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The palynology of the Lower Permian (Asselian–?Artinskian) Copacabana Formation

of Apillapampa, Cochabamba, Bolivia

Mercedes M. di Pasquoa* and George W. Graderb

aLaboratorio de Palinoestratigrafı́a y Paleobotánica, CICYTTP-CONICET, Dr. Matteri y España SN, Diamante (E3105BWA),
Entre Rı́os, Argentina; bDepartment of Geological Sciences, University of Idaho, 825 W 7th Street, Moscow,

Idaho 83844-3022, USA

The palynostratigraphy of the lower and Coal members of the Copacabana Formation from Apillapampa, central
Bolivia was investigated. Twelve samples yielded abundant and diverse, moderately well-preserved pollen and
spores. One new spore species, Dictyotriletes cousmineri, is described and 52 species are recorded for the first time in
Bolivia. Two species each of acritarchs and scolecodonts are also present. The lowermost assemblage yielded
Vittatina and taxa such as Pakhapites ovatus and Marsupipollenites striatus, which are characteristic of the Asselian–
Early Artinskian Vittatina costabilis Zone of the Paraná Basin, Brazil. The uppermost assemblage is defined by the
appearance of several species of Lueckisporites, together with species of Vittatina, Lunatisporites, Pakhapites,
Hamiapollenites, Corisaccites, Mabuitasaccites, Striomonosaccites, Striatoabieites, Striatopodocarpites and Weylan-
dites. Abundant monolete and trilete spores with subordinate pollen grains are present in the Coal Member. Those
species suggest correlation to the Middle Artinskian–Wuachiapingian Lueckisporites virkkiae Zone of the Paraná
Basin. Highly variable associations of gymnosperms occur in the lower member whereas pteridophytes,
sphenophylls and lycopods are dominant in the overlying Coal Member. These groups of plants characterised
terrestrial landscapes along marine margins during the Early Cisuralian, and confirm the widespread distribution of
the Glossopteris flora during the Permian in Gondwanaland. Preliminary radiometric data from interbedded tuffs
suggest an Asselian–Sakmarian age for the marine Copacabana Formation and a Sakmarian–?Artinskian age for
the overlying Coal Member. These new data are highly significant in terms of Permian correlations in central South
America.

Keywords: biostratigraphy; Bolivia; Copacabana Formation; Early Permian; palaeoecology; palynology; taxonomy

1. Introduction

The chronostratigraphy and palaeogeography of Late
Palaeozoic sedimentary rocks in the Peru–Bolivia
Basin are important for correlations within Gondwa-
na. Palynology, micropalaeontology and radiometric
dating provide new insights into the palaeogeography
and glaciation/deglaciation of the area. Grader et al.
(2003, 2008) summarised the palaeontology, palaeoe-
cology and stratigraphy of the Upper Carboniferous
to Lower Permian (Bashkirian–Artinskian) Titicaca
Group in Bolivia. Azcuy et al. (2007) correlated
South American Carboniferous and Permian biostra-
tigraphical units, with a detailed review of the
palynology. Upper Palaeozoic strata in the Peru–
Bolivia Basin at Apillapampa near Cochabamba in
central Bolivia were mapped, measured and sampled
(Figures 1–3). The goals of this study are to improve
correlations of the Copacabana Formation with coeval
South American units using palynology, to refine the
palaeoecology of this unit and to update the list of

palynomorph taxa from the Coal Member of Cousmi-
ner (1965).

2. Stratigraphy and palaeontology

Apillapampa is a classic locality near Cochabamba in
central Bolivia known for the fossiliferous Titicaca
Group of Permian age (Chamot 1965; Cousminer
1965). Palaeozoic rocks are preserved in a narrow strip
which is coincident with NW–SE trending folds and
thrusts (Servicio Geológico de Bolivia 1:100,000
Capinota geological map). Permian strata overlie
various Silurian and Devonian formations and are
overlain by Mesozoic conglomeratic valley fill deposits.
Late Permian–Jurassic rifting resulted in intense
truncation, regional erosion and karstification of the
Copacabana Formation on uplifted palaeovalley
shoulders (Sempere et al. 2002; Grader 2003). Rift
and later arc-associated variegated, heterolithic transi-
tional to marine Mesozoic formations are present and
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include carbonates, green tuffs and aeolian rocks.
These rocks in Bolivia represent similar proto-Andean
back-arc depositional environments that indicate
upper Permian–Jurassic axial rifting along the active
Gondwanan/Pangaean margin (Sempere et al. 2002).

