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Abstract In this paper, we characterize factor congruences
in the quasivariety of BC K -algebras. As an application we
prove that the free algebra over an infinite set of generators
is indecomposable in any subvariety of BC K -algebras. We
also study the decomposability of free algebras in the variety
of hoop residuation algebras (HBCK) and its subvarieties.
We prove that free algebras in a non k-potent subvariety
of HBCK are indecomposable while finitely generated free
algebras in k-potent subvarieties have a unique non-trivial
decomposition into a direct product of two factors, and one
of them is the two-element implication algebra.

Keywords Factor congruences · Implicative filters ·
BC K -algebras · Pocrims · Hoops · Free algebras ·
Decomposability

1 Preliminaries

A BC K -algebra is an algebra A = 〈A,→, 1〉 of type 〈2, 0〉
satisfying the following identities and quasi-identity:

(1) (x → y) → ((y → z) → (x → z)) ≈ 1,

(2) x → 1 ≈ 1,
(3) 1 → x ≈ x ,
(4) if x → y ≈ 1 and y → x ≈ 1, then x ≈ y.
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BC K -algebras were introduced by K. Iséki as algebraic
models of C. A. Meredith’s BC K -calculus, a non-classical
calculus containing implication as the only propositional con-
nective. They form a quasivariety BCK that is not a variety.

The {→, 1}-subreducts of hoops form a subvariety of
BCK, denoted HBCK (Ferreirim 1992, 2001), that can be
defined within the quasivariety BCK by the identity

(x → y) → (x → z) ≈ (y → x) → (y → z).

If A ∈ BCK, A is a partially ordered set by means of a ≤ b if
and only if a → b = 1, for a, b ∈ A. The least upper bound
of a and b, if there exists, will be denoted by a ∨b. Similarly,
a ∧b will denote the greatest lower bound of a and b, in case
it exists.

In this paper, we present a general characterization
of factor congruences in BC K -algebras and use this charac-
terization to determine the direct decomposability or
indecomposability of free algebras for some quasivarieties
of BC K -algebras. It is a continuation of the investigation
initiated in Díaz Varela and Torrens (2003, 2006), and we
cite these two papers for some of the proofs. Nevertheless, in
the varieties of Tarski algebras and Łukasiewicz implication
algebras studied in Díaz Varela and Torrens (2003, 2006),
respectively, the join operation x ∨ y is given by the term
(x → y) → y and if a set {a, b} has lower bounds, there
exists the infimum a ∧ b. Some of the results of Díaz Varela
and Torrens (2003, 2006) strongly rely on these two prop-
erties that do not hold for BC K -algebras in general. This is
the main difference between Díaz Varela and Torrens (2003,
2006) and the present paper.

We summarize some basic properties of the arrow opera-
tion in BC K -algebras in the following lemma.

Lemma 1 (Iséki and Tanaka 1978) In a BC K -algebra A,
for x, y ∈ A,
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(5) x → x ≈ 1,
(6) x → (y → z) ≈ y → (x → z),
(7) (x → y) ≤ (y → z) → (x → z),
(8) if x ≤ y then y → z ≤ x → z,
(9) x ≤ (x → y) → y,

(10) ((x → y) → y) → y = x → y,
(11) y ≤ x → y.

A subset F of a BC K -algebra A is called a filter of A if
1 ∈ F and whenever a ∈ F and a → b ∈ F then b ∈ F .

Every filter of a BC K -algebra is an order filter, that is, if
a ∈ F and a ≤ b then b ∈ F . Since b ≤ a → b for any a, b
in a BC K -algebra A, filters of A are always subuniverses.

Let us write x →0 y =de f y, and for n ≥ 0, x →n+1

y =de f x → (x →n y). If A is a BC K -algebra and X ⊆ A,
then the filter generated by X is the set Fg(X) = {b ∈ A :
there exists n < ω and a1, a2, . . . , an ∈ X : a1 → (a2 →
(. . . (an → b) . . .)) = 1}. In particular, if X = {a} then
Fg(a) = {b ∈ A : there exists n < ω : a →n b = 1}.

