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 46 

Short summary 47 

This review describes recent progress in our understanding of extensin post-translational 48 

modifications throughout the secretory pathway, extensin secretion and assembly in the cell walls, 49 

and possible sensing mechanisms at the interface between the apoplast and the cytoplasmic side 50 

of the cell surface. 51 

 52 

 53 

ABSTRACT 54 

Extensins (EXTs) are highly repetitive plant O-glycoproteins that require several post-translational 55 

modifications (PTMs) to become functional in plant cell walls. First, they are hydroxylated on 56 

contiguous proline residues; then, they are O-glycosylated on hydroxyproline (Hyp) and serine. 57 

After secretion into the apoplast, O-glycosylated EXTs form a tridimensional network organized by 58 

inter- and intra-Tyr linkages. Recent studies have made significant progress in the identification of 59 

the enzymatic machinery required to process EXTs, which includes prolyl 4-hydroxylases (P4Hs), 60 

glycosyltransferases (GTs), papain-type cysteine-endopeptidases (CEPs), and peroxidases (PERs). 61 

EXTs are abundant components of plant tissues, and are particularly important in rapidly 62 

expanding root hairs and pollen tubes, which grow in a polar manner. Small changes in EXT PTMs 63 

affect fast-growing cells, although the molecular mechanisms underlying this regulation are 64 

unknown. In this review, we highlight recent advances in our understanding of EXT modifications 65 

throughout the secretory pathway, EXT assembly in the cell walls, and possible sensing 66 

mechanisms triggered by the Catharanthus roseus cell surface sensor receptor-like kinases 67 

(CrRLK1Ls) located at the interface between the apoplast and the cytoplasmic side of the plasma 68 

membrane. 69 
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 70 

INTRODUCTION 71 

In the model plant Arabidopsis thaliana, 10–15% of the genome is devoted to construction, 72 

dynamic architecture, sensing functions, and metabolism of the plant cell walls (Carpita, 2001; 73 

Cosgrove, 2015). In contrast to N-glycan glycosylation, the core mechanism for O-linked 74 

glycosylation in plants does not appear to be conserved among all eukaryotes. In mammals, the 75 

most common O-glycan results from the incorporation of an N-acetylgalactosamine (GalNAc) at 76 

serine or threonine residues (mucin-type O-glycosylation) (Bennet et al., 2012). In plant cells, O-77 

linked glycans are usually attached to the hydroxyl group of hydroxyproline (Hyp); however, they 78 

are occasionally attached to the hydroxyl group of serine (e.g., in extensins, EXTs) (Kieliszewski, 79 

2001). This O-linked glycosylation defines the molecular properties and biological function of the 80 

Hyp-rich glycoprotein (HRGP) superfamily and some secreted small peptides (e.g., CLE for 81 

CLAVATA3/Endosperm surrounding region). The HRGP superfamily is traditionally divided into 82 

three major subgroups: arabinogalactan-proteins (AGPs), EXTs, and the repetitive Proline-rich 83 

proteins (PRPs). However, the HRGP superfamily is better understood as a spectrum of molecules 84 

ranging from the highly glycosylated AGPs to the minimally O-glycosylated PRPs (for details, see 85 

Ellis et al., 2010; Lamport et al., 2011; Johnson et al., 2017). Bioinformatic analysis of the HRGP 86 

superfamily in Arabidopsis thaliana identified 59 genes encoding EXT-related glycoproteins, 18 87 

encoding PRPs and 4 encoding AGP/EXT hybrid HRGPs (Showalter et al., 2016; Johnson et al., 88 

2017). Here, we refer to EXTs in a wide sense to include related glycoproteins containing multiple 89 

Ser-(Pro)3-5 repeats that may be O-glycosylated, Tyr (Y)-based motifs that could be crosslinked, and 90 

a putative O-glycosylated arabinogalactan (AG) motif since it contains a Ser-Pro-Ser-Pro sequence 91 

(Figure 1A) such as proline-rich proteins (PRPs) and leucine-rich repeat extensins (LRXs). We 92 

exclude the proline-rich extensin-like receptor kinases (PERKs) and formins (FHs) from this group 93 

because they contain additional protein domains (e.g., cytoplasmic kinase domains (PERKs) or 94 

actin-microtubule binding domains (formins)) that are highly important for their functions 95 

independently of the EXT-like domain.    96 

 97 

EXTs require several modifications before they become functional at the plant cell surface. First, 98 

they are hydroxylated by prolyl 4-hydroxylase (P4H) enzymes (Figure 1B-C), and then O-99 

glycosylated by several co-expressed glycosyltransferases (GTs) in the secretory pathway (e.g., ER 100 

and Golgi compartments) (Figure 1D-E). Finally, they are crosslinked in the apoplast (Velasquez et 101 

al., 2011) by unidentified secreted type-III peroxidases (PERs). For O-glycosylation, EXTs and small 102 

peptides require the conversion of specific peptidyl-proline residues to trans-4-hydroxyproline 103 

(Hyp) by P4H enzymes (Velasquez et al., 2011; Velasquez et al., 2015). Two mayor types of O-104 

glycans are attached to Hyp in plant HRGPs. Linear chains of up to five arabinose units are added 105 

to clusters of Hyp residues in EXTs and small peptides (Figure 1D), whereas complex 106 

arabinogalactans are attached to AGPs or AGP-like proteins. The Hyp contiguity hypothesis 107 
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proposes that the addition of these two main types of O-glycan is controlled by a primary HRGP 108 

protein sequence (Kieliszewski, 2001). This hypothesis predicts that short arabino-oligosaccharides 109 

are added to contiguous Hyp3-5 residues in EXTs (Figure 1D), whereas complex arabinogalactans 110 

are transferred to clustered but non-contiguous Hyp residues in AGPs (Shpak et al., 1999; Tan et 111 

al., 2010). One exception to this rule are CLE-like peptides (e.g., Tob/Tom-HypSys, PSY1, CLV3, and 112 

CLE2), in which non-contiguous Hyp residues are arabinosylated. O-arabinosylation of small 113 

peptides is important for their stability and activity (Ohyama et al., 2009; Matsubayashi et al., 114 

2010; Shinohara and Matsubayashi, 2013). Monomeric secreted EXTs form rod-like structures with 115 

a polyproline-II helical conformation, which are further stabilized by their Hyp-O-glycans 116 

