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Abstract In this paper we give conditions on an implication algebra A so that
two congruences θ1, θ2 on A permute, i.e. θ1 ◦ θ2 = θ2 ◦ θ1. We also provide simpler
conditions for permutability in finite implication algebras. Finally we present some
applications of these characterizations.

Keywords Implication algebras · Congruences · Permutability

Mathematics Subject Classifications (2000) 06F99 · 08A30 · 08B20

1 Introduction

In this section we will introduce some basic properties of implication algebras and
fix the notation used throughout the article. In the next section we will present the
main result of the article, namely, a characterization for the permutability of two
congruences on an implication algebra. The conditions found may be simplified in
the case of finite implication algebras; this will be carried out in Section 3. Finally, in
Section 4, we will turn to some applications of the preceding results. Specifically we
will derive as a simple consequence the characterization given by Cornish in [4] of
congruence-permutable implication algebras. We will also give a simpler proof of a
characterization of factor congruences in implication algebras that appears in [5] and
find those congruences in finitely generated free implication algebras that permute
with every other congruence.

The support of Universidad Nacional del Sur and CONICET is gratefully acknowledged.

D. N. Castaño · J. P. Díaz Varela (B)
Instituto de Matemática de Bahía Blanca—CONICET,
Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
e-mail: usdiavar@criba.edu.ar

D. N. Castaño
e-mail: diegocas33@gmail.com



246 Order (2009) 26:245–254

An implication algebra is an algebra A = 〈A, →, 1〉 of type 〈2, 0〉 that satisfies the
equations:

(1) x → x = 1
(2) (x → y) → x = x,
(3) (x → y) → y = (y → x) → x,
(4) x → (y → z) = y → (x → z).

The theory of implication algebras was developed by Abbott in [1, 2] (see also
[8]) and he showed that there is a bijective correspondence from the class of all
implication algebras onto the class of all semi-boolean algebras, i.e. join semi-lattices
in which every principal filter is a Boolean algebra.

On an implication algebra A, the relation given by a ≤ b if and only if a → b = 1
is a partial order, called the natural order of A, with 1 as its greatest element, that
is, a → 1 = 1 for every a ∈ A. Every pair of elements x, y ∈ A has a join x ∨ y given
by the term (x → y) → y. Moreover, if a, b , c ∈ A and a, b ≥ c, then the meet of
a and b exists and it holds that p(a, b) = a ∧ b where p(x, y) is the polynomial
(x → (y → c)) → c.

We now summarize some properties that hold in any implication algebra and will
be used throughout the article.

• 1 → x = x,
• y ≤ x → y,
• x ∨ (x → y) = 1,
• if x ≤ y, then z → x ≤ z → y and y → z ≤ x → z,
• x ∨ y = 1 iff x → y = y,
• x ≤ y → z iff y ≤ x → z,
• x → (x → y) = x → y.

In addition, the lattice operations satisfy the following properties for every x, y, z∈ A:

• (x → z) ∧ (y → z) exists and (x ∨ y) → z = (x → z) ∧ (y → z),
• z → (x ∨ y) = (z → x) ∨ (z → y),
• if x ∧ y exists, (x ∧ y) → z = (x → z) ∨ (y → z),
• if x ∧ y exists, then (z → x) ∧ (z → y) also exists and z → (x ∧ y) = (z → x) ∧

(z → y).

The class I of all implication algebras is a locally finite, 3-permutable, 3-distributive
variety, but it is not permutable (see [7]). All of its members are semisimple; in
fact, they are the semisimple Hilbert algebras (see [2] and [6]), and the two-element
implication algebra 2 = 〈{0, 1},→, 1〉 is, up to isomorphism, the unique subdirectly
irreducible implication algebra. As an immediate consequence of this last result,
implication algebras may be also characterized as the {→, 1}-subreducts of Boolean
algebras.