Filters of a BC K -algebra form an algebraic lattice,
denoted F(A), and hence pseudocomplemented, with F ∧
G = F ∩ G and F ∨ G = Fg(F ∪ G). For every filter F
of A, let F⊥ = {b ∈ A : (b → a) → a = 1 for all a ∈ F}
and observe that F⊥ = {b ∈ A : b → a = a for all a ∈ F}.
F⊥ is the pseudocomplement of F in F(A) (Radomir Halas
2003). Moreover, F⊥ = {b ∈ A : b ∨ a = 1 for every
a ∈ F} (the join b ∨ a exists and is equal to 1). Indeed, it is
clear that {b ∈ A : b ∨ a = 1 for every a ∈ F} ⊆ F⊥, since
(a → b) → b is an upper bound of {a, b}. Conversely, let
b ∈ F⊥ and a ∈ F . If c is an upper bound of {a, b}, then
c ∈ F ∩ F⊥ = {1}. Thus c = 1. Then b ∨ a = 1.

Given a filter F of a BC K -algebra A, the binary relation
θF = {(a, b) ∈ A × A : a → b, b → a ∈ F} is not
only a congruence on A but also A/θF is a BC K -algebra
(relative congruence). Conversely, given any congruence θ

on A, the set 1/θ = {a ∈ A : (a, 1) ∈ θ} is a filter of A.
There is an order-isomorphism between F(A) and the set of
congruences θ on A such that A/θ is a BC K -algebra (Blok
and Raftery 1995, Proposition 1; Cornish 1982, p. 108). A
class K of BC K -algebras is called a relative subvariety of
BCK if there exists a variety V such that K = V ∩ BCK.

An important subclass of the variety HBCK is the class
of {→, 1}-subreducts of Wajsberg hoops (and therefore of
MV -algebras). We will refer to these algebras as Łukasiewicz
BC K -algebras (called Łukasiewicz implication algebras in
Díaz Varela and Torrens (2006) and Łukasiewicz residua-
tion algebras in Berman and Blok 2004). They form a vari-
ety that is characterized relative to HBCK by the equation
(x → y) → y ≈ (y → x) → x . This variety will
be denoted by L- . The subdirectly irreducible algebras in
L- are linearly ordered, and the finite ones are the algebras
Łn = 〈{e0, e, . . . , en},→, 1〉, where 1 = e0 > e > e2 >

· · · > en , and

ei → e j =
{

1 if i ≥ j,

e j−i otherwise.

The variety L- is generated by the algebra Cω whose uni-
verse is the set {(0, y) : y ∈ N} ∪ {(1,−y) : y ∈ N}, where
N is the set of non-negative integers, and

(x, y) → (z, u) =

⎧⎪⎨
⎪⎩

(1, 0) if z > x,

(1, min(0, u − y)) if z = x,

(1 − x + z, u − y) otherwise.

Cω is the {→, 1}-reduct of the Chang’s algebra (see Chang
1958, p. 474).

The set Łω = {(1,−y) : y ∈ N} is the unique maximal
filter of Cω, with Cω/Łω

∼= Ł1. Its associated subalgebra Łω

is not finitely generated, and any infinite subalgebra of Łω is
isomorphic to a copy of it. Moreover, every non-trivial finite
subalgebra of Łω is isomorphic to Łn , for some n > 0. In
addition, Cω is generated by {(0, 1), (0, 0)}, and for each n,
Łn is generated by {en, ed}, with (d, n) = 1. Every finitely
generated subalgebra of Łω is isomorphic to Łn, for some
n > 0. In particular, Łn is a subalgebra of Łm for all n ≤ m,

and every infinite L- -chain contains a copy of Łn for all n ≥ 0
(see Komori 1978). Finally, it is easy to see that any simple
algebra in L- is isomorphic to Łα for some α ∈ ω ∪ {ω} (see
again Komori 1978).

We say that a BC K -algebra is k-potent, 0 < k < ω, if it
satisfies the identity

(εk) x →k y = x →k+1 y.

