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The ingi and L1Tc non-LTR retrotransposons – which constitute theingi clade – are abundant in the genome of the trypanosomatid s
rypanosoma brucei andTrypanosoma cruzi, respectively. The corresponding retroelements, however, are not present in the genome of
elated trypanosomatid,Leishmania major. To study the evolution of non-LTR retrotransposons in trypanosomatids, we have analyzed allingi/L1Tc
lements and highly degenerateingi/L1Tc-related sequences identified in the recently completedT. brucei, T. cruzi andL. major genomes. Th
oding sequences of 242 degenerateingi/L1Tc-related elements (DIREs) in all three genomes were reconstituted by removing the numero
hifts. Three independent phylogenetic analyses conducted on the conserved domains encoded by these elements show that all DIR
he 52L. major DIREs, form a monophyletic group belonging to theingi clade. This indicates that the trypanosomatid ancestor contained
obile elements that have been retained in theTrypanosoma species, but were lost fromL. major genome, where only remnants (DIRE)
etectable. All 242 DIREs analyzed group together according to their species origin with the exception of 11T. cruzi DIREs which are close t

heT. brucei ingi/DIRE families. Considering the absence of known horizontal transfer between the AfricanT. brucei and the South-AmericanT.
ruzi, this suggests that this group of elements evolved at a lower rate when compared to the other trypanosomatid elements. Interestin
ucleotide sequence conserved betweeningi and L1Tc (the first 79 residues) is also present at the 5′-extremity of all the full length DIREs an
uggests a possible role for this conserved motif, as well as for DIREs.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Transposable elements are widespread mobile genetic ele-
ents found in the genome of most organisms. They can be
rouped into two main categories based on sequence organiza-

ion and mode of transposition[1]. The first group consists of the
ut-and-paste elements (DNA transposons), which move strictly
hrough a DNA intermediate in both prokaryotic and eukary-
tic genomes. The second group (retrotransposons) is transposed

∗ Corresponding author. Tel.: +33 557574632; fax: +33 557574803.
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through an RNA intermediate and can be further divided into
lineages that utilize completely different mechanisms of inte
tion. Those elements with long terminal repeats (LTR), ca
LTR retrotransposons, are similar both in structure and r
transposition mechanism to retroviruses[2] and those elemen
that lack LTR, called non-LTR retrotransposons or retropos
use a simpler mechanism of transposition. The current m
for transposition of non-LTR retrotransposons was devel
based on the analysis of the insect R2 element[3]. This mode
predicts that an element-encoded endonuclease (EN) per
a single-strand nick of the target DNA, generating an exp
3′-hydroxyl that serves as a primer for reverse transcrip
of the element’s RNA. The complementary strand of the
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DNA copy of the element is, thus, directly synthesized onto
the chromosome by the element-encoded reverse transcriptase
(RT). The second single-strand nick is carried out on the other
strand, a few base pairs downstream of the first nick, by the
same element-encoded endonuclease, generating a primer for
the second-strand synthesis of the retroelement. Consequently,
the non-LTR retroelements are flanked by a direct repeat corre-
sponding to the sequence between the two single-strand nicks
performed by the element-encoded endonuclease, called target
site duplication. They also have a variable length poly(A) or
A-rich 3′-tail, due to the involvement of an RNA intermediate.