Implication algebras are 1-regular, i.e. every congruence is determined by the con-
gruence class to which 1 belongs. For each congruence relation θ on an implication
algebra A, 1/θ is an implicative filter, i.e. it contains 1 and if a, a → b ∈ 1/θ , then
b ∈ 1/θ ; equivalently, 1/θ is a nonempty set which is upwardly closed with respect
to the natural order and if a, b ∈ 1/θ and a ∧ b exists, then a ∧ b ∈ 1/θ . Conversely,
for any implicative filter F of A the relation θF = {(a, b) ∈ A2 : a → b , b → a ∈ F}
is a congruence on A such that F = 1/θF . In fact the correspondence θ �→ 1/θ gives
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an order isomorphism from the lattice Con(A) of all congruence relations on A onto
the set of all implicative filters of A, ordered by inclusion. We use the symbols � and
∇ for the least and greatest elements in Con(A), respectively. For convenience we

write a
θ≡ b instead of (a, b) ∈ θ . Observe that although ∧ is not a term operation, if

a
θ≡ b , c

θ≡ d, and both a ∧ c and b ∧ d exist, then a ∧ c
θ≡ b ∧ d.

2 Permutability of Congruences

Two congruences θ1, θ2 on an algebra A are said to permute if θ1 ◦ θ2 = θ2 ◦ θ1. The
following result will be useful to characterize the permutability of two congruences
θ1, θ2 because it allows us to restrict our attention to the case in which θ1 ∩ θ2 = �.
The proof is straightforward.

Lemma 2.1 Let θ1, θ2 be two congruences on an algebra A and let θ = θ1 ∩ θ2. Then
θ1 ◦ θ2 = θ2 ◦ θ1 if and only if θ1/θ ◦ θ2/θ = θ2/θ ◦ θ1/θ .

The following lemma gives a useful characterization for congruence classes in
implication algebras.

Lemma 2.2 Let θ ∈ Con(A), where A ∈ I. Then for all x ∈ A we have that

x/θ = {
α1 ∧ (α2 → x) : α1, α2 ∈ 1/θ and α1 ∧ (α2 → x) exists

}
.

Equivalently y∈x/θ if and only if there exist α1, α2 ∈1/θ such that y=α1 ∧ (α2 →x).

Proof Let y ∈ x/θ . Then α1 = x → y ∈ 1/θ and α2 = y → x ∈ 1/θ . Observe that
α2 → x = (y → x) → x = (x → y) → y = α1 → y. Hence y ≤ α2 → x. As y ≤ α1,
α1 ∧ (α2 → x) exists and we have

α1 ∧ (α2 → x) = (
(α2 → x) → (α1 → y)

) → y = 1 → y = y.

Conversely, given α1, α2 ∈ 1/θ , such that α1 ∧ (α2 → x) exists, we have that α1 ∧
(α2 → x)

θ≡ 1 ∧ (1 → x) = x, thus α1 ∧ (α2 → x) ∈ x/θ . ��

Theorem 2.3 Let A ∈ I and θ1, θ2 ∈ Con(A) such that θ1 ∩ θ2 = �. We have that
θ1 ◦ θ2 = θ2 ◦ θ1 if and only if the following conditions are satisfied:

(1) If α ∈ 1/θ1 and β ∈ 1/θ2, then α ∧ β exists,
(2) Assume that α1, α2 ∈ 1/θ1, that β1, β2 ∈ 1/θ2, that x ∈ A and that α1 ∧ (α2 → x)

and β1 ∧ (β2 → x) both exist. Then (α1 ∧ β1) ∧ ((α2 ∧ β2) → x) exists.

Proof Suppose θ1 ◦ θ2 = θ2 ◦ θ1.

To prove (1) let α ∈ 1/θ1 and β ∈ 1/θ2. Then α
θ1≡ 1

θ2≡ β, i.e. α
θ1◦θ2≡ β, so α

θ2◦θ1≡ β.

Consequently, there exists c ∈ A such that α
θ2≡ c

θ1≡ β.
Thus we have c → α ∈ 1/θ2. Moreover, as c → α ≥ α ∈ 1/θ1, c → α ∈ 1/θ1. Hence

c → α ∈ 1/θ1 ∩ 1/θ2. But 1/θ1 ∩ 1/θ2 = {1} because θ1 ∩ θ2 = �. We conclude that
c → α = 1, i.e. c ≤ α.

In the same way we can show that c ≤ β, therefore α ∧ β exists.
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Assuming the conditions in (2), consider a=α1 ∧ (α2 → x) and b =β1 ∧ (β2 → x).
Hence

a = α1 ∧ (α2 → x)
θ1≡ x

θ2≡ β1 ∧ (β2 → x) = b .

