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 Maternal resources deposited in eggs can aff ect the development of several off spring phenotypic traits and result in trade-
off s among them. For example, maternal androgens in eggs may be benefi cial to off spring growth and competitive ability, 
but detrimental to immunocompetence and oxidative stress. In contrast, maternal antioxidants in eggs may be benefi cial 
if they mitigate oxidative stress and immunosuppressive eff ects of androgens. We investigated possible interactive eff ects 
of maternal steroids and carotenoids on aspects of off spring physiology and phenotype, by simultaneously manipulating 
levels of androgens (via gonadotropin-releasing hormone, GnRH-challenges) and carotenoids (via diet supplementation) 
in captive female Japanese quail  Coturnix japonica  during egg laying. Carotenoid supplementation of hens, which 
elevates yolk concentrations of carotenoid and vitamins A and E, enhanced egg hatching success, off spring survival 
to age 15 d, and size of the bursa of Fabricius in off spring. In contrast, repeated maternal GnRH challenges, which 
elevated yolk testosterone concentrations, enhanced off spring neonatal size, but negatively aff ected bursa size. However, 
interaction among the treatments suggests that the positive eff ect of maternal carotenoid supplementation on plasma 
bactericidal capacity was mediated by maternal GnRH challenges. Chicks originating from carotenoid-supplemented 
hens were less immunosuppressed than those originating from carotenoid-supplemented  �  GnRH-challenged hens, 
which were less immunosuppressed than chicks from GnRH-challenged females not supplemented with carotenoids. 
Females availability of carotenoid enriched diets allows them to enhance the development of off spring immune system 
via carotenoids and vitamins deposited in egg yolks and off set detrimental eff ects of androgens deposited by GnRH-
challenged females.   

  Maternal eff ects comprise the causal infl uence of the mater-
nal genotype and phenotype on the off spring phenotype 
(Wolf and Wade 2009). For example, oviparous mothers 
allocate specifi c components to eggs, including hormones 
(Schwabl 1996, Lipar and Ketterson 2000, Eising et   al. 
2001, Groothuis et   al. 2005a) and antioxidants such as 
carotenoids and vitamins (Surai and Kuklenko 2000, Surai 
et   al. 2001, 2002, Saino et   al. 2003, McGraw et   al. 2005), 
which can have long-lasting consequences on off spring 
health, growth, and survival (Mousseau and Fox 1998, 
Lindstr ö m 1999, Metcalfe and Monaghan 2001). Egg yolk 
environment, i.e. maternally deposited resources, has a 
signifi cant eff ect on several aspects of embryonic develop-
ment and phenotype determination in avian species (Ho 
and Burggren 2010, Ho et   al. 2011). Moreover, yolk con-
stituents may have interactive eff ects on development of 
embryos and neonates (Navara et   al. 2006a, Cucco et   al. 
2008). Because of the broad eff ects of these compounds on 
off spring (Ros et   al. 1997, Groothuis et   al. 2005a, b, McGraw 

et   al. 2005, Gil 2008), knowledge of costs and benefi ts of 
their combined eff ects must be gained to fully assess the 
adaptive value of maternal resource deposition to eggs 
(Blount et   al. 2002, Groothuis et   al. 2005a, Safran et   al. 2008). 

 Much of the research examining control mechanisms 
and functions of yolk compounds on off spring has 
approached them separately. From such studies we know for 
example that avian yolk androgens have direct and positive 
eff ects on off spring competitiveness, muscle/skeletal 
growth, and metabolism (Schwabl 1996, Lipar and 
Ketterson 2000, Eising et   al. 2001, Pilz et   al. 2004, Groothuis 
et   al. 2005a, Navara et   al. 2005, Navara and Mendonca 
2008), and may negatively aff ect egg hatchability (Navara 
et   al. 2005, Rutkowska and Cichon 2006; but see Rubolini 
et   al. 2006a), embryo development (Boncoraglio et   al. 
2011), and neonate growth (Groothuis et   al. 2005b). 
Yolk androgens can also indirectly aff ect off spring through 
increasing oxidative stress (Folstad and Karter 1992, 
Duff y et   al. 2000, Andersson et   al. 2004, Navara et   al. 
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2005) and impairing cell-mediated and humoral immune 
function (Andersson et   al. 2004, Groothuis et   al. 2005a, b, 
M ü ller et   al. 2005, Navara et   al. 2005). In birds, androgens 
may reduce the size of thymus and bursa of Fabricius 
(Norton and Wira 1977, Olsen and Kovacs 1996). 
Additionally, elevated T may indirectly aff ect immune 
function via enhanced growth rates given the trade-off  
between growth and immune function, two energetically 
costly activities (M ü ller et   al. 2005). Other yolk compo-
nents such as carotenoid pigments can enhance neonate 
immune function (Krinsky 2001, McGraw and Ardia 
2003, Saino et   al. 2003, Koutsos et   al. 2006) and infl uence 
off spring fi tness (McGraw et   al. 2005, Biard et   al. 2007, 
De Neve et   al. 2008). Similarly, vitamins A and E from 
yolk act as antioxidants that contribute to hatchling 
health (Haq et   al. 1996, Gore and Qureshi 1997). However, 
little is known of the specifi c eff ects of these vitamins on 
the development of the immune system in embryos (Gore 
and Qureshi 1997, Surai et   al. 1999, 2001). 