Since DNA transposons- and retrotransposons-like elements
are present in prokaryotes, all mobile elements in eukaryotes are
assumed to have descended from bacterial elements[4]. Accord-
ing to this model, ancestor(s) of eukaryotes contained both DNA
transposons and retrotransposons suggesting that most, if not
all, eukaryotes may contain mobile elements. Indeed, all the
higher eukaryotes analyzed so far contain at least one family of
mobile elements[5]. In contrast, 5 of the 15 unicellular eukary-
otic genomes sequenced to date (http://genomesonline.org/),
lack mobile elements, i.e. a Microsporidia intracellular parasite
Encephalitozoon cuniculi [6] and 4 members of the Apicom-
plexa protozoan pathogens,Plasmodium falciparum [7],P. yoelii
yoelii [8],Cryptosporidium hominis [9] andC. parvum [10]. This
suggests that a significant fraction of unicellular eukaryotes may
have lost active mobile elements. However, since none of these
fi ment,
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Fig. 1. Schematic representation and comparison ofingi and L1Tc. Schematic
map of ingi (T. brucei) is based on the fifth (26P8i5) retroelement present in
the fully sequencedT. brucei BAC RPCI93-26P8 (ACC: AC087701)[36,58]
and the L1Tc map (T. cruzi) is derived from the retroelement present in BAC62
(ACC: AF208537)[36,59]. The potentially functionalingi retroelement con-
tains a single long ORF (4971 bp), from position 9 (ATG codon) to position
4980 (TAA codon), which encodes a 1657 amino acid protein. The potentially
functional L1Tc retroelement contains a single long ORF (4722 bp), from posi-
tion 137 (ATG codon) to position 4859 (TAG codon), which encodes a 1574
amino acid protein. Black boxes at the end of both maps represent the poly(dA)
terminal sequence. The first 79 bp ofingi are 77% identical to the corresponding
region (first 78 bp) of L1Tc (grey boxes), which constitutes the only conserved
nucleotide sequence between these two members of theingi clade.

(or potentially active)ingi and L1Tc elements encoding a large
single protein (1657 and 1574 amino acids, respectively) (Fig. 1)
comprised of the central reverse transcriptase[28] and RNAse
H (RH) [29] domains, C-terminal DNA-binding domains[30]
and a N-terminal apurinic/apyrimidinic-like endonuclease
domain[31]. We have previously identified a subset of highly
degenerate group of non-LTR retroelements related to theingi
clade and named them DIREs for “degenerateingi/L1Tc-related
elements”[32]. In this paper, we report the identification and
characterization of the full complement of DIREs in theT.
brucei, T. cruzi andL. major genomes. Our analysis shows that
L. major has eliminated all the active non-LTR retrotransposons
present in its trypanosomatid ancestor, while trypanosome
genomes still contain potentially active elements.

2. Materials and methods

2.1. Detection and reconstitution of the chimeric DIRE
coding sequences

T. brucei, T. cruzi andL. major genome sequences are avail-
able at GeneDB (http://www.genedb.org/). Ingi and L1Tc pep-
tide sequences were used to detect all DIREs in theT. brucei
(Tb927.v3.0),T. cruzi (TcBr.v3.0) andL. major (LmjF.v4.0)
genomes. An initial TBLASTN search was performed against all
T
t the
D eated
a against
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( nds
t modi-
fi n the
p xten-
s past
s s, this
p e ele-
ve genomes contain detectable vestiges of a mobile ele
ne cannot rule out the hypothesis that these genomes neve

ained mobile elements. To address this question, we have
yzed all the potentially active and highly degenerate non-
etrotransposons contained in the recently completed geno
hree trypanosomatid protozoan parasites (Trypanosoma brucei,
rypanosoma cruzi andLeishmania major) [11–13].

Trypanosomatids are protozoan parasites of major me
nd veterinary significance. They cause serious disea
umans, such as sleeping sickness (T. brucei), Chagas disea
T. cruzi) and Leishmaniasis (Leishmania spp.).T. brucei and
. cruzi belong to theTrypanosoma genus and constitute
onophyletic group distantly related from theLeishmania spp.

