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UNIVERSAL COEFFICIENT THEOREM IN TRIANGULATED

CATEGORIES

TEIMURAZ PIRASHVILI AND MARÍA JULIA REDONDO

Abstract. We consider a homology theory h : T → A on a triangulated
category T with values in a graded abelian category A . If the functor h

reflects isomorphisms, is full and is such that for any object x in A there
is an object X in T with an isomorphism between h(X) and x, we prove
that A is a hereditary abelian category, all idempotents in T split and the
kernel of h is a square zero ideal which as a bifunctor on T is isomorphic to
Ext

1

A
(h(−)[1], h(−)).

We assume that the reader is familiar with triangulated categories (see [7], [4]).
Let us just recall that the triangulated categories were introduced independently
by Puppe [6] and by Verdier [7]. Following to Puppe we do not assume that the
octahedral axiom holds.

If T is a triangulated category, the shifting of an object X ∈ T is denoted by
X [1]. Assume an abelian category A is given, which is equipped with an auto-
equivalence x 7→ x[1]. Objects of A are denoted by the small letters x, y, z, etc,
while objects of T are denoted by the capital lettersX,Y, Z, etc. A homology theory
on T with values in A is a functor h : T → A such that h commutes with shifting
(up to an equivalence) and for any distinguished triangle X → Y → Z → X [1] in
T the induced sequence h(X) → h(Y ) → h(Z) is exact. It follows that then one
has the following long exact sequence

· · · → h(Z)[−1] → h(X) → h(Y ) → h(Z) → h(X)[1] → · · ·

In what follows Ext1A (x, y) denotes the equivalence classes of extensions of x by y
in the category A and we assume that these classes form a set.

In this paper we prove the following result:

Theorem 1. Let h : T → A be a homology theory. Assume the following condi-
tions hold

i) h reflects isomorphisms,
ii) h is full.

Then the ideal

I = {f ∈ HomT (X,Y ) | h(f) = 0}

is a square zero ideal. Suppose additionally the following condition holds

iii) for any short exact sequence 0 → x → y → z → 0 in A with x ∼= h(X) and
z ∼= h(Z) there is an object Y ∈ T and an isomorphism h(Y ) ∼= y in A .
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Then I is isomorphic as a bifunctor on T to

(X,Y ) 7→ Ext
1
A (h(X)[1], h(Y )).

In particular for any X,Y ∈ T one has the following short exact sequence

0 → Ext
1
A (h(X)[1], h(Y )) → T (X,Y ) → HomA (h(X), h(Y )) → 0.

Moreover, if we replace condition (iii) by the stronger condition

iv) for any object x ∈ A there is an object X ∈ T and an isomorphism
h(X) ∼= x in A ,

then A is a hereditary abelian category and all idempotents in T split.

Thus this is a sort of ”universal coefficient theorem” in triangulated categories.

Our result is a one step generalization of a well-known result which claims that if
h is an equivalence of categories then A is semi-simple meaning that Ext1A = 0 (see
for example [4, p. 250]). As was pointed out by J. Daniel Christensen our theorem
generalizes Theorem 1.2 and Theorem 1.3 of [3] on phantom maps. Indeed let S

be the homotopy category of spectra or, more generally, a triangulated category
satisfying axioms 2.1 of [3] and let A be the category of additive functors from fi-
nite objects of S to the category of abelian groups. The category A has a shifting,
which is given by (F [1])(X) = F (X [1]), F ∈ A . Moreover let h : S → A be a
functor given by h(X) = π0(X ∧ (−)). Then h is a homology theory for which the
assertions i)-iii) hold and I(X,Y ) consists of phantom maps from X to Y . Hence
by the first part of theorem we obtain the familiar properties of phantom maps.