 Although yolk androgens are generally regarded as 
immunosuppressive, and carotenoids and vitamins as 
immune enhancers, exposure to a combination of physio-
logically relevant levels of these compounds may reveal com-
plementary or antagonistic eff ects. Th ere is evidence of both 
a complementary and positive association between andro-
gens and carotenoids deposited in eggs, suggesting that 
females deposit diff erent amounts of those compounds to 
their eggs to optimize off spring growth, competitiveness, 
and health (Royle et   al. 2001, Navara et   al. 2006a, Peluc 
et   al. 2012). However, the interactive eff ects of those 
compounds on off spring performance are not yet well 
understood (Royle et   al. 2001). Previous work (Cucco et   al. 
2008) shows that carotenoids in young birds may act to 
counter some of the detrimental eff ects associated with 
high levels of yolk androgens. However, because such studies 
have manipulated off spring exposure to androgens via 
egg injection and carotenoids via diet supplementation 
to young, it is diffi  cult to understand how maternally 
allocated compounds may aff ect off spring performance. 
Because females have the ability to diff erentially allocate 
resources to their eggs (Royle et   al. 2001, Navara et   al. 2006a, 
Peluc et   al. 2012), it becomes interesting to understand 
consequences on off spring of maternal deposition of diff er-
ent egg components. Peluc et   al. 2012 show evidence that 
in Japanese quail  Coturnix japonica  carotenoid supplementa-
tion and challenges with gonadotropin-releasing hormone 
(GnRH) to laying female alter deposition of carotenoids 
and T to eggs in such manner that those compounds 
were not deposited independently of one another (i.e. yolk T 
and carotenoids were positively correlated). Peluc et   al. 
(2012) also show that maternal GnRH challenges can 
increase maternal deposition of yolk carotenoids, because 
carotenoid supplemented females that were also GnRH-
challenged deposited more carotenoids into yolk than 
females whose diet was supplemented and received a saline 
injection. Similarly, GnRH-challenged females that were 
carotenoid supplemented deposited more T into yolk than 
GnRH-challenged females that received a control diet. 

 In the present study, we investigated possible additive and 
interactive eff ects of maternally transferred steroids, carote-
noids, and vitamins on aspects of off spring morphology and 

immune function. We experimentally induced changes in 
levels of steroids and/or carotenoids and vitamins (A and E) 
in eggs by treating captive female Japanese quail with 
(GnRH) and by providing them with carotenoid (lutein and 
zeaxanthin) supplements in the diet, respectively. By manip-
ulating maternal diet and reproductive hormones, we focused 
on the hormone and carotenoid levels that females deposit 
into eggs. With a 2    �    2 full factorial design, we evaluated the 
eff ects of maternal GnRH challenges and maternal dietary 
carotenoid supplementation on off spring hatching success, 
growth, immune function, and survival probability. We pre-
dicted that GnRH-challenged females (which deposit higher 
levels of T in eggs) would produce larger, faster growing, 
yet immunosuppresed chicks. Given possible health-
boosting eff ects of carotenoids and vitamins, we predicted 
that chicks from carotenoid-supplemented females would 
have improved immune function compared to chicks from 
control females or females receiving GnRH challenges. 
On the other hand, given the possibility that carotenoids 
mitigate immunosuppressive eff ects of T, we expected that 
chicks from carotenoid-supplemented and GnRH-
challenged females would grow faster and would be larger 
than chicks from non-GnRH-challenged females, yet be 
less immunosuppresed than chicks from GnRH-challenged, 
but not carotenoid-supplemented, females.   