At Apillapampa, Devonian rocks crop out below
the steeply dipping Permian Titicaca Group along
Quebrada Chullpanimayu (Figure 3). Thin Carboni-
ferous successions may also be present. The stream is a
complex system of riffles, waterfalls and sharp bends
that follow or cross-cut strike, dip or faults. The
succession was measured by Chamot (1965) and is
illustrated in Figure 3 with the sample points of
Cousminer (1965). Thick Silurian/Devonian siliciclas-
tic foreland marine deposits referable to the Tarabuco
and Santa Rosa formations were sampled at 80 and 18

m below the Gondwanan Unconformity of Chamot
(1965) together with the overlying sandstones (Figure
3). Di Pasquo et al. (2009) documented the Late
Lochkovian Urochitina loboi Zone in both samples.
Overlying this are approximately 13 m of ?Carbonifer-
ous red continental sandstones and some darker shales
with palaeosols and plant fragments, attributed to the
Yaurichambi Formation by Chamot (1965). These
beds may be related to the Viséan or younger
sandstones and mudstones of central Bolivia (see
Zudañez in Figure 2). One sample collected from this
interval was palynologically barren. The overlying
Copacabana Formation includes fossiliferous lime-
stones and marls interbedded with evaporites, cherts,
sandstones, shales and tuffs. Henderson et al. (2009)
studied conodonts and fusulinids and dated the

Figure 1. (A) Map of west-central South America illustrating the major Late Palaeozoic sedimentary basins modified after
Azcuy et al. (2007). The Peru–Bolivian master basin (numbers 7 and 8) is considered to be a single Permo-Carboniferous Basin
with areas of differential subsidence and partitioning (Kley et al. 1999; Grader et al. 2003, 2008). Some palaeogeographical and
geographical elements of the greater Peru–Bolivian Basin are shown extending into northern Argentina and Paraguay (the Tarija
and Chaco basins). The Central Andean faunal province was influenced by West Texas and Tethyan elements, and separated
from the Gondwanan faunal province during the Permo-Carboniferous. (B) Tectonic map of west-central South America with
major cities and some Permo-Carboniferous outcrop locations, illustrating the location of Apillapampa in the Cordillera
Oriental. Late Cenozoic faults together with some Palaeozoic palaeogeographical elements are illustrated (after Sempere 1995).
BF ¼ Boomerang Fault; CBH ¼ Chaparé Buttress (i.e. the Chaparé Basement high); SKF ¼ Khenayani Fault System; SB ¼
Susquess Buttress.
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Figure 2. Correlation of the Copacabana Formation and the Coal Member in central Bolivia with their regional
chronostratigraphic relationships to the Late Palaeozoic rocks of southern Peru, Bolivia and northern Argentina. These
correlations show a Cisuralian age for the Coal Member and a Late Cisuralian–?Early Triassic age for the Chutani and Vitiacua
formations (Chamot 1965; Sempere et al. 1992, 2002; Grader 2003; Grader et al. 2007, 2008). The northern and central Bolivian
columns are modified after Sempere (1995) and Dı́az-Martı́nez (1999). The southeastern Bolivian and northern Argentinian
columns are modified after di Pasquo (2003, 2007a, b), Starck and del Papa (2006) and Azcuy et al. (2007). Some previous pan-
Bolivian Permo-Carboniferous correlations that include the Macharetı́ and Mandiyutı́ groups are significantly different to those
shown here, placing many of these units into the Mississippian (Sempere 1995; Dı́az-Martı́nez 2002; Dı́az-Martı́nez and Iannuzzi
2005). To begin to resolve Carboniferous correlations, units in the central part of the Peru-Bolivian Basin are based on early to
recent invertebrate and palynology studies, including new sedimentologic and radiometric evidence (Henderson et al. 2009;
Anderson et al. 2010). The star symbols indicate the locations of the ash-dated material of Henderson et al. (2009; V. Davydov,
personal communication, 2009) and are consistent with earlier Permian ages at Apillapampa (Chamot 1965) and mid-
Carboniferous ages at Lake Titicaca.
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interbedded tuffs at Apillapampa, confirming an
Asselian–Sakmarian age for the lower Copacabana
Formation and a Sakmarian–?Artinskian age for the
overlying Coal Member. Iannuzzi et al. (2008) also
reviewed the flora. The palynomorphs described by
Cousminer (1965) were obtained from six samples of
the Coal Member (although only one was significantly
diverse), and most of those species were recognised
herein (Table S1, see online supplementary material).
Cousminer (1965) found that 64% of the palynomorph
assemblage were pteridophytes and 21% were gym-
nosperm pollen grains, resembling the Permian paly-
nofloras of Australia.