14–16]. L. major is considered devoid of any mobile eleme
hile both trypanosome species contain retrotranspo

17,18]. The genomes ofT. brucei andT. cruzi contain simila
etrotransposons, while no DNA transposons have been de
o far. VIPER is an LTR retrotransposon originally charac
zed in theT. cruzi genome[19] and recently identified in theT.
rucei genome[11,12]. According to the current nomenclatu
ll trypanosomatid non-LTR retrotransposons analyzed s
re divided into the CRE andingi clades[4]. The CRE clade i
omposed of theT. brucei SLACS,T. cruzi CZAR andCrithidia
asciculata CRE1/CRE2 elements, which are site-spe
etroelements always inserted at the same relative position
pliced leader (SL) RNA genes[20–23]. TheT. brucei ingi andT.
ruzi L1Tc elements, of theingi clade, are dispersed in the h
enome[24–26], although they show a relative site-specific

or insertion[27] (Bringaud, unpublished data). It is notewor
hat mobilization of trypanosomatid retroelements has not
bserved so far, therefore, we consider as potentially funct
r
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n
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. brucei andL. major chromosomes andT. cruzi contigs using
he ingi and L1Tc peptides. Approximate coordinates of
IREs were determined and putative gene models were cr
nd translated. These peptides were then searched again

ngi and L1Tc peptides using the BLAST–extend–rep
BER) algorithm developed at TIGR. This algorithm exte
he boundaries of each ORF by 300 bp on both ends and a
ed Smith–Waterman alignment is then performed betwee
roteins, including the translation of the extensions. The e
ions allow the examination of all translation frames and
top codons. Because of the degenerate nature of DIRE
rocess allows to determine the precise coordinates of thes
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ments. To tentatively reconstitute chimeric proteins from the
analyzed DIREs, frame shifts were removed manually from the
DNA sequences using the BER outputs to precisely determine
the frame shift positions. This approach was used to generate
a pseudogene for each DIRE encoding a singleingi/L1Tc-like
sequence that contains numerous stop codons in most cases.

2.2. Other databases mining

The absence of detectable traces of retrotransposons, in the
Encephalitozoon, Cryptosporidium andPlasmodium genomes
was confirmed by performing TBLASTN searches with the
reverse transcriptase domain of different LTR and non-LTR
retrotransposons. The TBLASTN searches were performed
on the E. cuniculi (http://www.ncbi.nlm.nih.gov/mapview/
mapsearch.cgi?taxid=6035), Cryptosporidium parvum and
hominis (http://CryptoDB.org/) andP. falciparum (http://www.
genedb.org/genedb/malaria/) genome web sites.

2.3. Phylogenetic analyses

The reverse transcriptase, apurinic/apyrimidinic-like
endonuclease and RNase H amino acid domains were aligned
using the multiple alignment option in CLUSTAL X[33],
followed by minor manual adjustments using MacClade
Version 4.06 (Sinauer Associates Inc.). The alignments of
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sequence homology to theT. brucei ingi and T. cruzi L1Tc
non-LTR retrotransposons. A total of 85ingi and 296 L1Tc
were identified, which corresponds to 115 and 320 expected
retroelements per haploid genome, respectively[12]. The intra-
species percentage of identity between the nucleotide sequence
of these elements ranges between 49.9 and 99.8% forT. bru-
cei (ingi) and 51.8 and 99.8% forT. cruzi (L1Tc) with a mean
of 92.2% for ingi and 94% for L1Tc. TBLASTN searches of
the three trypanosomatid genomes with the retroelements prod-
uct revealed, in addition to the previously annotated elements,
sequences presenting significant homology with the RT, RH
and/or EN domains. Theseingi/L1Tc-like sequences, which
contain numerous frame shifts and stop codons, correspond to
DIREs[32]. To analyze and compare the DIRE gene products,
we used a BLAST-based tool (BER, see Section2) to locate
the frame shifts in the degenerate sequences. This allowed us
to tentatively reconstitute chimeric proteins with matches to
the ingi and L1Tc products for the purpose of phylogenetic
analyses. Among the 53 and 52 DIREs identified in theT. bru-
cei (TbDIRE) andL. major (LmDIRE) genomes, 47 and 31
were successfully reconstituted (Fig. 2). Intra-species compar-
ison of the reconstituted DIRE proteins revealed the existence
of nearly identical elements that were ordered into representa-
tive groups of related elements (22 forT. brucei and 21 forL.
major). The elements in each group are depicted inFig. 2. Due
to the higher number of DIREs in theT. cruzi database (238
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he RT, EN and RH domains have been deposited at E
ith Accession numbers ALIGN000836, ALIGN000837 and
LIGN 000838, respectively. Phylogenetic trees were ge
ted by the neighbor-joining and maximum parsimony heu
ethods as implemented in PAUP Version 4.0b10 (Sin
ssociates Inc.), using default parameters. Bootstrapping
lso carried out using PAUP.