The class of k-potent algebras forms a relative subvariety of
BCK that is a variety. In particular, the variety of idempo-
tent BC K -algebras is the variety of Hilbert algebras Diego
(1965). We have that Łn is k-potent if and only if n ≤ k. If
A is k-potent, then Fg(a) = {b ∈ A : a →k b = 1}.

An especially important result to the present paper con-
cerns the structure of the subdirectly irreducible algebras in
HBCK (Blok and Ferreirim 2000). Given two BC K -algebras
A and B such that A ∩ B = {1}, let A ⊕ B be the algebra
〈A ∪ B,→, 1〉, where 1 = 1A = 1B , and

x → y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x →A y if x, y ∈ A,

x →B y if x, y ∈ B,

y if x ∈ B, y ∈ A,

1 if x ∈ A, x �= 1, y ∈ B.

A ⊕ B is a BC K -algebra, and it is k-potent if and only if
both A and B are. The following theorem characterizes the
subdirectly irreducible members of the variety HBCK (Blok
and Ferreirim 2000; Ferreirim 1992):
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Theorem 2 An algebra A ∈ HBCK is subdirectly irre-
ducible if and only if A = B ⊕ C, where B ∈ HBCK and
C is a subdirectly irreducible algebra in L- .

Corollary 3 A k-potent algebra A ∈ HBCK is subdirectly
irreducible if and only if A = B ⊕Łn, where B is a k-potent
algebra in HBCK and 1 ≤ n ≤ k.

2 Factor congruences

In this section we provide a characterization of factor con-
gruences (factor filters) for any algebra A in BCK.

Recall that a complemented congruence relation θ on an
algebra A with complement θ ′ is called a factor congru-
ence if it permutes with θ ′; {θ, θ ′} is called a pair of factor
congruences. If {θ, θ ′} is a pair of factor congruences on A,
then A ∼= A/θ × A/θ ′ (Burris and Sankappanavar 1981).
An algebra A is directly indecomposable if and only if the
only pair of factor congruences of A is the trivial {�,∇}. A
congruence relation θ is a factor congruence if and only if
θ ◦ θ ′ = ∇, where θ ′ denotes the pseudocomplement of θ in
the algebraic lattice of congruence relations on A.

We say that {F, F⊥} is a pair os factor filters if and only if
the associated congruences θF and θF⊥ form a pair of factor
congruences.

Observe that if F1 and F2 are filters of A such that
A ∼= A/F1 × A/F2 then {F1, F2} is a pair of factor filters of
A, and α : A → A/F1 × A/F2, α(a) = (a/F1, a/F2) is an
isomorphism. It is easy to see that, in this case, F1 ∼= α(F1) ∼=
{1} × A/F2 ∼= A/F2 and F2 ∼= α(F2) ∼= A/F1 × {1} ∼=
A/F1.

The next theorem characterizes pairs of factor filters in a
BC K -algebra A. It is quite similar to Díaz Varela and Torrens
(2003, Lemma 2) and Díaz Varela and Torrens (2006, Lemma
4), the only difference being item (2)(i). The proof is also
different. It is not difficult to see that this characterization
can be extended to the class of all pocrims.

Theorem 4 Let F be a filter of an algebra A in BC K . Then
the following conditions are equivalent:

(1) {F, F⊥} is a pair of factor filters of A.
(2) (i) A/F ∼= F⊥, A/F⊥ ∼= F,

(ii) For every a ∈ A there are unique ca ∈ F and
ba ∈ F⊥ such that a = ca ∧ ba,

(iii) For every c ∈ F and b ∈ F⊥ there is a ∈ A such
that c ∧ b = a.

Proof (1) ⇒ (2). (i) is a consequence of the observation
preceding this theorem.