The nature of the contact between the Coal
Member and the underlying lower member of the
Copacabana Formation was discussed by Chamot
(1965), and has been investigated here. A transitional
upper Copacabana unit is defined between 195 m and
248 m, where dolostone and nodular chert are common
below true carbonaceous shale-bearing intervals. At the
base of this transitional unit, a thick interval of
distinctive pellet-filled burrows occurs above dolomitised
limestones, shales and a thick Thalassinoides-burrowed
tephra bed. This unit includes the first appearance of
plant stems, the first stromatolitic facies, the last interval
of open marine invertebrates and the first carbonaceous
shale with lycophyte trunks. The transitional unit ends
below a clearly intertidal mud-cracked sandy marker bed
at the top of waterfall 2 at 248 m, with palaeosols and
abundant plant-bearing intervals above. The mud-
cracked marker unit, the pellet-filled burrows and the
blue ignimbrite beds beginning at 305 m can be traced
throughout the syncline, allowing a correlation to a steep
ridge line above Quebrada Chullpanimayu (Figure 3;
Iannuzzi et al. 2008).

Grader (2003) suggested a gradational contact
between the primarily marine Copacabana Formation
and the volcanogenic, cherty ‘tonstein’ carbonaceous
shale, and thin coal-bearing beds of the Coal Member.
The latter is better defined between the first carbonac-
eous shale with significant leaf impressions and carbo-
nised lycophyte trunks at *242 m and a thick black
coaly interval at *297 m between waterfalls 2 and 4
(Figure 3). Finally, the Coal Member occurs below a
highly angular unconformity with the Cretaceous Toro
Toro and El Molino formations (Figures 2 and 3).

3. Materials and methods

Geological mapping, stratigraphical measurements
and preliminary sampling for palynology and plant
fossils focused primarily on the Coal Member at
Apillapampa and was undertaken by E. Dı́az-Martı́-
nez, G. Grader and R. Iannuzzi in 2008 (Figure 3).
Earlier fieldwork by C. Henderson, V. Davydov and

others in 2007 sampled the Devonian through Lower
Permian marine strata.

A standard palynological preparation procedure
using HF and HCl digestion without oxidation was
used on 15 samples. Additionally, two dark grey
indurated claystones from the Tarabuco/Santa Rosa
Formation and two grey indurated mudstones (PCM2
and COPA1 from the Copacabana Formation, Figure 3)
were processed using the sodium hexametaphosphate
method of Riding and Kyffin-Hughes (2004) and
Riding et al. (2007). A good result was obtained for
the two Copacabana Formation samples, although this
produced less palynomorphs than the acid digestion.
The Tarabuco/Santa Rosa Formation samples yielded
sparse chitinozoans and leiosphaerid acritarchs. They
were therefore treated with the standard acid digestion
technique and yielded abundant and diverse acritarchs,
prasinophytes, spores, cryptospores, chitinozoans and
scolecodonts. The organic concentrates from both the
acid and non-acid treatments were sieved using a 10 mm
mesh to remove fine material, and the microscope slides
were mounted with glycerine jelly. The fluorescence of
palynomorphs was studied for some samples to aid
identification or to highlight morphological features
affected by preservational effects. Many palynomorphs
have been altered, and exhibit extinguished fluorescence
(i.e. are black). However, spores and pollen grains
occasionally exhibit bright yellow to orange colours and
rare specimens of Botryococcus show weak orange to
red colours. Two species were selected to illustrate the
different autofluorescence intensities of palynomorphs.
A striate bisaccate pollen grain Hamiapollenites kar-
roensis exhibits a weak yellow colour, and Botryococcus
brauni shows yellow to extinguished fluorescence and a
cup morphology not visible under transmitted light.
The palynomorphs are listed in the Appendix and Table
S1 of the online supplementary material for this paper.