 Methods  

 Housing and treatment of laying birds 

 We randomly selected 48 adult female and 24 adult male 
Japanese quail from a pool of 65 individuals hatched and 
raised in the laboratory. All selected hens were 12 weeks 
old, and started laying one egg a day 28    �    3 d (n    �    48) prior 
to initiation of the experiment. Quail included in the study 
were at their peak of egg production (Ottinger 2001). We 
housed adults in separate cages at a ratio of two 
females and one male per cage in an animal indoor room 
approved by the Institutional Animal Care and Use 
Committee at North Dakota State Univ. We banded each 
individual with a unique combination of two colored leg 
bands. Quail received ad libitum water and a diet of com-
mercial game bird mix (Sprout Meat Maker, Appleton, WI, 
USA), which contained a small amount of xanthophylls (ca 
5 mg kg �1 ) and carotene (ca 3 mg kg �1 ). Adult quail were 
maintained on a light:dark cycle of 14:10 h and ambient 
temperature of approximately 22    �    2 ° C, and were assigned 
to one of four treatments: GnRH injection, carotenoid sup-
plementation and vehicle injection (saline), both carotenoid 
supplementation and GnRH injection, and a control injec-
tion group (saline) without carotenoid supplementation. 
Here after the four treatments will be referred to as GnRH, 
carotenoid, GnRH  �  carotenoid, and control. Females in 
the same cage were assigned to the same carotenoid treat-
ment but not necessarily the same GnRH treatment.   

 Carotenoid supplementation of laying quail 

 A maternal means to elevate yolk carotenoids is dietary sup-
plementation of laying females with these compounds 
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(McGraw et   al. 2005) which increases yolk levels of both 
carotenoids and vitamin A and E (Peluc et   al. 2012). 
Carotenoid-supplemented quail received two common 
plant carotenoids from the group of xanthophylls, lutein 
and zeaxanthin, at a dose of 7.5  μ g ml �1  dissolved in their 
drinking water, whereas un-supplemented individuals 
received no carotenoids in their drinking water. We chose to 
supplement with xanthophylls because lutein and zeaxan-
thin are the two major carotenoids in chicken eggs 
(Surai and Sparks 2001), and also because lutein is a pri-
mary carotenoid consumed by birds in the wild, and is rou-
tinely fed to commercial poultry to promote product 
pigmentation of egg yolks and skin (Hernandez et   al. 2001). 
We did not supplement vitamins A and E here, but 
in a previous study of quail (Peluc et   al. 2012), we found 
that hens that were supplemented with carotenoids laid 
eggs with elevated levels of both vitamin A and E in the 
yolk. From a pilot study on the same quail population, 
we determined that the average daily amount of fl uid 
consumption per individual was 35    �    5 ml (Peluc et   al. 
unpubl.). Hence treated individuals consumed between 
2.25 – 3.00 mg of carotenoids per day (dose that includes 
the carotenoids contained in the food). Th e selected dose 
is well within the range of doses previously used on 
carotenoid-supplemented Japanese quail (McGraw 2006: 
i.e. daily carotenoid consumption of 0.4 – 4.2 mg). Th e 
supplement was given using water-dispersible lutein and 
zeaxanthin beadlets (at a ratio of 93:7) kindly supplied 
by DSM Nutritional Products. All drinks were freshly pre-
pared each day using 50 ml of warm water to dissolve 
the carotenoids and then completing the total solution 
volume with cool water. Drinks were provided in opaque 
dispensers to avoid oxidation (Blount et   al. 2003). Supple-
mentation in this study began on 18 February 2008 and 
continued for seven weeks.   

 GnRH challenges and control injections of laying 
quail 

 GnRH is a hormone released from the hypothalamus 
that controls a cascade of hormone secretion events from 
the pituitary and gonads. Intramuscular injection of 
GnRH temporarily stimulates the hypothalamo-pituitary-
gonadal (HPG) axis, leading to release of luteinizing 
hormone (LH) from the pituitary, which stimulates steroid 
hormone secretion from the gonads (Johnson 2000). As a 
consequence of maternal GnRH challenges, yolk steroid 
levels also increase (Jawor et   al. 2007, Peluc et   al. 2012), 
which provides a maternal means of elevating yolk T 
levels in the egg. By evaluating eff ects of maternally depos-
ited compounds to egg yolk as opposed to egg injection 
we avoid potential changes in off spring development due 
to injection manipulations. Simply puncturing the egg 
shell can negatively aff ect hatchability (Winter et   al. 2013), 
and although most studies do not report precise informa-
tion on the proportion of eggs damaged by the technique, 
percentage of eggs lost to injection can vary between 
20 – 40% (Saino et   al. 2003, pers. obs.). 

 We experimentally elevated T levels (within the physio-
logical range; Ottinger and Brinkley 1979, Bertin et   al. 
2008) in adult quail plasma via GnRH injections. Previous 