Since θ1 and θ2 permute, there exists y ∈ A such that a
θ2≡ y

θ1≡ b .
By (1), α1 ∧ β1 and α2 ∧ β2 both exist. Thus

y → (α1 ∧ β1)
θ2≡ y → α1.

As a ≤ α1, y → a ≤ y → α1, so the equation above, together with the fact that
y → a ∈ 1/θ2, implies that y → (α1 ∧ β1) ∈ 1/θ2.

Likewise,

y → (α1 ∧ β1)
θ1≡ y → β1,

and since b ≤β1, then y → b ≤ y → β1 and y → b ∈1/θ1, so we get y → (α1 ∧
β1) ∈ 1/θ1. We have thus proved that y → (α1 ∧ β1) ∈ 1/θ1 ∩ 1/θ2 = {1}. Therefore
y ≤ α1 ∧ β1.

We also have that

y → (
(α2 ∧ β2) → x

) θ2≡ y → (α2 → x) ≥ y → a ∈ 1/θ2,

y → (
(α2 ∧ β2) → x

) θ1≡ y → (β2 → x) ≥ y → b ∈ 1/θ1.

As a consequence, y → ((α2 ∧ β2) → x) ∈ 1/θ1 ∩ 1/θ2 = {1}, i.e. y ≤ (α2 ∧ β2) → x.
Then y is a lower bound of α1 ∧ β1 and (α2 ∧ β2) → x. Therefore, the meet of these

two elements must exist. This completes the proof of condition (2).

Conversely, suppose conditions (1) and (2) hold. Let a
θ1≡ x

θ2≡ b .
As a ∈ x/θ1 and b ∈ x/θ2, by Lemma 2.2 there exist α1, α2 ∈ 1/θ1 and β1, β2 ∈ 1/θ2

such that

a = α1 ∧ (α2 → x), b = β1 ∧ (β2 → x).

By (1) and (2), (α1 ∧ β1) ∧ ((α2 ∧ β2) → x) exists. Thus we have

a = α1 ∧ (α2 → x)

θ2≡ (α1 ∧ β1) ∧ (
(α2 ∧ β2) → x

)

θ1≡ β1 ∧ (β2 → x)

= b

therefore a
θ2◦θ1≡ b . ��

The general characterization of permutability now follows from Lemma 2.1 and
the previous theorem.

Corollary 2.4 Let A ∈ I and θ1, θ2 ∈ Con(A), θ1 ◦ θ2 = θ2 ◦ θ1 if and only if the con-
gruences θ1/(θ1 ∩ θ2) and θ2/(θ1 ∩ θ2) satisfy conditions (1) and (2) of Theorem 2.3 in
the implication algebra A/(θ1 ∩ θ2).
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3 The Finite Case

In this section we simplify the result in Theorem 2.3 when the implication algebra A
is finite. We begin by showing some useful properties about congruence classes.

Lemma 3.1 Let A ∈ I and θ ∈ Con(A). Then each congruence class of θ is closed
under join.

Proof If a
θ≡ b , then a ∨ a

θ≡ a ∨ b , then a
θ≡ a ∨ b . ��

Corollary 3.2 Let θ ∈ Con(A) where A is a finite algebra in I. Then each congruence
class modulo θ has a greatest element.

Proof Let x ∈ A. As A is finite, x/θ is finite. Then there exists y = ∨
x/θ and by the

preceding lemma y ∈ x/θ . Thus y is the greatest element in x/θ . ��

Lemma 3.3 Let θ ∈ Con(A) where A is a finite algebra in I. Let x ∈ A be such that
x = ∨

x/θ , then:

(a) x ∨ α = 1 for all α ∈ 1/θ .
(b) x/θ = {x ∧ α : α ∈ 1/θ such that x ∧ α exists}.
(c) If y ∈ x/θ , then there exists a unique α ∈ 1/θ such that y = x ∧ α.
(d) If x ≤ y, then y = ∨

y/θ .

Proof

(a) Let α∈1/θ , then α→x
θ≡ 1 → x=x, therefore α→x∈x/θ . Since x=∨

x/θ ,
we have that α → x ≤ x, so α → x = x. This in turn implies that x ∨ α = 1.