4. Palynology

Twelve samples from the Copacabana Formation
proved palynologically productive and these have
allowed the systematics of Early Permian taeniate
pollen and spores of Cousminer (1965) to be updated.
The palynomorph species recognised in this study are
listed in the Appendix (see online supplementary
material). Dictyotriletes cousmineri sp. nov. is formally
described below and is illustrated in Plate 1. A full
systematic treatment (including photographic illustra-
tions in Plates 1–10) of the remainder of the palynoflora
is given in the online supplementary material. The
quantitative distributions of the palynomorphs as
percentages are outlined in Table S1 of the online
supplementary material pertaining to this paper (see
also Table 1). The key index species allow comparison
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with similar assemblages from South America (di Pasquo
et al. 2009). Selected descriptions, synonymy lists and
occurrences of the species encountered in this study are
included in the online supplementary material pertaining
to this paper. Further occurrences are documented in the
literature on South America and adjacent regions (e.g.
Lindström 1995, 1996; Mautino et al. 1998a, 1998b,
1998c; Azcuy and di Pasquo 2000; Playford and Dino
2000a, 2000b; Azcuy et al. 2002; di Pasquo et al. 2003a,
2003b, 2010; Balarino and Gutiérrez 2006; Félix et al.
2006; Premaor et al. 2006; Neregato et al. 2008; Ste-
phenson 2008; di Pasquo 2009; Gutiérrez et al. 2010;
Mori and Souza 2010; Souza et al. 2010). Specific
Pennsylvanian and Permian palynological records from
Bolivia are separately documented in Table S1 in the
online supplementary material.

Dispersed organic particles identified herein include
amorphous organic matter (AOM), structured phyto-
debris such as identifiable cuticles and tracheids,
unstructured phytodebris (gelified matter) of non-
woody plant remains and resinite, brown and black
phytodebris (or opaque clasts including charcoal) and
palynomorphs. The simplified scheme adapted from
Batten (1996) was used to calculate relative percen-
tages. These results allow the characterisation of
different palynofacies which are used in palaeoenvir-
onmental interpretation (Figure 4).

5. Systematic palaeontology

Anteturma PROXIMEGERMINANTES Potonié 1970
Turma TRILETES (Reinsch) Dettmann 1963

Suprasubturma ACAVATRILETES Dettmann 1963
Subturma AZONOTRILETES (Luber) Dettmann 1963
Infraturma MURORNATI Potonié & Kremp 1954

Genus Dictyotriletes Naumova emend. Potonié &
Kremp 1954

Type species. Dictyotriletes bireticulatus (Ibrahim)
Potonié & Kremp 1955

Dictyotriletes cousmineri sp. nov.
Plate 1, figures 1–4

Holotype. Plate 1, figures 1, 2.
Paratypes. Plate 1, figures 3, 4.
Type locality. Chullpanimayu Creek, Apillapampa,
Bolivia (Figure 3). The sample is from the Coal

Member of the Copacabana Formation and is of
Cisuralian (Early Permian) age.
Derivation of name. This species is dedicated to Harold
Cousminer.
Description. Spores radial, trilete. Amb subcircular to
oval or subtriangular. Laesurae simple and straight,
almost reaching the equator. Exine equatorial and
distally ornamented with an irregular reticulum; muri
ca. 1.5–2.5 mm wide exhibiting an irregular thickness,
ca. 2 mm high, enclosing irregular to oval luminae, ca.
1–6 mm in maximum diameter. The equator appears to
be thickened due to the reticulum.
Dimensions. Equatorial diameter 25–40 mm.
Remarks. This species only occurs in one sample and
mainly in the 525 mm fraction.
Comparisons. Dictyotriletes aules Rigby in Rigby &
Heckel 1977 differs from Dictyotriletes cousmineri sp.
nov. by having laesurae-bearing lips and a different
reticulate ornamentation.