Before we give a proof of the Theorem, let us explain notations involved on
it. The functor h reflects isomorphisms, this means that f ∈ HomT (X,Y ) is an
isomorphism provided h(f) is an isomorphism in A . This holds if and only if
X = 0 as soon as h(X) = 0. Moreover h is full, this means that the homomorphism
T (X,Y ) → HomA (h(X), h(Y )) given by f 7→ h(f) is surjective for all X,Y ∈
T . Furthermore an abelian category A is hereditary provided for any two-fold
extension

(1) 0 // u
α̂

// v
β̂

// w
γ̂

// x // 0

there exists a commutative diagram with exact rows

0 // v //

Id

��

z //

��

x //

Id

��

0

0 // u // v // w // x // 0

This exactly means that Ext2A = 0, where Ext is understood a lá Yoneda. Let us also
recall that an ideal I in an additive category A is a sub-bifunctor of the bifunctor
HomA(−,−) : Aop × A → Ab. It follows that I is an additive bifunctor. One can
form the quotient category A/I in an obvious way, which is an additive category.
One says that I2 = 0 provided gf = 0 as soon as f ∈ I(A,B) and g ∈ I(B,C). In
this case the bifunctor I : Aop×A → Ab factors through the quotient category A/I
in a unique way.
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Proof. It is done in several steps.
First step. The equality I

2 = 0. To make notations easier we denote h(X), h(Y )
simply by x, y, etc. Moreover, for a morphism α : X → Y , we let α̂ : x → y be
the morphism h(α). Suppose α : X → Y and β : Y → Z are morphisms such that

α̂ = 0 and β̂ = 0. We have to prove that γ := βα is the zero morphism. By the
morphisms axiom there is a diagram of distinguished triangles

X
α

//

Id

��

Y //

β

��

U //

��
�

�

�
X [1]

Id

��

X
γ

// Z
ω

// V
ν

// X [1]

Apply h to get a commutative diagram with exact rows

0 // y //

0

��

u //

��

x[1]

Id

��

// 0

0 // z
ω̂

// v
ν̂

// x[1] // 0

It follows that there is a morphism µ̂ : x[1] → v in A such that ν̂µ̂ = Idx[1]. Thus
(ω̂, µ̂) : z ⊕ x[1] → v is an isomorphism. Since h is full, we can find µ : X [1] → V
which realizes µ̂, meaning that h(µ) = µ̂. The morphism (ω, µ) : Z⊕X [1] → V is an
isomorphism, because h reflects isomorphisms. In particular ω is a monomorphism
and therefore γ = 0 and first step is done.

For objects X,Y ∈ T we put

I(X,Y ) := {α ∈ HomA (X,Y ) | h(α) = 0}.

We have just proved that I2 = 0. In particular I as a bifunctor factors through the
category T /I. The next step shows that it indeed factors through the category A

and a quite explicit description of this bifunctor is given.

Second step. Bifunctorial isomorphism I(X,Y ) ∼= Ext
1
A (h(X)[1], h(Y )). We put as

usual x = h(X), y = h(Y ), etc. Let α : X → Y be an element of I(X,Y ). Consider
a distinguished triangle

(2) X
α
→ Y

β
→ Z

γ
→ X [1].

By applying h one obtains the following short exact sequence

(3) 0 → y
β̂
→ z

γ̂
→ x[1] → 0

whose class in Ext
1
A (x[1], y) is independent on the choice of the triangle in (2)

and it is denoted by Ξ(α). In this way one obtains the binatural transformation

Ξ : I → Ext
1
A ((−)[1], (−)). We claim that Ξ is an isomorphism. Indeed, if Ξ(α) = 0,

then there exists a section µ̂ : x[1] → z of γ̂ in (3). Then (β̂, µ̂) : y ⊕ x[1] → z
is an isomorphism. Since h is full, we can find µ : X [1] → Z which realizes
µ̂. The morphism (β, µ) : Y ⊕ X [1] → Z is an isomorphism, because h reflects
isomorphisms. In particular β is a monomorphism and therefore α = 0. Hence Ξ is
a monomorphism. Let us take any element in Ext

1
A (x[1], y), which is represented

by a short exact sequence, say the sequence (3). Take any realization β : Y → Z

of β̂. By Lemma 1 below we obtain the following distinguished triangle

X
α
→ Y

β
→ Z

γ
→ X [1]
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containing β. It follows that Ξ(α) represents our original element in Ext
1
A (x[1], y).