(b) Let y ∈ x/θ . Then α = x → y ∈ 1/θ .
As y ≤ x and y ≤ α, the meet between x and α exists. We have x ∧ α = (α →
(x → y)) → y = (α → α) → y = 1 → y = y.

Conversely, if x ∧ α exists for some α ∈ 1/θ , we have that x ∧ α
θ≡ x ∧ 1 = x,

therefore x ∧ α ∈ x/θ .
(c) We only need to prove the uniqueness of α. To do this, we note that if y = x ∧ α,

it is necessary that α = x → y. In fact,

x → y = x → (x ∧ α) = (x → x) ∧ (x → α) = 1 ∧ α = α.

Observe that we used the fact that x → α = α given in (a) by the equivalent
condition x ∨ α = 1.

(d) Let x ≤ y and consider u = ∨
y/θ . Then u → y ∈ 1/θ and (u → y) → x

θ≡ 1 →
x = x, i.e. (u → y) → x ∈ x/θ . Since x = ∨

x/θ , we have (u → y) → x ≤ x and
in fact (u → y) → x = x.
Hence x → (u → y) = u → y, and then u → (x → y) = u → y. As x ≤ y, it
follows that u ≤ y.
In addition, since u = ∨

y/θ , y ≤ u. This shows that y = u = ∨
y/θ . ��

Lemma 3.4 Let A be a finite algebra in I and let θ1, θ2 ∈ Con(A) be such that θ1 ◦ θ2 =
θ2 ◦ θ1. Let x ∈ A be such that x = ∨

x/θ1 = ∨
x/θ2, then x = ∨

x/(θ1 ◦ θ2).
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Proof Let y ∈ x/(θ1 ◦ θ2) = x/(θ2 ◦ θ1). Then there exists z ∈ A such that y
θ2≡ z

θ1≡ x.
Let s = ∨

z/θ2 = ∨
y/θ2. Then z ≤ s and y ≤ s.

As s
θ2≡ z, we have that s ∨ x

θ2≡ z ∨ x = x because x = ∨
x/θ1 and z ∈ x/θ1.

Thus, as x = ∨
x/θ2 and s ∨ x ∈ x/θ2, we have that s ∨ x ≤ x, i.e. s ≤ x. Then

y ≤ s ≤ x.
This shows that x = ∨

x/(θ1 ◦ θ2). ��

We are now ready to prove the main theorem of this section.

Theorem 3.5 Let A be a finite algebra in I and let θ1, θ2 ∈ Con(A) be such that
θ1 ∩ θ2 = �. Then θ1 ◦ θ2 = θ2 ◦ θ1 if and only if given x ∈ A such that x = ∨

x/θ1 =∨
x/θ2 we have that for all a ∈ x/θ1 and b ∈ x/θ2, the meet a ∧ b exists.

Proof Suppose θ1 ◦ θ2 =θ2 ◦ θ1. Let x ∈ A be such that x=∨
x/θ1 =∨

x/θ2, a ∈ x/θ1

and b ∈ x/θ2.

Since a
θ1≡ x

θ2≡ b , we have a
θ1◦θ2≡ b , therefore a

θ2◦θ1≡ b . Hence there exists c ∈ A

such that a
θ2≡ c

θ1≡ b .
Observe that c

θ1≡ b
θ2≡ x, i.e. c

θ1◦θ2≡ x. By the preceding lemma x = ∨
x/(θ1 ◦ θ2),

so c ≤ x. Hence x → a ≤ c → a. Now since x → a ∈ 1/θ1, we conclude that c → a ∈
1/θ1. Since a

θ2≡ c, we have that c → a ∈ 1/θ2. Therefore c → a ∈ 1/θ1 ∩ 1/θ2 = {1}
because θ1 ∩ θ2 = �. Then c → a = 1 and c ≤ a.

Analogously, c ≤ b . Consequently, the meet of a and b exists.

Conversely, suppose a
θ1≡ c

θ2≡ b and consider the following elements of A:

s =
∨

a/θ1 =
∨

c/θ1, t =
∨

b/θ2 =
∨

c/θ2, u =
∨

a/θ2, v =
∨

b/θ1.