6. Results and conclusions

6.1. Assemblage characteristics and
biostratigraphical implications

The moderately rich and diverse palynofloras recov-
ered from the Copacabana Formation at Apillapampa
allows the systematic classification of Early Permian
taeniate pollen and spores by Cousminer (1965) to be
updated. Twelve samples were productive and these
yielded 94 species. These comprise 28 spore species (20
trilete and 8 monolete) and 58 pollen species (18
monosaccate, 8 bisaccate non-striate, 31 bisaccate
striate and 1 colpate). Acritarchs (2 species) and
scolecodonts (2 species) are also present (Table 1).
Many palynomorphs are moderately well preserved
and are light yellow to light orange in colour. They
are Thermal Alteration Index (TAI) 1þ and 2 on the
scale of Utting et al. (1989). Others are highly
pyritised (both framboidal and euhedral), especially
in the lower member of the Copacabana Formation,
and these are often difficult to classify.

A comparison of the present study and Cousminer
(1965) indicates that sample MP-P6032 is the most
similar to sample BOGOC 6-2560 of Cousminer
(1965). This is the most diverse sample from the Coal
Member (Figure 3). Fifty-two species are recorded
from Bolivia for the first time and one new species is

Figure 3. (A) A geologic map of Quebrada Chullpanimayo canyon near Apillapampa, Bolivia with the location of stratigraphic
sections, key physical and structural features and a cross-section. Modified from Chamot (1965) and Cousminer (1965). (B)
Cross-section modified from Chamot (1965) showing the relationship of the classic northern stream section to the newly
measured ridge section high above the stream. (C) Stream stratigraphic section showing the location of sample points, significant
waterfalls, sharp bends in the stream bed (numbered) and selected tephra beds with preliminary SHRIMP ages after Henderson
et al. (2009). This section starts in the north in the Devonian, crosses a major unconformity and ends in the centre of the syncline.
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described. Three of the thirty species recorded by
Cousminer (1965) are endemic; these are Crustaespor-
ites hessi, Lycospora variabila and Punctatisporites
minutiarcus. Five species noted by Cousminer (1965)
were not observed in this study; these are Calamospora
diversiformis, Granulatisporites trisinus, Krauselispor-
ites splendens, Neoraistrickia aff. N. ramosa and
Triquitrites aff. T. tumulosus.

Lueckisporites virkkiae and Vittatina costabilis first
appear in the lowermost two samples of the lower
member of the Copacabana Formation. These key
taxa indicate the Permian interval, as do the genera
Corisaccites, Hamiapollenites, Lueckisporites, Lunatis-
porites, Mabuitasaccites, Pakhapites, Striatoabieites,
Striatopodocarpites, Striomonosaccites, Vittatina and
Weylandites, and some monolete spores such as
Polypodiisporites mutabilis. It is therefore possible to
define two main assemblages: a lower assemblage (LA)
corresponding to sample MP-P6029 at 9.8 m and an
upper assemblage (UA) corresponding to the overlying
samples from 69 to 287 m, based mainly on the
appearance of the key forms Lueckisporites virkkiae
and Lueckisporites spp. (Figure 3).

The lower assemblage (MP-P6029) is characterised
by relatively sparse monosaccate and bisaccate non-
striate pollen grains and several species of striate pollen
such as Marsupipollenites striatus, Pakhapites ovatus,
Vittatina costabilis and V. vittifera (Table S1, online
supplementary material). These are the typical markers
for the Asselian to mid-Artinskian Vittatina costabilis
Zone of the Paraná Basin (Souza and Marques-Toigo
2005), and the Pakhapites fusus-Vittatina subsaccata
Zone of western Argentina (Césari and Gutiérrez
2001).