(Stafstrom et al., 1986; Owens et al., 2010; Velasquez et al., 2011; Velasquez et al., 2015). In 117 

addition to EXT O-glycosylation, some EXTs are cross-linked and insolubilized into the plant cell 118 

wall by Tyr-based motifs (Lamport et al., 2011). Secreted type-III peroxidases (PERs) are thought to 119 

facilitate both intra-molecular and inter-molecular covalent Tyr-Tyr cross-links by generating 120 

isodityrosine units and pulcherosine or di-isodityrosine, respectively (Brady et al., 1996; Brady et 121 

al., 1998) (Figure 1F); however, the underlying molecular mechanisms are not completely 122 

determined. Finally, O-glycosylation defects on EXTs might be sensed and controlled in the 123 

secretory pathway by specific papain-type Cysteine EndoPeptidases (CEPs) (Helm et al., 2008). This 124 

review discusses recent discoveries of major PTMs of EXTs, the enzymes involved (i.e., proline 125 

hydroxylation by P4Hs, O-linked glycosylation by GTs, and Tyr-based crosslinking by PERs), and 126 

their functional implications. Several authoritative reviews provide comprehensive coverage of 127 

various aspects of EXT glycoproteins, small glycopeptides, and the associated enzymatic 128 

machinery (P4Hs, PERs, and CEPs) (Dunand et al., 2007; Gorres and Raines, 2010; Matsubayashi et 129 

al., 2010; Kieliszewski et al., 2011; Lamport et al., 2011; Hierl et al., 2013; Borassi et al., 2016).  130 

 131 

 132 

PROLINE HYDROXYLATION OF EXTENSINS BY PROLYL 4-HYDROXYLASES 133 

P4H enzymes are 2-oxoglutarate (2OG) dioxygenases (EC 1.14.11.2) that catalyze the formation of 134 

trans-4-hydroxyproline (Hyp/O) from peptidyl-proline; this reaction requires Fe
2+

, 2-oxoglutarate, 135 

O2, and ascorbate cofactors. While plant P4Hs contain only the catalytic α-subunit (Koski et al., 136 

2007; Koski et al., 2009), in animal cells P4Hs form tetramers of α2β2 subunits where β-subunits 137 

have protein disulfide isomerase activity responsible for retention and solubility of α-subunits in 138 

the endoplasmic reticulum (Myllyharju 2003). Studies on synthetic repetitive peptides (Shpak et 139 

al., 1999; Held et al., 2004) and native purified P4H substrate proteins (Cannon et al., 2008) 140 

indicate that classical P4H-mediated proline hydroxylation of EXT with 2–4 contiguous proline 141 

units next to a serine residue [Ser(Pro)2-4] mostly runs to complete proline-hydroxylation [Ser-142 

(Hyp)2 to Ser-(Hyp)4], whereas the extent of this modification is much more difficult to predict in 143 

non-classical sequence contexts (Duruflé et al., 2017). The Arabidopsis thaliana genome encodes 144 

13 putative P4Hs; the in vitro activity of P4H1, P4H2, and P4H5 has been characterized (Hieta and 145 
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Myllyharju, 2002; Tiainen et al., 2005; Velasquez et al., 2011; Velasquez et al., 2015b). On the 146 

other hand, the Chlamydomonas reinhardtii genome encodes 10 CrP4H-like polypeptides 147 

(Keskiaho et al. 2007) and only the activity of CrP4H1 has been assessed in vitro (Koski et al., 2007; 148 

Koski et al., 2009). Moreover, there are 6 homologous sequences of AtP4Hs in the moss 149 

Physcomitrella patens, but only PpP4H1 was shown to be enzymatically active by using a 150 

heterologous human erythropoietin (hEPO) substrate (Parsons et al., 2013).  151 

 152 

Recent work has described the actions of Arabidopsis thaliana P4H2, P4H5, and P4H13 on EXTs, 153 

specifically in root hair cells (Velasquez et al., 2015). Treatment of root hairs with P4H inhibitors 154 

DP (α,α-dipyridyl) and EDHB (ethyl-3,4-dihydroxybenzoate) blocked peptidyl-proline HRGP 155 

hydroxylation and drastically inhibited cell elongation, suggesting the existence of a direct link 156 

between proline hydroxylation and root hair growth (Velasquez et al., 2011). Expression of 157 

P4H:GFP fusions under control of their endogenous promoters revealed that P4H2, P4H5, and 158 

P4H13 were expressed primarily in root epidermal trichoblast cells and growing root hairs, and 159 

were localized in the ER and Golgi compartments (Velasquez et al., 2011, Velasquez et al., 2015b). 160 

These results suggest that proline hydroxylation of HRGPs might be initiated in the ER and 161 

completed in the Golgi.  162 

 163 

P4H5 and P4H13 contain an [RK]X[RK] motif (ERG domain) in their N-terminus, which is important 164 

for Golgi targeting (Velasquez et al. 2015), as shown previously for P4Hs in tobacco (Nicotiana 165 

tabacum) cells (Yuasa et al., 2005). According to the biochemical inhibition phenotype, the 166 

analysis of T-DNA insertional mutants for P4H2, P4H5, and P4H13 also showed the arrest of cell 167 

elongation and the presence of truncated root hair phenotypes. The p4h5 mutant displayed the 168 

most drastic phenotype, with an altered cell structure resembling of the triple mutant p4h2 p4h5 169 

p4h13. By contrast, P4H5 overexpression induced an over-elongated root hair phenotype 170 

(Velasquez et al. 2011; Velasquez et al. 2015b). Genetic complementation or by a P4H promoter-171 

swapping approach as well as over-expression studies (Velasquez et al., 2015b) showed that P4H2 172 

and P4H13 have similar function during root hair growth while P4H5 displayed a unique role 173 

(Figure 1B-C). Meanwhile, root Hyp levels were reduced in all these mutants. P4H5 preferentially 174 

hydroxylates three of the first four proline units (SOOOP) in EXT following a specific order, rather 175 

than acting on other proline-rich peptides (Velasquez et al., 2015b). This result allows us to propose 176 

that, in root hair cells, P4H5 has a main role in the initiation and continuous proline hydroxylation 177 

of EXTs, whereas P4H2 and P4H13 terminate the hydroxylation on these contiguous prolines 178 