work (Peluc et   al. unpubl.) revealed that T concentrations in 
Japanese quail eggs were at a maximum approximately 
two weeks after maternal GnRH challenge, after which T 
concentrations declined. Th us, in an attempt to elevate 
already high yolk T levels in hens to the upper end of the 
physiological range, we administered four intramuscular 
injections of GnRH to each female throughout the 
experiment (one every 14 – 16 d) following Jawor et   al. 
(2007). GnRH challenges were performed using an 
injection of 5  μ g cGnRH-I (Sigma L0637) in 50  μ l 
phosphate-buff ered saline (PBS) solution (Peluc et   al. 
2012). Control injections consisted of 50  μ l PBS only. We 
drew blood (for T measurement in plasma) immediately 
prior to and 30 min after each challenge. Analysis of 
female plasma revealed that baseline T levels, measured 
immediately before GnRH injections, did not diff er signifi -
cantly among treatments (mean  �  SE: 1.24    �    0.07 pg  μ l �1 , 
n    �    48; Peluc et   al. 2012). However, post-injection T levels 
were approximately 40% higher in GnRH-challenged 
females (i.e. GnRH and GnRH  �  carotenoid treatments) 
than in females in the carotenoid and control treatments 
(Peluc et   al. 2012). Treatment did not aff ect egg laying as 
all treated females continued laying eggs throughout the 
experiment at the same rate as control females.   

 Egg incubation and chicks rearing 

 Japanese quail, like other domesticated species, can lay eggs 
nearly continuously throughout the year, but typically will 
lay in bouts of diff erent lengths that are separated by one or 
more  ‘ pause days ’  (Johnson 2000). Th e time frame of this 
experiment involved hens in the very early stages of the 
reproductive cycle, between weeks 12  –  19, which are char-
acterized by high egg productivity and high receptivity 
of follicular cells to gonadotropin (Johnson et   al. 1986, 
Johnson 2000, Ottinger 2001). We collected two eggs per 
week per female for six weeks, starting the week after treat-
ments were initiated, because yolk T and carotenoids were 
only augmented from the second week onwards (Peluc 
et   al. 2012). We weighed (to the nearest 0.01 g on a digital 
balance) and identifi ed all collected eggs with permanent 
marker relative to the originating hen. We could distin-
guish eggs from the two females in the same cage on the 
basis of egg shape and colour (Okuliarova et   al. 2009); 
Japanese quail exhibit extremely high between-female 
and low within-female variation in egg colour, maculation 
patterns, and shapes (Pike 2011). Before treatments started, 
we identifi ed the colour pattern of eggs laid by each female, 
and to ensure identifi cation of which female laid what 
egg, we housed females with contrasting egg patterns in the 
same cage. We checked for fresh eggs every day during the 
morning hours, and we collected the ones laid on 
Tuesdays and Th ursdays to be incubated in weekly intervals 
(two eggs per female were incubated each week) in a forced 
air incubator (GQF model 1402) at 37.5 ° C and 60% 
relative humidity. On Wednesdays an additional 
egg per female was collected weekly for composition ana-
lysis (details are reported in Peluc et   al. 2012). Due to the 
high repeatability of levels of T and carotenoids in Japanese 
quail eggs, levels of such compounds in analyzed eggs 
refl ect levels in incubated eggs (Peluc et   al. 2012). Before 
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Many of the weeks we could not test one chick per female 
for all females. However, in at least 4 of the 6 weeks we 
could test one chick per female in 10 females per treatment. 
When more than one chick was available per female, we 
randomly chose one of them by assigning each chick a ran-
dom number and picking the one with the lower number. 
We chose to sacrifi ce young at the age of 15 d because it was 
the youngest age that would allow us to collect minimal 
data required to evaluate post-natal growth. 

 We collected blood samples once from each chick at 
age 15 d, by draining blood immediately after they were 
euthanized. Because of the high volume of blood needed to 
perform immunological analyses, samples had to be col-
lected at time of sacrifi ce (see details on sacrifi ce age above). 
Whole blood was centrifuged for 15 min at 15 000 rpm to 
separate blood cells from plasma, which was aliquoted into 
1.5 ml Eppendorf tubes and kept at  � 80 ° C until 
analysis. To evaluate bactericidal activity of plasma we fol-
lowed the methods used by Matson et   al. (2006). Briefl y, we 
added  ∼  600  Escherichia coli  colony forming units (CFUs, 
50  μ l) to 20  μ l thawed plasma and incubated in 150  μ l 
media (Luria-Bertani broth, EMD Chemicals 1.10285) at 
37 ° C for 45 min. After incubation, we transferred 75  μ l 
aliquots to two agar plates (MacConkey agar), dispersed the 
solution homogeneously across the plate with a sterile 
plastic spreader, and incubated the plate for 24 h at 37 ° C. 
After incubation we counted the number of bacterial 
colonies per plate and determined average killing effi  ciency 
of the replicate plates for each bird in comparison with 
control plates prepared with media (170  μ l) and  E. coli  
(50  μ l) only (no plasma). Killing effi  ciency was highly 
repeatable for our duplicate samples (r    �    0.84, F 47, 48      �     6.1, 
p  �  0.001) (Lessells and Boag 1987), so we used averages in 
statistical analyses. Plasma bactericidal activity was expressed 
as the number of remaining CFUs after incubation of the 
plasma – bacteria mixture relative to the number of CFUs 
inoculated on control plates (in the absence of plasma). 
Th e diff erences between the number of viable bacteria 
after incubation and the number in the initial inoculum are 
expressed as the proportion killed. 