The upper assemblage is more diverse, especially
due to the appearance of many striate pollen grains
belonging to Lueckisporites, Lunatisporites, Striatoa-
bieites, Striatopodocarpites and Weylandites. It is
correlated to the Lueckisporites virkkiae Zone of Brazil
(Souza and Marques-Toigo 2005) and the Lueckispor-
ites-Weylandites zones of Argentina (Césari and
Gutiérrez 2001); both these were attributed to the
mid-Artinskian–Guadalupian (Souza et al. 2007).
Analysis of the data herein to establish accurate
correlations with similar assemblages in South Amer-
ica, together with the preliminary radiometric data of
Henderson et al. (2009), is depicted in Figures 2 and 3.

6.2. Palaeoecology, palynofacies and
palaeoenvironmental conclusions

The palynological data presented here differ from
those of Cousminer (1965) who found that the
palynofloras from the Coal Member are dominated
by pteridophytes (64%) and that gymnosperm pollenT
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Figure 4. The relative abundances of palynodebris and palynomorphs in the Copacabana Formation at Apillapampa, Bolivia.
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(21%) is subordinate. The lowermost four samples
from the lower member of the Copacabana Formation
are dominated by diverse gymnospermous pollen,
including many species of striate pollen, whereas lower
vascular plants and algal remains were dominant in the
Coal Member (Figures 3, 4; Table 1). A predominantly
varied gymnospermous composition characterises the
lower assemblage of the Copacabana Formation with
some algae and spores from lower vascular plants,
notably lycopods, pteridophytes and sphenophylls.
The upper assemblage indicates that taeniate-striate
pollen grains are prominent in the lower member of
Copabana Formation (samples MP-P6028 to MP-
P6026) associated with marine ramp deposits (Figure
3). Lower vascular plants, especially lycophytes and
pteridophytes, together with algae and some gym-
nospermous groups became the dominant groups in
the Coal Member. These groups of plants confirm
the widespread distribution of the Glossopteris flora
during the Permian in Gondwana (Iannuzzi et al.
2004).

The parent plants of species of the lower assem-
blage are mainly gymnospermous (i.e. Coniferales,
Cordaitales, Corystospermaceae/Peltaspermaceae and
Glossopteridales), suggesting a lowland landscape
bordering the Copacabana seaway with a hygro-

mesophilous flora. These were probably associated
with hygro-hydrophilous lycophyte and pteridophyte
trilete spores from the forest understory. The frequent
presence of the freshwater/brackish algae Botryococcus
and Reduviasporonites chalastus, single specimens of
undetermined acritarchs and scolecodonts and Deusi-
lites tenuistriatus are consistent with cyclic littoral
marine conditions into which miospores were trans-
ported. This assemblage is associated with the lower-
most Yaurichambi to Copacabana Formation
transition, where sandstones are sharply overlain by
pyrite-bearing black shales and burrowed brachiopod
wackestones overlain by marls and thin-bedded lime
mudstones/wackestones. A change to restricted condi-
tions is supported by the presence of pyrite in the exine
of palynomorphs, suggesting bottom water anoxia
(euhedral or anhedral pyrite) and euxinic conditions
(framboidal pyrite), enhanced by the abundant input
of plant-derived phytoclasts (Figures 3, 4; Table 1;
Bajpai et al. 2001).

Palaeoenvironmental variability occurred in both
the lower and upper assemblages, probably due to
high-frequency cyclicity. A palaeoenvironmental change
is present in the upper assemblage from the lower
member to the Coal Member of the Copacabana
Formation. Scolecodonts and the intense pyritisation