(Velasquez et al., 2015b; Figure 1B). In agreement with this notion, P4H5 clearly preferred an EXT 179 

substrate even in the presence of four-time higher AGP peptide concentration (Velasquez et al., 180 

2015b). In addition, P4H5 interacts with P4H2 and P4H13, and most P4Hs can form dimers, 181 

suggesting that one or several multiprotein P4H complexes could function in vivo to hydroxylate 182 

EXTs (Figure 1C). The combined evidence suggests that EXT proline hydroxylation is mediated by 183 
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P4H2,5,13 protein complexes (with unknown stoichiometry). The proline hydroxylation 184 

modification on EXTs is strictly required for the subsequent O-glycosylation steps and control of 185 

root hair cell expansion. Further studies are needed to characterize other AtP4Hs in vitro to 186 

examine how primary and/or secondary HRGP sequences might regulate the degree and pattern 187 

of proline hydroxylation. 188 

 189 

 190 

GLYCOSYLTRANSFERASES (GTs) INVOLVED IN O-GLYCAN ASSEMBLY IN EXTENSINS 191 

EXTs are characterized by repetitive Ser-Hyp3-5 repeats, where the contiguous Hyp residues are 192 

substituted with up to 4–5 units of L-arabinofuranose (L-Araf). These modifications generate the 193 

structure Hyp-(1→4)-â-L-Araf-(1→2)-â-L-Araf-(1→2)-â-L-Araf-(1→3)-á-L-tAraf; the linkage of the 194 

fifth arabinose is not yet resolved, and the serine is substituted with D-galactose as Ser-(1→3)-α-195 

Galp (Figure 1D). Several known arabinofuranosic transferases catalyze the sequential addition of 196 

arabinose residues on Hyp (Figure 1D). The first arabinose is added by three Hydroxyproline O-β-197 

arabinosyltransferases 1-3 (HPAT1-HPAT3), which belongs to glycosyltranferase GT95 family 198 

(Ogawa-Ohnishi et al., 2013). The Reduced Residual Arabinose 1–3 (RRA1-RRA3) of the GT77 199 

family (Egelund et al., 2007; Velasquez et al., 2011) is thought to transfer the second arabinose, 200 

while the third residue addition is catalyzed by the Xyloglucanase113 (XEG113), which also belongs 201 

to the GT77 family (Gille et al., 2009) although the in vitro transferase activities of RRA1-RRA3 and 202 

XEG113 remain to be determined. These putative assignments of their enzymatic activity were 203 

based on the analysis of underglycosylated EXTs isolated from rra1-rra3 and xeg113 mutants 204 

(Velasquez et al., 2011). O-arabinosylation with β-linked-L-arabinofuranosides at Hyp has a key 205 

role in regulating short peptides hormones in the CLE family (i.e., Tob/Tom-HypSys, PSY1, CLV3, 206 

and CLE2) using identical linkages/stereochemistry as used for the innermost three arabinoses 207 

found in the EXTs (Ito et al. 2006; Ohyama et al., 2009; Matsuzaki et al., 2010), suggesting that 208 

similar P4Hs and GTs might participate in these PTMs.  209 

 210 

Two additional enzymes were identified recently that provide a more comprehensive model of the 211 

PTM machinery acting on EXTs in Arabidopsis thaliana (Figure 1E). A unique Serine-212 

galactosyltransferase (SGT1/SerGT1) adds Galactose to Serine in the repeated SOOOO motif in 213 

EXTs (Saito et al., 2014). SerGT1 is the first example of a glycosyltransferase with type-I membrane 214 

protein topology with no homology to known glycosyltransferases, indicating that it is a novel 215 

plant specific glycosyltransferase in the new GT96 family (Saito et al., 2014). The second enzyme is 216 

Extensin Arabinose Deficient (ExAD), which transfers the fourth arabinofuranose residue with α-217 

(1→3) linkage. ExAD belongs to clade-E of inverting GT47 (Rune Møller et al., 2017). The 218 

corresponding exad1 T-DNA mutant displayed a similar truncated root hair phenotype (as 219 

observed for hpats, rra1-3, xeg113) and EXTs in the exad1 mutant only contained side chains of 220 

three arabinoses without any trace of Ara4 or Ara5 chains (Rune Møller et al., 2017). The 221 
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arabinosyltransferase that adds the fifth and final arabinose unit remains to be identified. An early 222 

study identified a Hyp-(Ara)5 species (Campargue et al., 1998), which was validated by mass 223 

spectrometry analysis (Velasquez et al., 2011). Although, the linkage has not been determined and 224 

the corresponding GT candidates are unknown, they may include the EXT AraTs described above. 225 

P4H2, P4H5, and several GTs described before (SerGT1, HPAT3, RRA3, and XEG113) are expressed 226 

together in the same transcriptional co-expression network (Figure 1E), suggesting that they may 227 

be physically associated in the Golgi compartment. Further experiments are needed to determine 228 

whether these GTs work as multiprotein complexes in EXTs O-glycosylation as shown for several 229 

GTs modifying plant cell wall polysaccharides such as GAUT1 and GAUT7 in pectin biosynthesis 230 

(Atmodjo et al., 2011) or exostosins in heparan sulphate synthesis (Busse-Wicher et al., 2014).   231 

 232 

A recent evolutionary analysis indicated that the PTM enzymatic machinery for EXTs could have 233 

arisen before EXTs; this should be considered a vascular plant innovation since no Tyr-crosslinking 234 

motif in EXT-like proteins is found in unicellular photosynthetic organisms (Liu et al., 2016). The 235 

green algae Chlamydomonas reinhardtii genome comprises putative RRAs and XEG113 236 

orthologues and several GTs belonging to the GT47 family (all belong to Clade-E). These might 237 

catalyze the synthesis of O-glycosylated EXT-like surface proteins (Rune Møller et al., 2017). In 238 

agreement with this possibility, RNAi-mediated inhibition of a single P4H, CrP4H1, in C. reinhardtii 239 

drastically disrupted the cell wall (Keskiaho et al., 2007). These combined results suggest a 240 

conserved function for proline hydroxylation/O-glycosylation of structural cell wall glycoproteins 241 

in ancient green algae and vascular plants (Keskiaho et al., 2007; Velasquez et al., 2011; Velasquez 242 

et al., 2015).  243 

 244 

 245 

IS QUALITY CONTROL OF MISGLYCOSYLATED EXTENSINS REGULATED BY CYSTEINE ENDO-246 

PEPTIDASES? 247 

Plant and animal N-glycoproteins comprise more than 33% of the total cell proteomes; they have a 248 

highly regulated and conserved quality control mechanism that rectifies protein folding errors 249 

throughout the secretory pathway (Caramelo and Parodi, 2015). When N-glycoproteins cannot 250 

fold correctly, they are degraded by ER-associated protein degradation (ERAD), which is linked to 251 

ubiquitination and proteasomal degradation (Vembar and Brodsky, 2008). A second degradation 252 

mechanism (Xu et al., 2013) involves an unfolded response based on protein O-Mannosylation 253 