 After chicks were euthanized, we measured the length, 
width, and depth of bursa of Fabricius to the nearest 
0.1 mm with calipers and approximated its volume as 
the product of those three measurements. We chose this 
method of estimating size instead of weighing the organ for 
practical reasons, given our knowledge that our measure of 
bursa volume and weight are highly correlated (n    �    60 young 
quail, r    �    0.85, p    �    0.0001).   

 Statistical analyses 

 Sample size was reduced from expected because of multiple 
reasons (e.g. eggs failed to hatch, post-hatching mortality). 
In most cases we could test one chick per female per 
week, and in praxis we measured traits of 9 – 12 chicks 
per treatment per week. We used general linear mixed 
models to fi nd diff erences among factors. We tested for 
eff ects of carotenoid, GnRH and time (weeks of treatment) 
and all their interactions. To model the lack of indepen-
dence of females within cages and the chicks of each female, 
we added two random eff ects into the model: cage and 

the expected hatching day, eggs were transferred to another 
incubator and kept individually, separated by dividers, to 
allow us to match hatchlings to particular eggs. Hatching 
was monitored by frequent checks, and newly hatched 
chicks were marked with an individual combination of 
coloured leg bands. At this time, we weighed hatchlings to 
the nearest 0.01 g on a digital balance and measured tarsus 
length to the nearest 0.1 mm with digital calipers. We eval-
uated hatching success of 556 eggs layed during the last 6 
weeks of experiment. Th e number of analyzed eggs is 
slightly smaller than expected (48 hens    �    2 eggs per 
week  �    6 weeks    �    576 eggs) because in some weeks we col-
lected fewer than two eggs per female due to some eggs 
found broken in the cages. All chicks hatched within 72 h 
of each other were housed together in cages that acted as 
brooding and rearing pens, provided with ad libitum access 
to water and chick starter mix (Sprout Non-medicated 
Chick Starter, Appleton, WI, USA), heating from infrared 
lights, and a light:dark cycle of 12:12 h. To assess postnatal 
growth, we calculated the diff erence between tarsus length 
at hatch and at age 15 d. We only evaluated the eff ect of 
treatments on growth for chicks that survived to age 15 d. 
We determined off spring sex at 15 d of age using sexually 
dimorphic plumage and inspection of gonad development 
after chicks were euthanized. Not all young quail survived 
to age 15 d due to mortality mostly related to internal 
organ infections.  Escherichia coli  was isolated from internal 
organs in large numbers/pure culture in over 95% of dead 
young quail, thus it is possible  E. coli  was the disease agent 
of those individuals.   

 Survey of innate immunity in chicks 

 We chose two measures of innate immunity that encompass 
constitutive components of this branch of the immune sys-
tem: 1) bactericidal capacity of plasma, and 2) size of 
the bursa of Fabricius. We focused on indices of innate 
immunity because recent results in chickens indicate 
that this branch of the immune system is especially infl u-
enced by carotenoids, compared with adaptive immunity 
(Selvaraj et   al. 2006). Furthermore, with these two measures 
we could investigate development (bursa size) and response 
(bactericidal capacity) of the immune system. Th e bursa of 
Fabricius is a primary lymphoid organ unique to birds 
that is essential for normal development of the humoral 
immune system, and the major site of B-cell production 
(Cooper et   al. 1965, 1966). Th e bactericidal activity of 
plasma is attributable to complement, natural antibodies, 
and a variety of other pathogen-recognition proteins, which 
are important humoral components of the immune system 
in plasma (Matson et   al. 2006). One mechanism for carote-
noid and vitamin action is that antioxidants protect the 
humoral components in plasma from oxidative damage, 
permitting them to destroy bacteria (Alonso-Alvarez 
et   al. 2004). Previous studies suggest that plasma bacteri-
cidal capacity and bursal development could be negatively 
infl uenced by T and positively afected by carotenoids 
(Glick 1984, Marsh et   al. 1986, McGraw and Klasing 
2006, McGraw et   al. 2006). For the immunological survey 
we only used one chick per female per week, yet sample size 
was reduced to 240 chicks due to mortality prior to age 15 d. 
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Hatching success for eggs laid by GnRH  �  carotenoid treated 
females was intermediate between hatching success of eggs 
from carotenoid-only treated hens and that of eggs from 
GnRH challenged hens (Fig. 1).   