. Results

.1. Identification of degenerate Ingi/L1Tc-like sequences

In the course of the genome project analysis, we a
ated ingi and L1Tc elements based on respective nucle

able 1
ercentage of identity between the proteins encoded byingi, L1Tc and DIRE

roup Subclade Numbera

ngi ingi 1 (85)

1Tc L1Tc 1 (296)

bDIRE1 ingi 3 (13)
bDIRE2 ingi 6 (7)
bDIRE3 ingi 9 (11)

cDIRE1 Ingi 6 (11)
cDIRE2 L1Tc 15 (169)

mDIRE LmDIRE 21 (31)

a Number of sequences compared with theingi and/or L1Tc product. Num
s indicated into brackets.

b Range of values is indicated into brackets.
-

r
s

-

lements in the 1701 contigs >10 kb, which represent ap
mately 1.2× coverage of the haploid genome), 192 TcDIR
ere first ordered by comparing their nucleotide sequence
efined 28 groups of related sequences, including a large f
omposed of 104 elements. Chimeric protein sequences
hen successfully reconstituted for a representative eleme
2 groups. As expected, all the 65 reconstituted proteins
. brucei (22), T. cruzi (22) andL. major (21), which repre
ent a total 297 different DIREs, match with the trypanos
on-LTR retrotransposons. The mean percents of identity

he ingi product are 31.6± 6.2% for TbDIRE, 29.6± 6.6% for
cDIRE and 27.9± 4.3% for LmDIRE (Table 1). The value
re lower when TbDIRE and LmDIRE are compared with
1Tc product (15.7± 3.7 and 25.5± 4.1%, respectively). Su

% of identity withingib % of identity with L1Tcb

– 23.8

23.8 –

44.7 (33.8–62.0) 18.3 (14.1–21.0)
29.5 (27.1–31.6) 14.1 (11.3–19.3)
27.5 (22.7–33.0) 14.4 (10.2–19.4)

38.7 (33.8–42.4) 26.3 (18.9–32.6)
26.4 (21.0–33.3) 25.7 (18.9–33.8)

27.9 (18.2–33.7) 25.5 (14.8–31.8)

f sequences belonging to this family and annotated in the corresponding

http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=6035
http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=6035
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Fig. 2. Schematic map of the DIRE. A map ofingi, L1Tc and the selected representative of each group of nearly identical DIREs, is presented in the right panel.
The five TbDIREs, eight TcDIREs and 21 LmDIREs for which the protein could not be successfully reconstituted, are not shown. In the left panel, are indicated the
names of the selected DIREs (“name”) along with their corresponding DIRE family (“Fam”), the accession number of the BAC, contig or chromosome containing
the representative selected DIREs (“ACC”), number of elements in each group (“N”), number of elements containing the 79 bp signature in each group of DIREs
(“79 bp”) and size of the reconstituted protein in amino acids (“aa”). In the right panel, the EN, RT and RH domains are represented by black boxes or light grey
boxes, corresponding to whether the domain was used or not for the phylogenetic analysis, respectively (Figs. 3–5). The leucine zipper motifs are indicated by dark
grey boxes. Gaps introduced in the coding sequences (double lanes) reflect the alignment of the retroelement product. The initiation (ATG) and stop codons at the
beginning and the end of the coding sequences are represented by “A” and “S”, respectively. Dashes represent non-coding retroelement sequences and vertical bars
flanking the maps indicate that the extremity of the element is identified. When present at the 5′-extremity, the bar indicates that the element contains the 79 bp
trypanosomatid non-LTR retroelement signature. An interrogation mark indicates that the 3′-extremity is not known, while the stop codon was identified. Target site
duplication (TSD) means that the retroelement is flanked by an identified duplicated sequence of TSD-like sequence, suggestive of a relative recent retrotransposition
event. Two groups of TbDIREs, represented by the Tb3.223a and Tb6.43 elements, are interrupted by a RIME (non-autonomous non-LTR retrotransposon) and
represented by an underlined “R”. All theT. brucei, T. cruzi andL. major sequences are available on GeneDB (http://www.genedb.org).