(UPOM). Both of these mechanisms are crucial to maintain glycoprotein homeostasis, also known 254 

as glycoproteostasis (Kim et al., 2013). By contrast, little is known about how plant O-glycoprotein 255 

folding (including EXTs) is sensed and controlled along the secretory pathway. The first evidence of 256 

a possible EXT regulator comes from a unique group of papain-type cysteine-endopeptidases 257 

(CEPs), which contains a C-terminal KDEL endoplasmic reticulum (ER) retention signal, and has no 258 

homologous proteins in mammals and yeast (Hierl et al., 2013). CEPs are usually synthesized as 259 
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pre-pro-enzymes; the N-terminus pro-peptide and C-terminal KDEL are both removed in the ER 260 

when the enzyme becomes active (Hierl et al., 2012; Hierl et al., 2013). CEPs can also be stored in 261 

ER-related compartments such as "ricinosomes" and ER-bodies in Brassicaceae (Hierl et al., 2013). 262 

CEPs are involved in programmed cell death (PCD), such as PCD in Ricinus endosperm (Schmid et 263 

al., 1999), megagametophyte cell death after seed germination (He and Kermode, 2003), and 264 

tapetal cell death during functional pollen formation (Zhang et al., 2014). The in vitro activity of a 265 

CEP from Ricinus communis (RcCysEP) can digest broad sequences, including the O-glycosylated 266 

peptide [VY↓K↓SOOOO] (↓= cleavage site) commonly present in EXT-repeats (Helm et al., 2008). 267 

The three CEPs present in Arabidopsis (AtCEP1–AtCEP3) are widely expressed throughput the 268 

plant (Helm et al., 2008; Zhou et al., 2016). Only AtCEP1 is experimentally linked to tapetum PCD 269 

during pollen development (Zhang et al., 2014). It is also tempting to hypothesize that CEPs may 270 

control EXT proteolysis in the ER (and possibly also the Golgi) when they are over- or under-O-271 

glycosylated, but further evidence is required to determine whether there is an in vivo link 272 

between CEP and EXT PTM processing in the secretory pathway. It is unknown if CEPs are secreted 273 

and reach the apoplast where they could theoretically regulate EXT network disassembly under 274 

specific conditions.  275 

 276 

 277 

TRANSCRIPTIONAL CONTROL OF EXTENSINS AND PEROXIDASES 278 

Several transcription factors (TFs) have been shown to control the expression of numerous EXTs in 279 

diverse organs of the model plant Arabidopsis thaliana. Although the Arabidopsis genome encodes 280 

59 EXTs, only 1 EXT mutant [root shoot hypocotyl-defective (rsh, also ext3)] has a near-lethal 281 

phenotype (Cannon et al., 2008) suggesting a high degree of genetic redundancy in the EXT 282 

protein family. Root hair cells are the exception to this rule, because single lrx1 and lrx2 mutants 283 

have aberrant root hair morphologies (Baumberger et al., 2001; Baumberger et al., 2003; Ringli et 284 

al., 2010). In addition, several classical EXT mutants display short root hairs (Velasquez et al., 285 

2011). These EXTs (ext6-7, 12-14, 18) were first identified by analyzing a co-expression network 286 

with other well-known cell wall genes that are important for root hair growth, including the bHLH-287 

type transcription factor RSL4 for Root Hair Defective 6 Like-4 (Datta et al., 2015; Mangano et al., 288 

2017), LRX1 (Baumberger et al., 2001; Baumberger et al., 2003), and PRP3 (Bernhardt and Tierney, 289 

2000) (Figure 2A). These six EXTs have been identified in most of the available root hair 290 

transcriptomes (Birnbaum et al., 2003; Brady et al., 2007; Deal and Henikoff, 2010; Bruex et al., 2012). 291 

These classical EXTs contain a highly conserved repeated motif of 25 amino acids that contains O-292 

glycosylation and crosslinking motifs, but they are clearly differentiated by their N-terminus sequences 293 

where they share very low similarity, and variability in the total protein length (Figure 2B). These two 294 

variables within the overall similarity between EXTs could explain why a single plant cell needs to 295 

express at least six classical EXTs with the same repetitive motifs, and why most plants display a 296 
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short root hair phenotype when the encoding genes are mutated by T-DNA (Velasquez et al., 297 

2011).  298 

 299 

In support of the notion that RSL4 regulates the transcription of several EXTs, these EXTs (i.e., 300 

EXT12, EXT14, and EXT18) are down-regulated in the loss-of-function mutant rsl4-1 and strongly 301 

upregulated in RSL4 overexpression lines (e.g., 35Spro-RSL4; Yi et al., 2010); therefore, it is plausible 302 

that RSL4 directly controls their expression. In agreement with this possibility, some of these EXTs 303 

contain several root hair-specific cis-Elements (RHEs) that function as RSL4-binding domains at 304 

their regulatory regions (Hwang et al., 2017; Figure 2B). Furthermore, recently it was shown that 305 

RSL4 binds to the promoters of genes encoding root hair-related EXTs such as LRX1 and PRP3, and 306 

positively controls their expression (Hwang et al., 2017). These combined results indicate that 307 

EXTs have essential roles in root hair cell elongation under the control of RSL4 (Marzol et al., 308 

2017). Several other TFs also regulate EXT expression in a RSL4-dependent or RSL4-independent 309 

manner. Very recently, a negative regulator of RSL4 the trihelix transcription factor GT-2-LIKE 1 310 