 Size at hatch and postnatal growth 

 Chicks hatched from eggs produced by GnRH-challenged 
females were heavier than chicks from control females 
throughout the study, whereas carotenoid supplementation 
did not aff ect hatching mass (n    �    409; carotenoids: 
F 1,22     �    1.79, p    �    0.244; GnRH: F 1, 22     �    4.85, p    �    0.0317; 
time: F 5,379     �    3.72, p    �    0.025; proportion of total variance 
explained by random factors: cage    �    0.05%, female    �    1.17%; 
Fig. 2A). Tarsus length at hatch was also aff ected by GnRH 
treatment to females. Chicks that hatched from eggs 
produced by GnRH-challenged females also had signifi -
cantly longer tarsi than chicks from vehicle-injected 
females (n    �    409; carotenoids: F 1,22     �    0.38, p    �    0.55; 
GnRH: F 1,22     �    6.11, p    �    0.015; proportion of total 
variance explained by random factors: cage    �    0.07%, 
female    �    0.98%; Fig. 2B). Postnatal growth between 
hatching and day 15 was not aff ected by experimental 
treatments to hens, and time was the only variable 
accounting for signifi cant diff erences in tarsus length 

female. According to Littell et   al. (1996), this type of mod-
eling pseudo-replication is the design with the highest 
power. Th e response variables were: hatching success, off -
spring survival probability up to 15 d (assuming binomial 
distribution for both variables and using a logit link 
function), chick mass at hatch, tarsus length at hatch, bursa 
volume, chick plasma bactericidal activity at 15 d, and 
postnatal growth (assuming normal distribution and iden-
tity link for all the latter variables). We found no treatment 
diff erences in fresh egg mass (n    �    556; carotenoids: 
F 1,22      �     0.82, p     �     0.41; GnRH: F 1,22     �    0.52, p    �    0.73; time: 
F 5,536     �    0.21, p     �     0.84; all interactions p    �    0.15), so we did 
not include egg mass in statistical models. We included 
weight of chicks at age 15 d and sex as covariates when 
analyzing bursa volume, and included hatching mass 
and sex as covariates when analyzing plasma bactericidal 
ability. Th ose covariates were eliminated from the models 
when non-signifi cant. In all analyses we simplifi ed the mod-
els eliminating in a stepwise manner the non-signifi cant 
variables and interactions. However, to respect the restric-
tions imposed by the randomization design, we always 
kept main eff ects, and random factors in the model. We 
only report eff ects from fi nal models for signifi cant 
terms. Statistical analyses were performed with Infostat/L 
package (Di Rienzo et   al. 2012) at a signifi cance level of 
5%. We performed arcsine transformation on proportion 
of plasma bactericidal activity prior to analysis to meet 
normality assumptions. However, to facilitate biological 
interpretation, we visually present data as untransformed 
values    

 Results  

 Hatching success 

 Hatching success was enhanced by carotenoid supplementa-
tion, whereas it was negatively aff ected by GnRH treatment 
(glmm with binomial error distribution; n    �    556; carote-
noids:  χ  2     �    8.59, DF    �    1, p    �    0.0031; GnRH:  χ  2     �    6.88, 
DF    �    1, p    �    0.0371; proportion of total variance explained 
by random factors: cage    �    0.25%, female    �    2.71%; Fig. 1). 
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  Figure 1.     Mean ( �  SE) hatching success of eggs produced by 
GnRH-challenged (n    �    138), carotenoid-supplemented (n    �    141), 
GnRH-challenged  �  carotenoid-supplemented (n    �    137), and 
control females (n    �    140).  
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  Figure 2.     (A) mean ( �  SE) mass at hatch of chicks from eggs 
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bursa of Fabricius than chicks from eggs produced by unsup-
plemented females (Fig. 3C). Chicks hatched from eggs 
produced by GnRH-challenged females had signifi cantly 
smaller bursa of Fabricius than chicks from eggs produced 
by unchallenged females. Heavier individuals had signifi -
cantly larger bursas, and female chicks had consistantly 
larger bursas than males (mean female bursa volume    �    
 53.5    �    1.92 mm 3 , n    �    101; mean male bursa volume    �     
46.9    �    2.03 mm 3 , n    �    139).   

 Survival to age 15 d 

 Carotenoid supplementation and GnRH challenge 
strongly interacted to infl uence the proportion of chicks that 
survived to age 15 d (Fig. 4; n    �    409; carotenoids:  χ  2     �    5.08, 
DF    �    1, p    �    0.024; GnRH:  χ  2     �    2.70, DF    �    1, p    �    0.098; 
GnRH  �  carotenoids:  χ  2     �    6.07, DF    �    1, p    �    0.004; pro-
portion of total variance explained by random factors: 
cage    �    0.66%, female    �    2.84%).    

 Discussion 

 We evaluated the impact of two maternal physiological 
manipulations on off spring morphology and fi tness. Dietary 
carotenoid supplementation of egg-laying female quail 
had positive eff ects on egg hatching success and one of 
the immune function parameters in chicks (bursa size). 