In order to prove (ii), observe that A ∼= A/F × A/F⊥ ∼=
F⊥ × F, and so for each a ∈ A there exists a unique

ba ∈ F⊥ and a unique ca ∈ F such that a/F = ba/F and
a/F⊥ = ca/F⊥. Thus every a ∈ A can be represented in a
unique way as j (a) = (ba, ca) in F⊥×F, with a/F = ba/F
and a/F⊥ = ca/F⊥. In particular, j (ba) = (ba, 1) and
j (ca) = (1, ca). Let us see that a = ba ∧ ca . Since j (a) ≤
j (ba), j (ca) and j is an isomorphism, we have that a ≤ ba,

ca . Suppose that g ≤ ba, ca . Then j (g) = (bg, cg) ≤
(ba, 1) = j (ba) and j (g) = (bg, cg) ≤ (1, ca) = j (ca),

thus bg ≤ ba and cg ≤ ca . So j (g) = (bg, cg) ≤ (ba, ca) =
j (a). Therefore g ≤ a and consequently a = ba ∧ ca .

For (iii), if b ∈ F⊥ and c ∈ F , j (b) ∧ j (c) = (b, 1) ∧
(1, c) = (b, c) ∈ F⊥× F . If a = j−1((b, c)) then a = b∧c.
(2) ⇒ (1). As F ∩ F⊥ = {1}, A ↪→ A/F × A/F⊥, where
a �→ (a/F, a/F⊥) is an injective homomorphism. By (i)
the mapping j : A → F⊥ × F, j (a) = (ba, ca) where ba

(ca) is the unique element in F⊥ (F) such that a/F = ba/F
(a/F⊥ = ca/F⊥) is an injective homomorphism. Let us see
that j is onto. For (b, c) ∈ F⊥ × F, by (iii), let a = b ∧ c.
Let j (a) = ( f, g), f ∈ F⊥, g ∈ F . Then j (a) = ( f, g) ≤
( f, 1) = j ( f ) and j (a) = ( f, g) ≤ (1, g) = j (g). Hence
a ≤ f, g and so a ≤ f ∧ g. On the other hand, a ≤ b, c, and
j (a) = ( f, g) ≤ j (b) = (b, 1) and j (a) = ( f, g) ≤ j (c) =
(1, c), then f ≤ b and g ≤ c. Therefore a ≤ f ∧ g ≤
b ∧ c = a, and, by the uniqueness, f = b, g = c. Thus
j (a) = (b, c). ��

Observe that if {F, F⊥} is a pair of factor filters of a BC K -
algebra A and a, ca and ba are as in Theorem 4, then it is
easy to see that a is minimal in A if and only if ca is minimal
in F and ba is minimal in F⊥.

3 Decomposability in free algebras

As an application of the characterization of pairs of factor
filters in a BC K -algebra, we study now the direct decom-
posability of free algebras in subquasivarieties of BCK.

For X a set of variables, let T (X) = 〈T (X),→, 1〉 denote
the set of all terms built in the usual recursive way from the
variables in X using the operation symbols → and 1. Let
FQ(X) denote the free algebra generated by X in a subqua-
sivariety Q of BCK. The elements of FQ(X) can be repre-

sented as s = s FQ(X)(x1, . . . , xn), and for s, t ∈ T (X) we
have s = t if and only if Q |� s ≈ t .

It follows from Blok and Raftery (1995), Fact 0, and
an argument similar to the one in Díaz Varela and Torrens
(2006) that if Q is a subquasivariety of BCK, then FV (X) =⋃

x∈X [x), where [x) denotes the set of elements s such that
x ≤ s.

In what follows we drop the bar in the elements of the free
algebra of the quasivariety Q and consequently we simply
write FQ(X) for the free algebra and s(x1, . . . , xn) for an
element in FQ(X).
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The proofs of the following lemma and theorem are easily
obtained from the proofs of similar results in Díaz Varela and
Torrens (2006).

Lemma 5 Let Q be a nontrivial subquasivariety of BCK. If
X is infinite, then the unique upper bound of X in FQ(X)

is 1.

Theorem 6 (Díaz Varela and Torrens 2006, Theorem 8) If
F is a factor filter of FQ(X), then there exists α ∈ FQ(X)

such that x ≤ α for every x ∈ X, and either F = [α) or
F⊥ = [α).

Observe that the element α of Theorem 6 satisfies the
property α ∨ (α → x) = 1 for every x ∈ X . Indeed, we
can write x = (β, α) , β ∈ F⊥ and so α → x = (1, α) →
(β, α) = (1 → β, 1) = (β, 1) = β ∈ F⊥. Thus α ∨ (α →
x) = 1. Therefore α ∨ (α → b) = 1 for every b ∈ FQ(X).