(GTL1) was characterized (Shibata et al. 2018). GTL1 binds to GT3 boxes in the RSL4 promoter 311 

region (GGTAAA at -556 and TTTACC at -785 from the starting transcription site) and negatively 312 

regulates RSL4 expression to repress root hair growth. GTL1 also repress the expression of several 313 

EXTs (e.g. EXT12 and LRX2) by down-regulating RSL4 (Shibata et al. 2018). In addition, recent work 314 

showed that ETHYLENE INSENSITIVE 3 (EIN3) physically interacts with RHD6, and together these 315 

proteins control RSL4 expression. On the other hand, several EXTs (e.g., EXT11, EXT13, and LRX1) 316 

are believed to be involved in the root hair initiation controlled by EIN3/EIL1 and RHD6/RSL1 317 

independently of RSL4 (Feng et al., 2017). In response to ethylene stimulation, EIN3 directly 318 

triggers EXT expression (e.g., EXT13 and EXT14) (Song et al., 2016).  319 

 320 

The HDG11 transcription factor, belonging to the HD-ZIP IV subfamily, and related transcriptional 321 

regulator proteins such as MEDIATOR25 (MED25) [also called PHYTOCHROME AND FLOWERING 322 

TIME1 (PFT1)] specifically regulate the expression of several EXTs in root hairs. Several root hair 323 

EXTs exhibit an HD-binding cis-element containing the (T)TTAATT(T) or the complementary 324 

(A)AATTAA(A) sequence (e.g., EXT6, EXT7, EXT10, EXT12), which can be bound by HDG11 in vitro 325 

and in vivo (Xu et al. 2014; Figure 2B). The med25/pft1 mutants display truncated root hairs and 326 

downregulation of several EXTs, suggesting that MED25 and PFT1 are positive regulators of EXT-327 

mediated root growth (Sundaravelpandian et al. 2013). Recent work showed that auxin treatment 328 

promoted the interaction between MED25/PFT1 and ARF7/ARF19, thereby releasing the repressor 329 

Aux/IAA14 for degradation together with other components (e.g., CKM for the CDK8 kinase 330 

module of the mediator complex and TPL for Topless) and triggering the transcriptional activation 331 

of target genes mediating lateral root development (Ito et al., 2006). A similar mechanism could 332 

exist in root hair cells where ARF7/ARF19 could be activated by high auxin levels, thereby 333 

promoting root hair growth (Mangano et al., 2017). It is not clear if RSL4, GTL1, HDG11, and 334 
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MED25/PFT1 act in a coordinated manner to control EXT expression, or if they are activated by 335 

different signals, such as low Pi-auxin and ethylene in the case of RSL4 (Yi et al., 2010; Datta et al., 336 

2015; Feng et al., 2017), high auxin for MED25/PFT1, and still unknown signals for HDG11 and 337 

GTL1. 338 

 339 

Recent work identified four PERs that are highly expressed in root hairs (PER1, PER44, PER60, 340 

PER73), co-expressed, and associated with the transcriptional regulator RSL4 (Mangano et al., 341 

2017; Figure 2A). These PERs were partially characterized, and they were linked to lower levels of 342 

reactive oxygen species (ROS) in the tip of root hair cells. A mild root hair phenotype was observed 343 

with multiple PER T-DNA mutants (per44 per73), whereas single mutants displayed almost normal 344 

growth, suggesting a high degree of genetic redundancy (Mangano et al., 2017). RSL4 directly 345 

promotes the expression of these PERs through binding to the regulatory regions of these genes. 346 

These four PERs are placed together with six EXTs in the same transcriptional co-expression 347 

network under the direct control of RSL4; therefore, they are excellent candidates for performing 348 

EXT-crosslinking in the root hair cell walls. At least two more transcription factors negatively 349 

regulate PER44 expression: KUODA1 (KUO1), a MYB-like transcription factor, was shown to bind to 350 

two motifs (ATCACA) in the PER44 promoter and repress its expression in expanding leaves (Lu et 351 

al., 2014), and to the double B-Box BBX24 in growing hypocotyls (Crocco et al., 2015). Further 352 

experiments are required to establish how PER expression is coordinated at the transcriptional 353 

and post-transcriptional levels to control EXT crosslinking and ROS homeostasis (Mangano et al., 354 

2016; Mangano et al., 2017). In addition, several PERs isolated from numerous plant systems 355 

designated as extensin peroxidases (EP) have been previously shown to crosslink EXT substrates in 356 

vitro (Schnabelrauch et al. 1996; Wojtaszek et al. 1997; Jackson et al. 2001; Price et al. 2003; Dong 357 

et al. 2015), although their in vivo roles remain elusive. 358 

 359 

 360 

EFFECTS OF POST-TRANSLATIONAL MODIFICATIONS ON EXTENSIN CONFORMATION AND 361 

FUNCTION: THE CHALLENGE OF MODELING AN EXTENSIN GLYCOPROTEIN 362 

Plant cell wall integrity depends on the correct assembly of its individual components. Many 363 

defects in the cell wall or extracellular matrix of green plants (Showalter et al. 2010) and related 364 

algae (Keskiaho et al., 2007) involve Hyp-rich EXT proteins (Cannon et al. 2008). A recent study 365 

analyzed root hair growth in mutants deficient in Hyp-O-arabinosylation (hpat1/hpat2, rra3, 366 

xeg113, and exad), mutants low in serine-O-galactosylation (sergt1), and multiple mutants 367 

deficient in both O-glycosylation types (p4h5 sergt1 and rra3 sergt1) or coupled with P4H 368 

inhibitors in the sergt1 mutant background (EDHB + sergt1 or DP + sergt1) (Velasquez et al 2015a). 369 

Mutants in each individual O-glycosylation type displayed attenuated polar growth. Mutants in 370 

both O-glycosylation types (Hyp-O-arabinosylation + Ser-O-galactosylation) displayed more severe 371 

inhibition of polar growth, suggesting that both O-glycans are required for correct EXT function in 372 
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root hair growth (Velasquez et al 2015a). The degree of Hyp-O-arabinosylation in an EXT monomer 373 

affects the degree of Tyr-crosslinking performed by a tomato PER in an in vitro system (Chen et al., 374 

2015). These combined results indicate that even small changes in EXT O-glycosylation may 375 

interfere with its self-assembly into the EXT network (Cannon et al., 2008), as observed for the 376 

sergt1 mutant, which lacks a single monosaccharide unit (Velasquez et al., 2015a).  377 