http://www.genedb.org/
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Fig. 3. Phylogenetic analysis of the RT domain. The phylogeny is based on approximately 450 aligned amino acid residues (alignment is available underthe Accession
number: ALIGN000836), corresponding to the entire RT domain of non-trypanosomatid non-LTR elements,ingi, L1Tc and DIREs. Very few highly degenerate
DIRE RT domains were removed from this analysis (grey boxes inFig. 2). The 14 non-trypanosomatid non-LTR elements are representatives of the Jockey and I
groups which are the closest relative ofingi/L1Tc among the five previously defined non-LTR retrotransposon groups[4]. The I group is comprised of the Tad1,
R1, LOA, I andingi clades. This consensus tree was generated with the neighbor-joining method and rooted on the RT sequences of group II introns. All numbers
next to each node, except those in italic, indicate bootstrap values as percentage out of 100 replicates corresponding to the tree generated with the neighbor-joining
method. A similar pattern was also obtained by the maximum parsimony method for the lower part of the tree, which define the DIRE families (italics numbers below
nodes indicate bootstrap values as percentage out of 100 replicates). Names of each DIRE and number of elements constituting their group are shown in the right
margin. The boxed DIREs contain the 79 bp trypanosomatid non-LTR retroelement signature and those with a dot are flanked by a TSD or a TSD-like sequence.For
non-trypanosomatid non-LTR elements and group II introns, name and species of origin are given to the right. Arrows in the right margin indicate DIRE families
(TbDIRE1/2/3, TcDIRE1/2 and LmDIRE), subclades (ingi, L1Tc and LmDIRE) and clades (ingi, LOA, R1, CR1, Jockey, Tad1, I and CRE).
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prisingly, TcDIREs are apparently closer toingi than to L1Tc
(29.6± 6.6% versus 25.8± 4.5%) (Table 1).

3.2. Phylogenetic analysis of the trypanosomatid non-LTR
retrotransposons

Using the reconstituted DIRE products, we attempted to
reconstruct the phylogenetic relationships between non-LTR
elements from different eukaryotes, includingingi (T. brucei),
L1Tc (T. cruzi) and DIRE. Phylogenetic analyses of the non-LTR
retrotransposons are commonly performed on the RT domain,
which is the trademark of retrotransposons. RT phylogeny is
statistically more robust than phylogenetic trees generated with
the EN and RH domains of retroelements. Indeed, among the
non-LTR retrotransposon domains, RT is the most conserved.
It is also the only domain present in all elements and it is the
longest one (∼450 aa as compared to∼230 and∼200 aa for the
EN and RH domains, respectively). This increases considerably
the number of evolutionary significant positions[34]. In addi-