Hence Ξ is an isomorphism.

Third step. A is hereditary. Let (1) be a two-fold extension in A . We put
y = Im(α̂). Thus the exact sequence (1) splits in the following two short exact
sequences

0 → u
α̂
→ v

µ̂
→ y → 0

and

0 → y
ν̂
→ w

γ̂
→ x → 0

with β̂ = ν̂µ̂. Using Assumption iii) and without loss of generality we can assume
that u, v, w, x as well as α̂ and γ̂ have realizations. By Lemma 1 below we obtain
the following distinguished triangles

U
α
→ V

µ
→ Y

ξ
→ U [1]

and

Y
ν
→ W

γ
→ X

χ
→ Y [1].

Since µ̂ is an epimorphism and ν̂ is a monomorphism it follows that h(ξ) = 0 and
h(χ) = 0. Thus ξ ◦ χ[−1] = 0 thanks to the fact that I

2 = 0. Therefore there
exists λ : X [−1] → V such that µ ◦λ = χ[−1], in other words one has the following
commutative diagram

X [−1]

λ

||zz
zz

zz
zz

z

χ[−1]

��

U
α

// V
µ

// Y
ξ

// U [1]

We claim that one can always find λ with property h(λ) = 0. Indeed, for a given λ
with µ ◦ λ = χ[−1] one obtains the following diagram after applying h:

x[−1]

λ̂

}}zz
zz

zz
zz

0

��

0 // u
α̂

// v
µ̂

// y // 0

Thus λ̂ = α̂ ◦ φ̂, for some φ : X [−1] → U . Now it is clear that λ′ = λ − α ◦ φ has
the expected properties h(λ′) = 0 and µ ◦ λ′ = χ[−1], and the claim is proved.

One can use the morphisms axiom to conclude that there exists a commutative
diagram

X [−1]
λ

//

Id

��

V //

µ

��

Z //

��
�

�

� X

Id

��

X [−1]
χ[−1]

// Y
ν

// W
γ

// X

Since h(λ) = 0, by applying h one obtains the following commutative diagram

0 // v //

µ̂

��

z //

��

x //

Id

��

0

0 // y ν̂
// w

γ̂
// x // 0
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which shows that one has a commutative diagram with exact rows

0 // v //

Id

��

z //

��

x //

Id

��

0

0 // u
α̂

// v
β̂

// w
γ̂

// x // 0

Thus A is hereditary.

Forth step. Idempotents split in T . Let Idem(T ) be the idempotent completion of
T (see [5] or [1]). We have to show that the canonical functor T → Idem(T ) is an
equivalence of categories. One can summarize the previous steps saying that the cat-
egory T is a linear extension of A by the bifunctor (X,Y ) 7→ Ext

1
A (h(X)[1], h(Y ))

in the sense of Baues and Wirsching [2]. Now one can use Proposition 3.2 of [5] to
conclude that T → Idem(T ) is indeed an equivalence of categories.

An alternative proof can be done using the result of [1] and Corollary 2 below
which uses only the first three steps. Indeed, by [1], the category T ′ = Idem(T )
carries a natural triangulated structure. Since A is an abelian category, all idem-
potents in A split and it follows from the universal property of the idempotent
completion that the functor h has a unique extension T ′ → A , which is denoted
by h′. We claim that the functor h′ reflects isomorphisms. Indeed, if X ′ is an object
in T such that h′(X ′) = 0, then there exits an object Y ′ such that Z = X ′ ⊕ Y ′

lies in T . Let e : Z → Z be given by e(x, y) = (0, y). Then h(Z) = h′(Y ′) and
therefore h(e) is an isomorphism. By our assumption on h it follows that e is an
isomorphism and hence X ′ = 0. It is clear that h′ is full and realizes all objects of
A . Hence the conditions of Corollary 2 below hold and therefore T → Idem(T ) is
an equivalence of categories. �

Lemma 1. Let h : T → A be a homology theory. Assume h reflects isomorphisms
and is full. Suppose there is given a morphism α : U → V , an object W in T and
a short exact sequence

0 → u
α̂
→ v

β̂
→ w → 0

in A , where as usual u = h(U), v = h(V ), w = h(W ) and α̂ = h(α). Then there
exists a distinguished triangle

U
α
→ V

β
→ W

γ
→ U [1]

such that h(β) = β̂. The dual statement is also true: Suppose there is given a
morphism β : V → W , an object U in T and a short exact sequence

0 → u
α̂
→ v

β̂
→ w → 0

in A , where β̂ = h(β). Then there exists a distinguished triangle

U
α
→ V

β
→ W

γ
→ U [1]

such that h(α) = α̂.

Proof. Take any distinguished triangle containing α,

U
α
→ V

η
→ Z

ǫ
→ U [1].

Apply h to get a short exact sequence

0 → u
α̂
→ v

η̂
→ z → 0.
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Then we get the following commutative diagram

0 // u
α̂

//

Id

��

v
η̂

//

Id

��

z

δ̂

��

// 0

0 // u
α̂

// v
β̂

// w // 0

with δ̂ an isomorphism. By assumption one can realize δ̂ to obtain an isomorphism

δ : Z → W , h(δ) = δ̂. Then we have an isomorphism of triangles

U
α

//

Id

��

V
η

//

Id

��

Z
ǫ

//

δ

��

U [1]

Id

��

U
α

// V
β

// W
γ

// U [1]

where β = δη and γ = ǫ ◦ δ−1. It follows that the triangle

U
α
→ V

β
→ W

γ
→ U [1]

is also a distinguished triangle. Thus the first statement is proved. The dual
argument gives the second result. �

Corollary 2. Let j : T → T ′ be a triangulated functor between triangulated
categories. Assume h′ : T ′ → A is a homological functor satisfying the conditions
i), ii) and iv) of Theorem 1. If the homology functor h = h′ ◦ j : T → A also
satisfies the same conditions then j is an equivalence of categories.

Proof. First observe that the functor j is full and faithful because for any pair of
objects X,Y ∈ T both abelian groups T (X,Y ) and T ′(jX, jY ) are part of the
equivalent extensions of HomA (h(X), h(Y )) by Ext

1
A (h(X)[1], h(Y )). If now X ′ is

an object in T ′ then there is an object X in T and an isomorphism α̂ : h(X) →
h′(X ′) in A . But h(X) = h′(j(X)) and h′ is full so α̂ = h′(α) for a morphism
α : jX → X ′, which is an isomorphism because h′ reflects isomorphisms. �

ACKNOWLEDGEMENTS. The first author was supported by the University
of Bielefeld and C.N.R.S. He also acknowledge discussions with Vincent Franjou,
Bernhard Keller, Claus Michael Ringel and Stefan Schwede.

References

[1] P. Balmer and M. Schlichting. Idempotent completion of triangulated categories. J. of
Algebra, 236 (2001) , 819–834.

[2] H.-J. Baues and G. Wirsching. Cohomology of small categories. J. Pure Appl. Algebra 38
(1985), 187–211.

[3] J.D. Christensen and N. P. Strickland. Phantom maps and homology theories. Topology
37 (1998), no. 2, 339–364.

[4] S. I. Gelfand and Y. I. Manin. Methods of homological algebra. Second edition. Springer
Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xx+372 pp.

[5] T. Pirashvili. Projectives are free for nilpotent algebraic theories. Algebraic K-theory and
its applications (Trieste, 1997), 589–599, World Sci. Publishing, River Edge, NJ, 1999.

[6] D. Puppe. On the structure of stable homotopy theory. Colloquium on algebraic topology.
Aarhus Universitet Matematisk Institut (1962), 65–71.



UNIVERSAL COEFFICIENT THEOREM IN TRIANGULATED CATEGORIES 7

[7] J. L. Verdier. Des Catégories derivées. des catégories abéliennes. Astérisque v. 239 (1996).
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