 378 

To elucidate the effects of these changes on EXT, a short peptide [Ser(Pro)4] was used as a very 379 

simple EXT model to analyze the molecular dynamics of non-hydroxylated, hydroxylated, and O-380 

glycosylated states. The modeling revealed that O-glycosylation stabilizes the helical conformation 381 

of the model peptide, whereas incomplete O-glycosylation enhances its flexible conformation 382 

(Velasquez et al., 2011). It was also theorized that EXTs with incomplete hydroxylation/O-383 

glycosylation could significantly affect the interaction of EXTs with the surrounding environment, 384 

including lateral alignment interactions with other EXTs (Cannon et al., 2008), possibly forming 385 

triple EXT helix-like conformations comparable to collagen (with similar interaction energies). 386 

Next, a larger EXT repeat peptide (SPPPPYVYSSPPPPYYSPSPKVYYK) was analyzed with Hyp-O-387 

arabinosylation, Ser-O-galactosylation, and complete O-glycosylation in all Hyp units (Velasquez et 388 

al., 2015a). High levels of O-glycosylation in certain EXT segments were found to physically restrict 389 

the EXT lateral alignments (Figure 1F), possibly by acting as a branching point (Velasquez et al., 390 

2015). Although these attempts to generate a simple EXT model were useful, one of the major 391 

limitations in our understanding of how EXT function in the plant cell walls is the lack of a full-392 

length EXT protein.  393 

 394 

To have a more detailed understanding of how EXT molecules might behave in the cell wall, we 395 

have built a larger model of an EXT sequence that includes 10 conserved repeats of 396 

SPPPPYVYSSPPPPYYSPSPKVYYK with a total length of 250 amino acids by using a course-grained 397 

molecular dynamics approach (Figure 3A). Due to the absence of coarse grain force fields that 398 

include parameters for carbohydrates, the system was modeled in the non-glycosylated state. 399 

Parameters for the O-glycosylated form are being developed and we expect to be able to simulate 400 

the glycosylated system in the near future. The EXT molecules were modeled in two different 401 

configurations: as a single chain and as a trimeric helical conformation similar to collagen as 402 

performed before (Velasquez et al., 2015a). The results obtained in these simulations indicate the 403 

importance of the triple helix conformation in the overall protein stability and specially the 404 

conservation of the fibril-like structure (Figure 3B-C). This is easily observed by comparing the 405 

number of H-bonds along the MD trajectories in both systems (Supplemental Figure S1 and 406 

Supplemental Text 1). We observed that the number of H-bonds is significantly greater in the 407 

triple helix due to H-bonds between the different chains. This would provide structural 408 

stabilization to the fibril. Future simulations in the O-glycosylated forms are required to address 409 

the structural and dynamic effect of this PTM. Current experimental and modeling lines of 410 
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evidence are in agreement with the proposed role of the proline hydroxylation and carbohydrate 411 

moieties in keeping the EXT molecule in an extended helical polyproline-II conformation state 412 

(Stafstrom and Staehelin, 1986; Owen et al., 2010; Ishiwata et al., 2014). This extended 413 

conformation might allow EXTs to properly interact with themselves and with the surrounding 414 

apoplast environment, including PERs and pectins, to form a proper cell wall network (Nuñez et 415 

al., 2009; Valentin et al., 2010). 416 

 417 

 418 

ARE LRX PROTEINS LINKERS BETWEEN THE EXTENSIN NETWORK AND CELL SURFACE INTEGRITY 419 

SENSORS? 420 

It is unknown how dynamic changes in EXT network assembly/disassembly are sensed by the root 421 

hair cell and pollen tubes to coordinate oscillations in growth, cell wall relaxation, and cell wall 422 

rigidification. The cell surface sensors Catharanthus roseus receptor-like kinase (CrRLK1L) ANXURs 423 

(ANX1/ANX2) and BUDHA'S PAPER SEAL1 and 2 (BUPS1/BUPS2) located at the interface between 424 

the apoplast and the cytoplasmic side of the plasma membrane control cell expansion in pollen 425 

tubes (Boisson-Dernier et al., 2013; Ge et al., 2017). On the other hand, the membrane receptor 426 

FERONIA (FER) acts in root hairs and growing root cells as well as in female fertility during plant 427 

reproduction (Duan et al., 2010; Nissen et al., 2016; Barbez et al., 2017; Li et al., 2016). In addition, 428 

PERK4 and PERK13 have been shown to control root and root hair growth, respectively (Bai et al., 429 

2009; Humphrey et al., 2015; Hwang et al., 2016), while several PERKs are highly expressed in 430 

pollen tubes (Borassi et al., 2016). Therefore, PERKs and CrRLK1Ls are good candidates for sensing 431 

EXT network changes and triggering downstream responses. Moreover, it was recently suggested 432 

that only LRR4, a truncated version of LRX4 with the Leucine-Rich Repeat domain but lacking the 433 

C-terminal EXT domain, physically interacts with the FER´s malectin domain (Dünser et al., 2017). 434 

This might imply a direct connection between LRXs through the EXT domain to the EXT network on 435 

one side, and throughout the LRR domain to cell surface CrRLK1L sensors close to the plasma 436 

membrane (Figure 4). In agreement with this notion, root hair LRXs (LRX1 and LRX2) as well as 437 

pollen LRXs (LRX8-LRX11) are key components for proper polar growth and both groups of LRXs 438 

were proposed as sentinels of cell wall integrity in these rapidly expanding cells (Baumberger et 439 

al., 2001; Baumberger et al., 2003; Ringli, 2010; Fabrice et al., 2017; Sede et al., 2017; Wang et al., 440 

2017). LRX3, LRX4, and LRX5 control cell expansion in root cells (Draeger et al. 2015). On the other 441 

hand, LRX8 and LRX9 (possibly also LRX10 and LRX11) are highly expressed in pollen tubes, and 442 

were able to bind to Rapid Alkalinization Factor 4 and 19 (RALF4 and RALF19), which are secreted 443 

to the media by pollen tubes. Additionally, RALF4 and RALF19 are able to bind to both ANX1/ANX2 444 

and BUDS1/BUDS2 (Ge et al. 2017). LRXs, CrRLK1Ls (ANX1/ANX2 and BUDS1/BUDS2), and 445 