(n    �    409; carotenoids: F 1,22     �    0.08, p    �    0.774; GnRH: 
F 1,22     �    0.36, p    �    0.554; time: F 5,379    �     15.42, p    �    0.0001; 
proportion of total variance explained by random factors: 
cage    �    0.38%, female    �    0.78%).   

 Innate immunity in chicks 

 Carotenoid supplementation as well as GnRH challenges to 
females infl uenced bactericidal ability of chick plasma 
(Fig. 3A; n    �    240; carotenoids: F 1,20     �    468.73, p    �    0.0001; 
GnRH: F 1,20     �    188.35, p    �    0.0001; time: F 5,210     �    8.96, 
p    �    0.0001; GnRH  �  carotenoid: F 1,20     �    182.03, 
p    �    0.0001; carotenoid  �  time: F 1,210     �    4.67, p    �    0.0006; 
proportion of total variance explained by random factors: 
cage    �    0.84%, female    �    3.26%). As evidenced by the 
signifi cant interaction between the main factors, the 
positive eff ect of carotenoids on plasma bactericidal ability 
is weaker in GnRH-challenged females than in absence 
of GnRH treatment. Th e enhancement in plasma bacteri-
cidal ability produced by carotenoids relative to the control 
group decreased with time (Fig. 3B). Bursa size at age 15 d 
was also aff ected by maternal treatments (n    �    240; chick 
mass at d15: F 1,213     �    54.34, p    �    0.0001; chick sex: F 1,213     �     
8.33, p    �    0.004; carotenoids: F 1,22     �    9.62, p    �    0.0032; 
GnRH: F 1,22     �    9.59, p    �    0.0034; proportion of total 
variance explained by random factors: cage    �    0.59%, 
female    �    2.31%). Chicks hatched from eggs produced by 
carotenoid-supplemented females had signifi cantly larger 
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  Figure 3.     (A) mean ( �  SE) proportion of bacterial colonies destroyed when exposing plasma of 15 d old chicks from GnRH-challenged 
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et   al. 2010, Saino et   al. 2011), in that developmental 
and immunological changes observed in Japanese quail 
chicks are likely related to changes in yolk composition 
(i.e. amounts of T, carotenoids, and vitamins A and E). 
Similarly, we cannot attribute changes in chick performance 
to variation in egg quality through time, as we did not fi nd 
egg mass diff erences attributable to time (i.e. egg laying 
position) or treatments. Although egg quality may be 
aff ected by laying order in supernumerary clutches (Heaney 
et   al. 1998, Nager et   al. 2000, Williams and Miller 2003, 
Mand et   al. 2007, Verboven et   al. 2010, but see Cucco et   al. 
2011), species-specifi c relationships between egg quality 
and laying sequence result in a variety of patterns (Aparicio 
1999). For example, previous studies in Japanese quail 
suggest that precocial birds with long laying sequences dis-
play relatively low intra-female diff erences in yolk T con-
centrations (Gil and Faure 2007, Bertin et   al. 2008, 
Okuliarova et   al. 2009). Nevertheless, although we did not 
fi nd strong temporal variation in yolk carotenoids or T lev-
els (Peluc et   al. 2012) or other constituents (yolk mass, 
albumen mass, shell mass; Peluc et   al. unpubl.), we 
cannot exclude the possibility that other parameters of egg 
quality not measured here could have been aff ected by egg 
laying position and ultimately aff ect chick performance. 

 We observed that maternal carotenoid supplementation 
enhanced egg hatching success, whereas maternal GnRH-
challenges resulted in higher egg hatching failure. Th is is 
not unexpected as negative eff ects of in ovo T on egg 
hatching have been reported (Sockman and Schwabl 
2000, Navara et   al. 2005, Rutkowska and Cichon 2006, 
Boncoraglio et   al. 2011). Conversely, maternally deposited 
yolk carotenoids may enhance hatchability by lowering 
the activity of potentially harmful reactive-oxygen species 
during embryonic development (McGraw et   al. 2005), 
or by enhancing eggs antibacterial activity (Cucco et   al. 
2007). Similarly, enzymatic antioxidants such as vitamin E 
scavenge ROS and protect cells from oxidative damage 
(Finkel and Holbrook 2000). Yet, one interesting result here 
is that hatching success of eggs produced by GnRH  �  
carotenoid-treated hens was higher than that of eggs 
from GnRH females receiving control diet. Th is suggests 
that the combination of resources deposited in eggs from 
GnRH  �  carotenoid-treated hens interact in such way that 
one may mitigate detrimental eff ects of the other. 