Since c
θ2≡ t, we have s ∨ c

θ2≡ s ∨ t, i.e. s
θ2≡ s ∨ t.

Since a
θ2≡ u, we have a ∨ s

θ2≡ u ∨ s, i.e. s
θ2≡ u ∨ s.

Therefore, u ∨ s
θ2≡ s ∨ t.

Now, as u = ∨
u/θ2 and t = ∨

t/θ2, by Lemma 3.3 (d),

u ∨ s =
∨

(u ∨ s)/θ2 =
∨

(s ∨ t)/θ2 = s ∨ t.

Analogously, we can prove that t ∨ v = s ∨ t.

Since a
θ1≡ s, we get u ∨ a

θ1≡ u ∨ s, i.e. u
θ1≡ u ∨ s = s ∨ t. Hence u ∈ (s ∨ t)/θ1.

Since b
θ2≡ t, we get b ∨ v

θ2≡ t ∨ v, i.e. v
θ2≡ t ∨ v = s ∨ t. Thus v ∈ (s ∨ t)/θ2.

By Lemma 3.3 (d) we know that s ∨ t = ∨
(s ∨ t)/θ1 = ∨

(s ∨ t)/θ2. Consequently,
by hypothesis, we conclude that u ∧ v exists.

Since s ∨ t
θ2≡ v, we get u ∧ (s ∨ t)

θ2≡ u ∧ v, i.e. u
θ2≡ u ∧ v.

Since s ∨ t
θ1≡ u, we get (s ∨ t) ∧ v

θ1≡ u ∧ v, i.e. v
θ1≡ u ∧ v.

Finally

a
θ2≡ u

θ2≡ u ∧ v
θ1≡ v

θ1≡ b ,

and thus a
θ2◦θ1≡ b . This suffices to conclude that congruences θ1 and θ2 permute. ��
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Corollary 3.6 Let A be an implication algebra and θ1, θ2 ∈ Con(A) such that A/(θ1 ∩
θ2) is finite. Then θ1 ◦ θ2 = θ2 ◦ θ1 if and only if the congruences θ1/(θ1 ∩ θ2) and
θ2/(θ1 ∩ θ2) satisfy the conditions of the preceding theorem in the algebra A/(θ1 ∩ θ2).

4 Applications

We now turn to some applications of the results given in the preceding sections.
Congruence-permutable implication algebras were characterized by Cornish in
[4, Theorem 3.14]. We will obtain this result as a direct consequence of the preceding
characterization for permutability. In addition, we simplify the proof of the charac-
terization of factor congruences on an implication algebra given in [5]. Finally, taking
into account the results on free implication algebras presented in [5], we find all
congruences on finitely-generated free implication algebras that permute with every
other congruence.

4.1 Congruence-Permutable Implication Algebras

Recall that an algebra A is said to be congruence-permutable if every pair of
congruences on A permute (see [3] for more details). The following theorem is
due to Cornish (see [4, Theorem 3.14]) and characterizes congruence-permutable
implication algebras. We now derive this result as a consequence of Theorem 2.3.

Theorem 4.1 A ∈ I is congruence-permutable if and only if for every pair of elements
a, b ∈ A the meet a ∧ b exists.

Proof Suppose A is congruence-permutable. Note that if a, b ∈ A and a ∨ b = 1,
then Fg(a) ∩ Fg(b) = {1}, where Fg(a) denotes the implicative filter generated by
a ∈ A. Then, by Theorem 2.3, the meet between a and b must exist. Now, given any
a, b ∈ A, we have that a ∨ (a → b) = 1. Therefore there exists c ∈ A such that c ≤ a
and c ≤ a → b . Then c ≤ a and a ≤ c → b . Thus c ≤ c → b , i.e. c → (c → b) = c →
b = 1, so c ≤ b . This shows that c is a lower bound of a and b , whence the meet
between a and b exists.

Conversely, if the meet of every pair of elements of A exists, this property also
holds in A/(θ1 ∩ θ2), where θ1, θ2 ∈ Con(A). Hence the conditions of Theorem 2.3
are trivially satisfied and by Corollary 2.4 we conclude that θ1 and θ2 permute. ��

Observe that, as a consequence, we have that A is congruence-permutable if and
only if it forms a generalized Boolean algebra under the lattice operations.