RALF4/RALF19 all act together as an autocrine (i.e., signals from the same cell type) mechanism to 446 

monitor the cell wall integrity status during pollen tube growth (Ge et al., 2017; Mecchia et al., 447 

2017). In addition, RALF23 was shown to bind to FER during plant immunity responses (Stegmann 448 
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et al., 2017) and RALF1-FER associates to acidify the apoplast, thereby suppressing cell expansion 449 

(Haruta et al., 2014). FER interacts not only with RALF and LRX proteins, but also with many other 450 

proteins, including RLKs, glycosylphosphatidyl-inositol anchored proteins, phosphatases, and small 451 

guanosine triphosphatases (Daun et al., 2010; Li et al., 2016; Liao et al., 2017). In addition, it was 452 

shown that FER extracellular domain as well other malectin domains from several CrRLKL1s are 453 

able to interact with pectins and sense the integrity status of the plant cell walls (Miyazaki et al. 454 

2009; Ge et al. 2017; Feng et al. 2018). All together indicate that CrRLK1Ls may represent a central 455 

hub orchestrating signals and mediating growth and immune responses at the cell wall.  456 

 457 

Known signaling cascade components, including the receptor-like cytoplasmic kinase (RLCK) 458 

MARIS (MRI) downstream of FER-ANX cell surface sensors (Boisson-Dernier et al., 2015), and two 459 

related kinesin-like calmodulin binding protein (KCBP)-interacting protein kinases (KIPKs) 460 

(members of the Arabidopsis AGC-VIII kinase family) downstream of PERKs (for PERK8-PERK10) 461 

(Humphrey et al., 2015), have been characterized. Multiple interactions were recently proposed 462 

between LRXs, possibly involving the EXT-network, the cell surface CrRLK1L sensors, and RALF 463 

secreted peptides in the control of polar growth (Figure 4). It is unclear how these components 464 

are coherently synchronized to coordinate polar growth. The exact role of RALFs and how they are 465 

connected at the molecular level to changes in the EXT network merits further investigations. 466 

 467 

 468 

PERSPECTIVES 469 

Plant-specific PTMs on EXTs are key chemical modifications required for EXT protein conformation 470 

and function in plant cell walls. These PTMs are evolutionarily conserved from unicellular green 471 

algae to complex vascular plants, indicating their essential roles in cell growth and development. 472 

Despite significant progress in our understanding of PTMs and EXT functions, it is unknown how 473 

EXTs are coordinately assembled, disassembled, and recycled. Future challenges include 474 

identifying EXT transcriptional regulators in different cell types; developing a realistic model of an 475 

entire EXT molecule in contact with the surrounding apoplastic environment; and determining 476 

PERs mechanism of action on the crosslinking of EXTs. One of the major constraints on plant 477 

glycobiology research is the limited ability to track PTMs in glycoproteins in vivo. This could be 478 

overcome in the near future by combining recent developments in super-resolution microcopy, 479 

which have already been used in plant cells for stimulated emission depletion (STED), (Kleine-Vehn 480 

et al., 2011), stochastic optical reconstruction microscopy (STORM) (Liesche et al., 2013), or total 481 

internal reflection microscopy (TIRF) (Gronnier et al., 2017), with new genetic sensors (Geilfus et 482 

al., 2014; Ast et al., 2017; Waadt et al., 2017), and in vivo sugar tagging approaches such as click-483 

chemistry (Anderson et al., 2012, McClosky et al., 2016). The field of EXT glycobiology is in its 484 

nascent stages, but is poised to grow rapidly.      485 

486 
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Legend  815 

Figure 1. EXT Post-Translational Modifications (PTMs): Proline Hydroxylation, O-Glycosylation, 816 

and Tyr-Crosslinking.  817 

(A) Protein structure and motifs for a classical EXT include a variable N-terminus domain and 818 

several highly conserved repetitive motifs. Each of these includes usually two EXT O-glycosylation 819 

motifs, a putative arabinogalactan (AG) motif since it contains a Ser-Pro-Ser-Pro sequence, and 820 

several Tyr residues involved in EXT-crosslinks. Several repetitive motifs can occur in tandem (e.g., 821 

13–23 times in root hair EXTs). There are unusual and variable repeats between the classical 822 

repeats. One repeat sequence type is shown, although wide variations exist for EXTs. (B) Proline 823 

hydroxylation is catalyzed by prolyl 4-hydroxylases (P4Hs) to yield a trans-4-hydroxyprolyl residue 824 

(Hyp). The in vitro activity of the Arabidopsis thaliana P4H5 had a preference for the three prolines 825 

within SPPPP. It is postulated that P4H2 or P4H13 would hydroxylate the fourth proline as a 826 

termination process. (C) Physical interaction between P4H5, P4H2, and P4H13 (see details in 827 

Velasquez et al. 2015). Several lines of evidence indicate that P4H2 and P4H13 are functionally 828 

(and possibly catalytically) interchangeable. P4H5 can partly replace P4H2 and P4H13, but not vice 829 

versa. Black arrows indicate functional replacement. Doubled-headed arrow indicates 830 

interchangeable proteins. Line thickness indicates the strength of the protein–protein interaction. 831 

(D) O-glycosylation patterns on EXT repeat. Sugar moieties and chemical linkages are shown (on 832 

the left). Site of action of currently known glycosyltransferases that transfer specific sugars on the 833 

EXT-backbone are indicated together with the GT CAZy family (on the right). (E) Transcriptional co-834 

expression analysis on root hair genes revealed that P4H2/P4H5 are associated with several GTs 835 

involved in the O-glycosylation of EXTs such as SERGT1, HPAT3, RRA3, and XEG113. Co-expression 836 

values are based on Pearson correlation coefficients (r-value range from –1 for absolute negative 837 

correlation to 1 for absolute positive correlation). Co-expression networks for P4H2, P4H5, RRA3, 838 

XEG113 and SERGT1 (cluster 172) were identified from PlaNet/AraNet (http://aranet.mpimp-839 

golm.mpg.de/aranet) (Mutwil et al. 2011) and trimmed to facilitate readability. Each co-expression 840 

of interest was confirmed independently using the expression angler tool from Botany Array 841 

Resource BAR (http://bar.utoronto.ca/ntools/cgi-bin/ntools_expression_angler.cgi) (Toufighi et al. 842 

