · · · f1 /∈

�m+1
Cn(proj �)

(Js(P ), Js(Q)).

Proof (1). Assume that f2f1 = 0. Since X1 = Rs(Q) = Ls(P ) then d = d−1
Q = d1

L = 0.
We illustrate the situation with the following diagram

Hence, X1 is not indecomposable which is a contradiction. Now, if f2f1 ∈
�3

Cn(proj �)
(X0, X2), since f2f1 �= 0 by [9, Lemma 3.1] we have that X2 is not projective a

contradiction to the fact that X2 = Js(Q).
(2). The complexes Js(P ) and Js(Q) are projective-injective then clearly the path is

sectional. To prove that it is non-zero, by (2.4) since f2 is of the form (sec), (ret) or (ret −
irred − sec) we analyze the different possibilities for f2. We illustrate the situation with
the following diagram

If f2 is of the form (sec) then L1 = Q, Lj = 0 if j > 1. Therefore, h is an isomorphism
and d−1t = hd0

P is irreducible, since d0
P is irreducible. Hence, f3f2f1 �= 0.
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If f2 is of the form (ret) then R−1 = P and R−i = 0, for i ≥ 2. Therefore, t is an
isomorphism. Hence, d−1t = hd0

P and d−1 is irreducible. Then, f3f2f1 �= 0.
Finally, we prove that f2 is not of the form (ret − irred − sec). In fact, if t is irreducible

then R−i = 0 for i ≥ 2. Moreover, h is a section. Since Q is indecomposable Q = L1, that
is, h is an isomorphism. We get that d−1t ∈ �2

Cn(proj �) and hd0
P ∈ �Cn(proj �)\�2

Cn(proj �) a

contradiction since d−1t = hd0
P . Similarly, we can prove that h is not irreducible.

(3). Assume that fm · · · f1 ∈ �m+1
Cn(proj �)

(X0, Xm). Proceeding as in the proof of
Theorem 6.12 (d), considering the entries, we get the result with a similar analysis.
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