4.2 Factor Congruences

A congruence θ on an algebra A is called a factor congruence if there exists a
congruence θ∗ such that θ ∩ θ∗ = �, θ ∨ θ∗ = ∇ and θ ◦ θ∗ = θ∗ ◦ θ . For more details
about factor congruences see [3].

Factor congruences in implication algebras are characterized in [5]. We now give
a simpler proof of that result as a consequence of Theorem 2.3.
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Theorem 4.2 Let θ ∈ Con(A) where A ∈ I. Then θ is a factor congruence if and only
if the following conditions hold:

(a) For every c ∈ 1/θ and every b ∈ 1/θ⊥, c ∧ b exists.
(b) For every a ∈ A, there are unique ca ∈ 1/θ and b a ∈ 1/θ⊥ such that a = ca ∧ b a.

Proof Suppose θ is a factor congruence. Condition (a) follows immediately from
Theorem 2.3. Now, since θ ∨ θ⊥ = ∇, it follows that Fg(1/θ ∪ 1/θ⊥) = A. Besides,
since 1/θ and 1/θ⊥ are both increasing and closed by infima (when they exist),
Fg(1/θ ∪ 1/θ⊥) = {c ∧ b : c ∈ 1/θ, b ∈ 1/θ⊥ such that c ∧ b exists}. This implies the
existence part of condition (b). Uniqueness is straightforward.

Conversely, assume θ is a congruence satisfying (a) and (b). It suffices to show that
θ ◦ θ⊥ = ∇. Indeed, let a, d ∈ A, then by (b) there are ca, cd ∈ 1/θ and b a, b d ∈ 1/θ⊥

such that a = ca ∧ b a and d = cd ∧ b d. By (a), cd ∧ b a exists, so a = ca ∧ b a
θ≡ cd ∧

b a
θ⊥≡ cd ∧ b d = d. ��

4.3 Permutability of Congruences in Free Implication Algebras

In this section we will study permutability of congruences in finitely generated
free implication algebras. We will find congruences that permute with every other
congruence on the algebra.

Since I is a congruence-distributive variety, for any algebra A ∈ I the congruence
lattice Con(A) is pseudocomplemented. We will denote by θ⊥ the pseudocomple-
ment of a congruence θ on A. It is not difficult to show that 1/θ⊥ ={x ∈ A : x ∨ y=1
for every y ∈ 1/θ}.

The |X|-free implication algebra FI(X) generated by X is the {→, 1}-subalgebra
of the {→, 1}-reduct of the |X|-free Boolean algebra FB(X) generated by X, in
fact, FI(X) = {p ∈ FB(X) : p ≥ x, for some x ∈ X} (see [5] and the references given
there). It follows from this description that, as in free Boolean algebras, if X is
infinite, then the unique upper bound of X, relative to the natural order in FI(X),
is 1; and if X is finite, then the set of all upper bounds of X is {1,

∨
X}, in which

∨
X

is a coatom.
In [5] the authors find all factor congruences in FI(X). For reference, we state here

the main theorem of that article.

Theorem 4.3 If X is infinite, then FI(X) is directly indecomposable. If X is finite with
at least two elements, then FI(X) has a unique non-trivial pair of factor congruences
{θ, θ⊥} given by 1/θ = {1,

∨
X} and 1/θ⊥ = {a ∈ FI(X) : a ∨ ∨

X = 1}.

In the proof of the following theorem, we will use the fact that the lattice of
congruences Con(A) is a Boolean lattice for any finite implication algebra A. Indeed,
if we let C be the set of coatoms of A and for each congruence θ on A, we let
Cθ = {c ∈ C : c ∈ 1/θ}, it is easy to show that the mapping θ �→ Cθ is an isomorphism
between Con(A) and the power set of C. As a consequence we get that for each
congruence θ , its pseudocomplement θ⊥ is, in fact, its complement.

Theorem 4.4 Let X be a finite set with at least two elements and let FI(X) be the free
implication algebra generated by X. The congruence θ given by 1/θ = {1,

∨
X} and its
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pseudocomplement θ⊥ are the only non-trivial congruences on FI(X) which permute
with all congruences.