2005) and ATTED-II (http://atted.jp) (Obayashi et al. 2018). BiFC=Bimolecular Fluorescent 843 

Complementation. FRET= Fluorescence Resonance Energy Transfer. (F) Hypothetical EXT structure 844 

of Tyr-crosslinked peptides by a lateral alignment of three short EXT chains and Tyr-intra 845 

(isodityrosine) -and interchain-crosslink types (pulcherosine and di-isodityrosine). Only Tyr 846 

residues are depicted with their chemical structure. 847 

 848 

 849 

Figure 2. Transcriptional control of RSL4, EXTs, and PERs in root hair cells. 850 

(A) Root hair transcriptional co-expression network; classical EXTs, PERs, and the transcriptional 851 

regulator RSL4 are highlighted. RSL4 as well as PRP3 and LRX1 were used as gene baits to narrow 852 
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down the co-expressed genes. Transcriptional connections are highlighted for EXT genes (in red) 853 

and PER genes (in blue) with bait genes (in black). The co-expression network was identified from 854 

AraNet/PLaNet (http://aranet.mpimp-golm.mpg.de/aranet) (Mutwil et al. 2011) and trimmed to 855 

facilitate readability. Each co-expression of interest was confirmed independently using the 856 

expression angler tool from Botany Array Resource BAR (http://bar.utoronto.ca/ntools/cgi-857 

bin/ntools_expression_angler.cgi) (Toufighi et al. 2005) and ATTED-II (http://atted.jp) (Obayashi et 858 

al. 2018). Only those genes that are connected with genes of interest are included. (B) Root hair 859 

EXT protein domain structure. Number of regular repeats (x, in black) plus unusual repeats (y, in 860 

light grey) (n=x+y). Length of the N-terminus as well as the total protein length in each EXT is 861 

shown. The overall conserved protein repeat sequence is indicated on the bottom, highlighting the 862 

O-glycosylation motif and Tyr involved in the EXT-crosslinking obtained with WebLogo (Crooks et 863 

al. 2004). On the left, Root Hair cis-Element (RHE-RSL4), HDG11 HD cis-element (HD-HDG11), and 864 

EIN3 binding sites in the regulatory regions (promoters) of EXTs are shown. Only 1.5–2.0 kb 865 

upstream of the transcription initiation site is shown.   866 

 867 

 868 

Figure 3. EXT conformational coarse-grained (CG) protein model.  869 

EXT CG model, including 10 conserved repeats of SPPPPYVYSSPPPPYYSPSPKVYYK (total length of 870 

250 amino acids). EXTs were modeled as single and triple chains, following the structure taken 871 

from Velazquez et al. (2015a). (A) Construction of the EXT model, showing the simulation solvent 872 

box. (B) Specific interactions observed in the single chain simulation are shown. In single-stranded 873 

non-glycosylated EXTs, Pro-Ser-Pro and (Pro)4 motifs favor coiled conformations over the initial 874 

extended conformation. (C) Selected snapshots of the triple chain MD trajectory, showing the 875 

stability of the triple strand along the 2 µs simulation. The results obtained in these simulations 876 

highlight the importance of the triple helix EXT in the overall protein stability, and especially, the 877 

maintenance of the fibril-like structure. O-glycans were not included in the model. See also 878 

Supplemental Text S1 and Figure S1.  879 

 880 

 881 

Figure 4. Molecular components that connect the EXT glyco-network with the cell surface 882 

sensors to trigger downstream growth responses. 883 

Cell surface sensors including Catharanthus roseus receptor-like kinases (CrRLK1Ls) and Proline-884 

rich Extensin-like Receptor Kinases (PERKs) are candidates to sense the EXT network changes and 885 

trigger downstream responses. Several interactions have been recently identified between LRXs-886 

FERONIA (FER, a CrRLK1L), between LRXs-RALFs for Rapid ALkalinization Factors, and between 887 

RALFs-FER. LRX1/LRX2 and LRX8-LRX11 are key components for proper root hair (Baumberger et 888 

al. 2001; Baumberger et al 2003; Ringli 2010) and pollen tube polar growth (Fabrice et al 2017; 889 

Sede et al. 2017), respectively, and both LRXs might act as sentinels of cell wall integrity in these 890 
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rapidly expanding cells. In addition, LRX3-LRX5 are important for root cell elongation. At least two 891 

RALFs (4 and 19) from pollen tubes were determined to interact with several LRXs (8, 9, 10, 11) as 892 

well as with both ANX1/ANX2 and BUDS1/BUDS2, thus indicating an autocrine cell mechanism of 893 

cell wall integrity check-out during growth (Mecchia et al. 2017; Ge et a. 2017). In addition, the 894 

LRR4 domain from LRX4 (present in growing roots) interacts with FER. Based on this, it is proposed 895 

that LRX proteins would be able to connect throughout their C-terminal EXT domain and through 896 

the LRR domain to cell surface CrRLK1L sensors close to the plasma membrane (Dünser et al. 897 

2017). In this manner, LRXs might physically link the status of EXT assembly-disassembly with the 898 

surface CrRLK1Ls during growth. Finally, RALF1/RALF23 was shown to interact with FER (Haruta et 899 

al. 2015; Stegmann et al. 2017). PERKs would also be involved in sensing the EXT glyco-network 900 

since they contain several EXT-like domains, although little is known about this mechanism 901 

(Borassi et al. 2016). PERK13 is expressed in root hairs, while several PERKs are present in pollen 902 

tubes. Known downstream components include the receptor-like cytoplasmic kinase (RLCK) MARIS 903 

(MRI) for the surface sensors FER-ANXs (Boisson-Dernier et al. 2015) and two related kinesin-like 904 

calmodulin-binding protein (KCBP)-interacting protein kinases (KIPKs) in the case of PERKs 905 

(Humphrey et al. 2015). It is unclear how these multiple components (e.g., CrRLK1Ls, EXTs, LRXs, 906 

PERKs, and RALFs) are orchestrated in a coherent manner to coordinate polar growth. Two-side 907 

arrowhead indicates physical interactions between two proteins. ?, not experimentally confirmed; 908 

K, ser-thr kinase; l, leaves; PM, plasma membrane; pt, pollen tubes; r, roots; rh, root hairs; TM, 909 

transmembrane domain. 910 
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