tion, the non-LTR retrotransposon RT domain is related to the
RT domain of group II introns, which can be used as a closely
related outgroup to root the tree[35]. A neighbor-joining phy-
logram for the RT domain of 3 group II introns (outgroup), 4
trypanosomatid site-specific retroelements (CRE clade), 14 non-
trypanosomatid non-LTR elements,ingi, L1Tc and 38 DIREs is
shown inFig. 3. We find thatingi, L1Tc and all the DIREs
appear to form a monophyletic clade distinct from all the other
non-LTR retroelements. This is supported by a high bootstrap
value (98 and 91% for the neighbor-joining and maximum parsi-
mony methods, respectively). As previously described, I factor
element is the closest relative of theingi clade[34]. The ingi
clade can be subdivided into three subclades: the LmDIRE sub-
clade contains all the LmDIRE, the L1Tc subclade is composed
of L1Tc and most of the TcDIREs and theingi subclade contains
ingi, all the TbDIREs and a few TcDIREs (Fig. 3). Similar phy-
logenetic analyses were performed on the EN and RH domains,
using cellular domains as outgroups (Figs. 4 and 5), displaying
the same pattern as for RT. This includes the monophyly of the

F
A
t

ig. 4. Phylogenetic analysis of the EN domain. The phylogeny is based on
ccession number: ALIGN000837), corresponding to the entire EN domain. T

he prokaryotic and eukaryotic housekeeping apurinic/apyrimidinic endonucle
approximately 230 aligned amino acid residues (alignment is available underthe
his consensus tree was generated with the neighbor-joining method and rooted on
ases (called “AP-endonuclease”) (for more details, seeFig. 3).
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Fig. 5. Phylogenetic analysis of the RH domain. The phylogeny presented is based on approximately 200 aligned amino acid residues (alignment is accessible under
the Accession number: ALIGN000838), corresponding to the entire RH domain. This consensus tree was generated with the neighbor-joining method and rooted
on the housekeeping eukaryotic RH (called “RNAse H”), including those for four trypanosomatid species (for more details, seeFig. 3).

ingi clade (ingi, L1Tc and DIRE) with the I factor element as the
closest relative, the definition of three subclades corresponding
to the three trypanosomatid species and the presence of a few
TcDIREs in theingi subclade.

On the basis of these three phylogenies, theT. brucei
andT. cruzi DIREs form two and three families, respectively
(Figs. 3–5). The 3 TbDIRE families belong to theingi subclade,
while forT. cruzi, the TcDIRE2 family (15 groups corresponding
to 169 elements) belongs to the L1Tc subclade and the TcDIRE1

family (6 groups corresponding to 11 sequences) belongs to the
ingi subclade (Fig. 2).

3.3. Most of the DIREs contain the trypanosomatid
non-LTR retrotransposon signature

The protein-based phylogenetic analysis strongly supports
the view that DIRE,ingi and L1Tc belong to the same clade of
retroelements and have a common ancestor in the trypanoso-
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Fig. 6. Comparison of the DIRE 5′-extremity. The first 100 bp ofingi (26P8i5), L1Tc (Tc507835) and DIRE containing the trypanosomatid non-LTR retrotransposon
signature were aligned with the introduction of gaps (.) to maximize the alignments. Identical residues are shaded in grey and the ATG or degenerate ATG initiation
codons are underlined. The position of the trypanosomatid non-LTR retrotransposon signature (79 bp signature) is indicated above the alignment. Name and family of
the aligned DIRE are indicated in the left and right margins, respectively. Number of identical or nearly identical elements containing the 79 bp signature is indicated
into brackets in the right margin and only the representative of each group is shown in the alignment (seeFig. 2).

matid lineage.Ingi and L1Tc, which are 23.8% identical at
the protein level, are not conserved at the nucleotide level;
however, they share a conserved stretch of 79 bp[36]. This
79 bp sequence is also conserved in the short non-autonomous
non-LTR retrotransposons identified inT. brucei (RIME)
[24,25,37] and T. cruzi (NARTc) [36]. This suggests that
this particular sequence, called the trypanosomatid non-LTR
retrotransposon signature (or 79 bp signature), has a critical
role for trypanosomatid retroelement function. Interestingly,
the 79 bp signature is present at the 5′-extremity of one-third of
the 297 DIREs analyzed. This represents 108 elements, i.e. 86
TcDIREs, 16 TbDIREs and 6 LmDIREs (Figs. 2 and 6), which
belong to the 6 different DIRE families (boxed DIRE names
in Figs. 3–5). The 5′-extremity of the other DIREs is truncated
and consequently does not contain the 79 bp signature.