Plate 1. Dictyotriletes cousmineri sp. nov. Figures 1, 2. The holotype: 1 – proximal face; 2 – distal face, CICYTTP-Pl 3 (þ10),
Q28/4. Figure 3. A paratype - CICYTTP-Pl 3 (þ10), R27/1. Figure 4. A paratype - CICYTTP-Pl 3 (þ10), V62/2. The scale bar
represents 10 mm.
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of palynomorphs andAOMtogetherwithmiospores are
indicative of marine depositional conditions with
variable terrestrial input (Batten 1996). This is observed
in the deeper water facies of the lower member (i.e.
MP-P6028 at 69 m), although significant AOM also
occurs in half the Coal Member samples. High levels
of AOM, which are related to the decomposition of
algal components due to its subcolloidal or spon-
geous aspect, and high grades of pyritisation are
recorded in MP-P6028 supporting generally deeper
marine conditions (Grader et al. 2000). This sample
is from black distal ramp shales associated with
downslope channelled crinoid grainstones and diverse
coral, bryozoan and cephalopod-bearing deposits.
Conversely, the overlying lower Copacabana samples
MP-6027 and 6026 at 143 and 192 m contain
significant black and brown phytoclasts and other
non-woody plant remains, suggesting shallower
marine conditions.

The Coal Member is dominated by lycophyte and
pteridophyte spores and moderate levels of AOM,
which are related to restricted marine and lagoonal
conditions supporting the facies interpretations of
Grader et al. (2000) and Iannuzzi et al. (2008) (Figures
3, 4; Table 1). Most of the few abundant species are
restricted to single intervals, reflecting a local auto-
chthonous to parautochthonous source of the micro-
flora. These taxa include Convolutispora uruguaiensis,
Dictyotriletes cousmineri, Hamiapollenites dettmanae,
Hamiapollenites karroensis, Lycospora variabila, Re-
duviasporonites chalastus and Thymospora rugulosa.
Botryococcus brauni and Polypodiisporites mutabilis are
frequent to dominant species in most of the Coal
Member samples (Table S1, online supplementary
material). The appearances of Lycospora variabila
and Lundbladispora braziliensis in samples MP-P6030
and MP-P6034 are associated with palaeosols and with
the first occurrence of unequivocal lycopod logs and
leaves in outcrops above and below the mud-cracked
marker unit at *250 m (Figure 3). Samples MP-
P6034, CICYTTP-Pl2 and CICYTTP-Pl3 are lateral
interval equivalents with MP-P6030 in a sequence
boundary zone, where carbonaceous shales become
more common in the Coal Member. Pteridophytes and
Botryococcus are dominant in sample CICYTTP-Pl2 in
the ridge section, about 3 m above the mud-cracked
marker bed where it contains rooted intervals. The
influence of an oligotrophic water body (i.e. lacking
plant nutrients and hence supporting few plants) with a
primarily autochthonous microflora is proposed.
However, CICYTTP-Pl2 occurs 10–20 cm above
laminated dolomitic shale with woody stems, lyco-
phyte debris, Pecopteris sp. and a sphenophyte
(Iannuzzi et al. 2008), and is overlain by a palaeosol
with equigranular fabric with organic fragments and

rootlets. Lycospora variabila (related to the arborescent
Lepidodendrales) is dominant in sample MP-P6030
above the mud-cracked marker bed in the stream
section. It also suggests autochthonous microflora
associated with palaeosols and plant fragments
(Figures 3, 4; Table 1). Lycophytes, pteridophytes
and sphenophytes, probably with Cordaitales and
some Coniferales, therefore occupied more humid
restricted areas of swamps, mires or mangrove-like
transitional areas near to the Copacabana Sea
(Calder et al. 1996).