Proof We first show that θ permutes with every congruence. To see this, let θ ′ be
any congruence on FI(X). Let F = 1/θ = {1,

∨
X} and F ′ = 1/θ ′. If F ⊆ F ′, it is

immediate that θ and θ ′ permute. Hence, assume that F �⊆ F ′. In this case F∩F ′ ={1}.
By Theorem 3.5, in order to prove that θ and θ ′ permute, it suffices to show that if

z = ∨
z/θ = ∨

z/θ ′ and a ∈ z/θ , b ∈ z/θ ′, then a ∧ b exists.
If a = z, a ∧ b = z ∧ b = b , so we may assume that a �= z. Hence, by Lemma 3.3

(b), we know that a/θ = {z, z ∧ ∨
X}, so a = z ∧ ∨

X.
Since there is some x ∈ X such that x ≤ b ,

∨
X ∧ b exists and we have that

(∨
X ∧ b

)
→ a =

(∨
X → a

)
∨ (b → a).

Since
∨

X
θ≡ 1,

∨
X → a

θ≡ a. There are two possibilities, namely,
∨

X → a = a
or

∨
X → a = z. In the former case,

∨
X = ∨

X ∨ a = 1, a contradiction. Hence∨
X → a = z. This shows that

(∨
X ∧ b

)
→ a = z ∨ (b → a).

Now z ∨ (b → a)
θ≡ z ∨ (b → z) = z ∨ 1 = 1 and z ∨ (b → a)

θ ′≡ z ∨ (z → a) = 1.
As F ∩ F ′ = 1, we conclude that z ∨ (b → a) = 1, i.e. (

∨
X ∧ b) → a = 1. Therefore∨

X ∧ b ≤ a. This shows that a ∧ b exists and completes the proof that θ and θ ′
permute.

We now show that θ⊥ also permutes with all congruences. Let θ ′ be an arbitrary
congruence on FI(X). If θ ′ ⊆ θ⊥, it is easy to see that θ ′ and θ⊥ permute. Conse-
quently, assume that θ ′ �⊆ θ⊥. We only need to verify that θ⊥ ◦ θ ′ = ∇.

Indeed, observe that F⊥ = 1/θ⊥ is a maximal implicative filter since F is a minimal
implicative filter and Con(FI(X)) is a Boolean lattice. It is easy to see that the two
congruence classes modulo θ⊥ are F⊥ and (

∨
X] = {a ∈ FI(X) : a ≤ ∨

X}. Now, if
we call F ′ = 1/θ ′, as F ′ �⊆ F⊥, there exists z ∈ F ′ \ F⊥. Since z �∈ F⊥, z ≤ ∨

X and
then

∨
X ∈ F ′.

Let a, b ∈ FI(X). We will show that a
θ⊥◦θ ′≡ b . There are three different cases,

namely:

• If a, b ∈ F⊥ or if a, b ∈ (
∨

X], then a
θ⊥≡ b and hence a

θ⊥◦θ ′≡ b .
• Suppose a ∈ F⊥ and b ∈ (

∨
X]. Let c = ∨

b/θ ′. By Lemma 3.3 (a), we have that
c ∨ α = 1 for every α ∈ F ′. In particular, in the case α = ∨

X, we get that c ∈ F⊥.
Hence

a
θ⊥≡ c

θ ′≡ b .

• Let a ∈ (
∨

X] and b ∈ F⊥. As b ≥ x for some x ∈ X, b ∧ ∨
X exists. Hence

a
θ⊥≡ b ∧

∨
X

θ ′≡ b ∧ 1 = b .

This shows that θ⊥ and θ ′ permute.
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Conversely, consider a non-trivial congruence θ ′ on FI(X) such that θ ′ permutes
with every congruence. We know that θ ′ ∩ (θ ′)⊥ = � and θ ′ ∨ (θ ′)⊥ = ∇. Moreover,
since θ ′ permutes with every congruence, in particular θ ′ ◦ (θ ′)⊥ = (θ ′)⊥ ◦ θ ′. There-
fore {θ ′, (θ ′)⊥} is a pair of factor congruences. By Theorem 4.3, either θ ′ = θ or
θ ′ = θ⊥. ��
Acknowledgment We wish to thank the referee for his or her observations, which improved the
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