3.4. Few DIREs are flanked by a putative target site
duplication

An essential question is to determine whether the DIREs
are still active. Due to their significant degree of degeneration,

we can exclude the possibility that DIREs code for their own
retrotransposition. However, they could be mobilized using the
retrotransposition machinery encoded by active elements (such
as potentially activeingi in T. brucei and L1Tc inT. cruzi) as pre-
viously observed in other eukaryotes[38]. Recent mobilization
of DIREs would imply the presence of a target site duplica-
tion flanking the element. However, the identification of TSD
requires the precise definition of the retroelement extremities,
which is straightforward for members of conserved retroele-
ment families, such asingi and L1Tc, but not obvious for highly
degenerate elements.

Fortunately, we were able to precisely define the 5′-extremity
for 16 TbDIREs containing the 79 bp signature. They include six
full length elements which contain the entire coding sequence
followed by a putative poly(A) sequence considered as the
3′-extremity of the elements (Fig. 2). The size of these full
length TbDIREs is similar toingi (5.25 kb), including Tb1b
(5218 bp) and Tb9.231b (5258 bp), which are 88.9% identi-
cal at the nucleotide level. It is noteworthy that while Tb1b
and Tb9.231b are similar, they are flanked by very different
sequences, which suggests that these related DIREs are inserted

F he ali sed
o whic ent seq,
g poly( ion cod
u and o
d itions TSD)
o

ig. 7. Comparison of the 5′- and 3′-adjacent sequences flanking DIREs. T
n the retroelement sequence (headed “non-LTR retrotransposon”) from
rey-shaded residues are conserved in the retroelement sequence, the
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in different sequences. Furthermore, this comparison is helpful
to determine precisely both extremities of Tb1b and Tb9.231b.
Interestingly, Tb1b is flanked by a 12 bp identical sequence
which fulfills the TSD definition (Fig. 7). The size of the Tb1b
TSD is also consistent with the 12 bp longingi TSD [27]. Fur-
thermore, Tb1b (previously called TUBIS[39]) is inserted at
the 3′-extremity of a�-tubulin pseudogene (901 bp), which did
not accumulate point mutations, since its sequence is identi-
cal to the corresponding sequence of the other�-tubulin genes
(1329 bp) found in the�-/�-tubulin cluster[40]. Altogether,
this suggests that Tb1b has been recently retrotransposed into
the�-/�-tubulin cluster. This hypothesis is strengthened by the
absence of TUBIS-like sequence (Western blot analysis) in the
T. congolense genome[41] and database mining of the ongo-
ing T. congolense andT. vivax genome projects at the Wellcome
Trust Sanger Institute (http://www.genedb.org/) did not reveal
the presence of DIRE in the vicinity of the tubulin clusters.
For the five other full length DIREs identified in theT. brucei
genome, the situation is different. The 12 bp sequences flanking
the elements are not identical, but 7 (Tb5.204b and Tb9.146a)
to 9 residues (Tb9.231b and Tb5.204c) out of the 12 bp are con-
served (Fig. 7), suggesting that these remnant TSDs, as well as
the DIREs, have accumulated point mutations over time. This
observation is suggestive of older retrotransposition events as
compared to the Tb1b andingi elements.