Foster et al. (2002) linked the size of Reduviaspor-
onites chalastus cells with palaeolatitude, with larger
cells occurring in the palaeotemperate Permian of
Australia, Arctic Canada, China and Russia and
smaller cells being typical of the palaeotropical and
palaeoequatorial Permian of northern Australia, wes-
tern Europe and Saudi Arabia. According to Foster
et al. (2002) the cell length and width ranges of 230
specimens are 18–220 mm and 9–127 mm, respectively,
and the mean length to width ratio is 2.2. This trend
may indicate palaeoenvironmental control on the
growth and development of the organism that pro-
duced Reduviasporonites chalastus. The relatively large
size of the Reduviasporonites cells in this study suggests
a palaeotemperate climate. The maximum dimensions
of chains of Reduviasporonites are 706 260 mm and the
maximum and minimum ranges of discrete cells are
70 6 130 mm and 33–70 mm, respectively. This is in
agreement with the palaeogeographical and palaeocli-
matical reconstructions of Scotese et al. (1999) and
Scotese (2003). The pteridosperms represented by the
Corystospermaceae, Glossopteridales and Peltasperma-
ceae mainly produce striate pollen grains (Figures 3, 4;
Table S1, online supplementary material) and are
interpreted as being indicative of relatively low
humidity or seasonally arid conditions. This open
lowland vegetation is indicative of a palaeotemperate
climate during the Cisuralian in Bolivia. In contrast,
few specimens of striate bisaccate pollen grains such as
Protohaploxypinus amplus and Striatopodocarpites
solitus were recorded in the Pennsylvanian Copacaba-
na Formation assemblage (di Pasquo 2009) in the
Pando X-1 core, which includes evaporites and
aeolianites. Di Pasquo (2009) explained this difference
by invoking palaeoclimatic and palaeogeographical
changes produced by northern movement or rotation
of Gondwana during the Late Pennsylvanian and the
Cisuralian (Dı́az-Martı́nez and Isaacson 1995). Penn-
sylvanian assemblages from northern Argentina, Boli-
via and Peru with rare to moderately common striate
bisaccate pollen grains therefore indicate seasonally
drier climates, in comparison to assemblages devoid of
striate bisaccate pollen in northern Argentina and
southern Bolivia that developed under more humid
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conditions (di Pasquo 2003, 2009). During the
Permian, the ubiquitous striate bisaccate taxa indicate
seasonally warmer climates, supporting both north-
ward rotation of Gondwana into lower palaeolatitudes
and the increased diversification of Copacabana
invertebrates (Grader 2003). The mixed character of
the biotas of the Central Andes suggest the influence of
cold waters from Gondwana and warmer currents
connected to tropical to equatorial environments in
North Africa, North America and Europe (Newell
et al. 1953; Iannuzzi and Rössler 2000; Scotese 2003).

Further work on the Copacabana Formation should
help in the refinement of Permian correlations in Bolivia
and central South America (Henderson et al. 2009) and
improve the understanding of short-term cyclicity during
the Permian deglaciation of Gondwana.
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estratigráfico. Ameghiniana 40, 297–313.

di Pasquo MM, Souza PA, Grader G, Dı́az-Martı́nez E.
2009. Early Devonian and Permian (Titicaca Group)
palynology from Bolivia: The Apillapampa section
revisited for stratigraphic assessment. AASP 42nd
Annual Meeting, Tennessee, East Tennessee State Uni-
versity. The Palynological Society, Abstracts 23.

di Pasquo MM, Vergel MM, Azcuy CL. 2010. Pennsylva-
nian and Cisuralian palynofloras from the Los Sauces
area, La Rioja Province, Argentina: chronological and
palaeoecological significance. International Journal of
Coal Geology, Special Issue: Hermann Pfefferkorn 83,
276–291.

Dı́az-Martı́nez E. 1999. Estratigrafı́a y paleogeorafı́a del
Paleozoico Superior del norte de los Andes Centrales
(Bolivia y sur del Peru). In: Macharé J, Benavides V,
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Ianuzzi R, Rössler O. 2000. Floristic migration in South
America during the Carboniferous: phytogeographic and
biostratigraphic implications. Palaeogeography, Palaeo-
climatology, Palaeoecology 161, 71–94.

Iannuzzi R, Vieira CE.L, Guerra-Sommer M, Dı́az-Martı́nez
E, Grader GW. 2004. Permian plants from the Chutani
Formation (Titicaca Group, northern Altiplano of
Bolivia): 2. The morphogenus Glossopteris. Academia
Brasileira de Ciências. Anais 76(1), 129–138.

Iannuzzi R, Breedlovestrout R, Grader GW, Dı́az-Martı́nez
E. 2008. Early Permian flora from Apillapampa, central
Bolivia: New data. 128 Simposio de Paleobotánica y
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