 Maternal GnRH-challenges enhanced neonatal size 
but did not aff ect off spring growth. We did not fi nd evi-
dence of strong egg size diff erences among treatments. 
Hence the diff erences in neonatal size may result from 
increased prenatal growth rate due to higher T levels in eggs 
produced by GnRH-challenged females (Peluc et   al. 2012). 
Yolk androgens have positively aff ected embryonic growth 
rates and development in other avian species (reviewed by 
Groothuis et   al. 2005a). Yet, yolk androgens may aff ect 
growth diff erently at diff erent stages of development (Sock-
man and Schwabl 2000, Andersson et   al. 2004, Rubolini 
et   al. 2006b, Cucco et   al. 2008, Hegyi and Schwabl 2010). 
Possibly in our study system an age-specifi c eff ect of yolk 
androgens on growth may be related to environmental 
circumstances such as food availability and degree of sibling 
competition (M ü ller et   al. 2005). Ad libitum access to food 
in our experiment may have diminished the impact of com-

On the other hand, the positive eff ect of maternal carotenoid 
supplementation on chick survival probability to age 15 d 
was reduced by maternal GnRH challenges. Similarly the 
positive eff ect of maternal carotenoid supplementation 
on plasma bactericidal ability declined with time during 
the study, and it was reduced by GnRH challenges to 
females. Yet, chicks originating from GnRH  �  carotenoid 
treated hens had a better bactericidal response than chicks 
from GnRH-challenged not carotenoid supplemented 
hens. In contrast, maternal GnRH challenges enhanced 
neonatal size, and negatively aff ected the growth of the bursa 
of Fabricius in chicks. 

 We have evidence that carotenoid supplementation 
and GnRH challenges to laying females increased carote-
noids and T yolk deposition, and furthermore that yolk 
deposition of such compounds is not independent of one 
another (Peluc et   al. 2012). Results presented by Peluc et   al. 
(2012) show that GnRH  �  carotenoid female quail depos-
ited more carotenoids into yolk than carotenoid supple-
mented (not challenged) females, and deposited more T 
into yolk than GnRH (not diet supplemented) females. Th is 
allocation pattern may just imply the passive deposition of 
both compounds (i.e. females deposit greater amounts 
of those compounds when their level in circulation is 
higher, Schwabl 1993, Bortolotti et   al. 2003). However, an 
adaptive explanation for the correlation would be that 
females actively allocate androgens and carotenoids to 
egg yolks, which benefi t their off spring. Th e trade-off  of 
diminished availability of these compounds to females 
would be the benefi t of higher quality of off spring through 
enhanced development and competitive ability, or protec-
tion against oxidative stress during development. 

 Because we did not manipulate egg constituents 
directly (i.e. did not inject carotenoids or T on eggs), we 
cannot exclude the possibility that treatments altered 
other aspects of hen physiology and deposition of egg
compounds (i.e. other steroid hormones, antioxidants, 
other nutrients, or antibodies) that may have also aff ected 
off spring performance. Yet, our data corroborates the fi nd-
ings of other studies (Surai et   al. 2003, Groothuis et   al. 
2005, Karadas et   al. 2006, Koutsos et   al. 2007, Meriwether 
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simultaneously, and that eff ects of such compounds on off -
spring performance depend on their combination in quan-
tity and quality. It is evident from results by Peluc et   al. 
(2012) that resource allocation to eggs is a complex phenom-
enon, and diff erent resourses are not independently depos-
ited to the yolk (e.g. more carotenoids are deposited to eggs 
of GnRH challenged than not challenged females). Female 
birds are thought to fi ne tune development of individual off -
spring by adjusting the relative amounts of yolk androgens 
and yolk antioxidants (Royle et   al. 2001, Groothuis et   al. 
2006, Williamson et   al. 2006, Peluc et   al. 2012). Yet, linking 
off spring performance with patterns of maternal deposition, 
can be challenging because trade-off s between mother and 
off spring and pleiotropic interactions among diff erent egg 
components are hypothesized to result in opposite eff ects 
(Royle et   al. 2001). If females can diff erentially allocate 
androgens and antioxidants to egg yolk to enhance off spring 
performance, the adaptive value of such deposition patterns 
should be validated by fi tness proxies in chicks, such as size 
at hatching, growth and immunity. Such evidence has been 
provided in this study. Here, we show a direct connection 
between maternal deposition of yolk carotenoids and hor-
mones and their positive, negative and interactive eff ects on 
off spring performance. 

 We have provided evidence that early maternal 
eff ects mediated by diff erential deposition of antioxidants 
(carotenoids and vitamins A and E) and T to eggs (Peluc 
et   al. 2012) are able to aff ect off spring immune response and 
viability (Karadas et   al. 2005). Future studies should 
examine eff ects of the yolk environment as an integrated 
multi-component system (i.e. considering an array of 
biomolecules deposited by the female). Such an approach 
will help evaluate costs and benefi ts of the combined infl u-
ences of egg yolk constituents, and will further enhance our 
understanding of the the mechanism and adaptive signifi -
cance of maternal resources allocated to eggs.       
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