Most of the 86T. cruzi DIREs containing the 79 bp signature
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observed in theLeishmania spp.[17]. Indeed, in the course of
this analysis, we did not detect any potentially active mobile ele-
ments in the completedL. major genome[12,13]. We have only
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in the genome of the present dayL. major.
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xplained by horizontal transfer betweenT. brucei andT. cruzi,
s proposed inFig. 8B. However, this hypothesis is unlike
ince T. brucei brucei subspecies (including the sequen
REU927 strain) andT. cruzi are restricted to the African an
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cal localization of their insect vector. These two contine
eparated approximately 130 million years ago. In the abs
f a fossil record, the time of divergence between Saliva

rypanosomes (group containingT. brucei brucei subspecies
nd Stercorarian trypanosomes (group containingT. cruzi) is
nknown, however, it preceded the separation of the conti
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Fig. 8. Evolution of the retroelements composing theingi clade. (Panel A) Compilation of the phylogenetic analyses performed inFigs. 3–5. The number of
identified elements composing the seven families of the three subclades (L1Tc,ingi and LmDIRE) are indicated on the right. Theingi and L1Tc families, which
contain potentially active retrotransposons are underlined. To tentatively explain the presence ofT. cruzi DIREs (TcDIRE1) in theingi subclade (as shown in panel
A), two evolutionary scenarios are presented in panels B and C. Both hypotheses consider that all the elements composing theingi clade derive from an ancestral
ingi/L1Tc-like retroelement present in the common trypanosomatid ancestor. The first hypothesis is based on the unlikely horizontal transfer of element(s) (H.T.)
fromT. brucei toT. cruzi (panel B). The second hypothesis considers that the rate of mutation accumulation for some elements, boxed in panel A, is lower as compared
to the other elements of theingi clade (panel C).

Fig. 9. Predicted secondary structure of the 5′-extremity of theingi and L1Tc mRNA. This analysis was performed on the first 149 bp ofingi and L1Tc using the Mfold
program, Version 3.1 (http://www.bioinfo.rpi.edu/applications/mfold/old/rna/form1-2.3.cgi) [60]. The most stable structure, among the few predicted structures (five
for ingi and three for L1Tc) are presented. The 5′-end conserved sequences (79 bp foringi and 78 bp for L1Tc) are shown by a thick black lane for the first 39 bp
(92% identity) and a thin grey lane the following 40 bp (57% identity). The three non-conserved residues in the first 39 bp conserved sequences are whitecharacters
on a black background.

http://www.bioinfo.rpi.edu/applications/mfold/old/rna/form1-2.3.cgi
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years[34], as opposed to LTR retrotransposons[45]. The reason
for this difference may reside in the retrotransposition mecha-
nism of non-LTR retrotransposons (the target-primed reverse
transcription reaction), in which the cDNA strand is reverse-
transcribed from an RNA template directly onto a chromosomal
target site[3], leading to the absence of free DNA element in the
cytosol. However, the absence of evidence does not mean that
non-LTR retrotransposons cannot be transferred horizontally.
Considering that the horizontal transfer scenario is unlikely, we
propose that certain elements constituting theingi subclade,
such asingi, TbDIRE1 (13 elements) and TcDIRE1 (11 ele-
ments), evolved at a lower rate as compared to the other elements
(Fig. 8C). This hypothesis suggests that selective pressure was
imposed over time on these particular sequences forcing them
to be conserved. In other words, these elements may have a par-
ticular unknown function useful to the cell, preventing them to
accumulate point mutations.

For that matter, Obado et al. recently showed that the locus
required for the mitotic stability ofT. cruzi chromosome three
centers on a 16 kb strand-switch region composed of degenerate
retrotranspososons[46]. They proposed that this GC-rich region,
which contains a TcDIRE1 of the Tc507229 group, acts as a
centromere. Interestingly, the corresponding region ofT. brucei
chromosome 1, which is syntenic withT. cruzi chromosome 3,
has been postulated to have centromeric properties on the basis
of a low recombination frequency[40] and contains a TbDIRE1
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ously described for other non-LTR retrotransposons[38,55–57].
For instance, the human L1 element displays acis-preference,
however, L1 can also function intrans to retrotranspose mutant
L1 RNAs and to generate processed pseudogenes, though at a
much lower frequency[38,55,56].
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