As a consequence of Lemma 5 and Theorem 6 the follow-
ing theorem is immediate.

Theorem 7 If Q is any subquasivariety of BCK and X is
infinite, then FQ(X) is directly indecomposable.

In what follows we determine the decomposability of free
algebras in every subvariety V of HBCK.

Consider a minimal subdirect representation FV (X) ↪→∏
i∈I Ai , where Ai is subdirectly irreducible for all i . For any

i ∈ I , if πi is the projection homomorphism from
∏

i∈I Ai

onto Ai , then the algebra πi (FV (X)) = Ai is generated by
πi (X). It is easy to see that there exists one, and only one,
i0 ∈ I such that Ai0 = Ł1, and πi0(x) = 0 for every x ∈ X .
For the sake of simplicity we will take i0 = 0.

Lemma 8 Let V be a subvariety of HBCK and F = [α)

a factor filter of FV (X). Let A be a subdirectly irreducible
algebra in V and f : FV (X) → A an onto homomorphism.
Then either f (α) = 1 or f (α) = 0. In the latter case A = Ł1

and f (x) = 0 for every x ∈ X (that is, f = π0).

Proof Suppose that f (α) �= 1. Since A is subdirectly irre-
ducible, A = B ⊕ C for some C ∈ L- , with |C | ≥ 2, C
subdirectly irreducible (so C is an L- -chain).

From x ≤ α for all x ∈ X , f (x) ≤ f (α) for all x ∈ X ,
and then f (α) ∈ C .

Let us see that from α ∨ (α → x) = 1 for all x ∈ X we
have f (α) ∨ ( f (α) → f (x)) = 1. Indeed, α ∨ (α → x) ≤
((α → x) → α) → α for all x ∈ X , and so ((α → x) →
α) → α = 1. If it were the case that f (α → x) ≤ f (α) then
f (α → x) → f (α) = 1 and f ((α → x) → α) = 1.
Thus f ((α → x) → α) → f (α) = f (α), and hence
1 = f (((α → x) → α) → α) = f (α) �= 1, a
contradiction.

So f (α → x) �≤ f (α); since f (α) ∈ C it follows that
f (α) → f (x) = f (α → x) ∈ C (otherwise f (α → x) ∈

B\{1}, whose elements are below all elements of C).
Consequently, f (x) ∈ C for every x ∈ X . Thus A = C ∈ L- .
But in C the supremum exists and is given by a ∨ b = (a →
b) → b. So f (α)∨ ( f (α) → f (x)) = (( f (α) → f (x)) →
f (α)) → f (α) = f (((α → x) → α) → α) = f (1) = 1.

Since 1 is join irreducible in A, we have f (α) → f (x)= 1,
that is f (α) ≤ f (x) for every x ∈ X . On the other hand
f (x) ≤ f (α), and then f (x) = f (α) for every x ∈ X .
Thus f (X) is a singleton and consequently A = Ł1 and
f (α) = f (x) = 0. ��
Corollary 9 If F = [α) is a factor filter of FV (X), then α

is a coatom of FV (X).

Lemma 10 Let α ∈ FV (X), α �= 1, be such that [α) =
{α, 1}, and for every x ∈ X, x ≤ α and α ∨ (α → x) = 1.
Then

(a) π0(α) = 0 and πi (α) = 1 for i �= 0.
(a) For every y ∈ FV (X), the equivalence class of y in

FV (X)/[α) is y/[α) = {y, α → y}.
(a) [α)⊥ = {α → y : y ≤ α}, FV (X)/[α) ∼= [α)⊥ and

FV (X)/[α)⊥ ∼= [α).

Proof (a) can be proved as in Lemma 8.
For (b), observe that a � α if and only if α → a = a.

Indeed, (α → a) → a is an upper bound of both a and α, so
(α → a) → a ∈ {α, 1}. But a � α, so (α → a) → a = 1,
and thus α → a = a. Conversely, if a ≤ α and α → a = a
then α ∨ (α → a) = α ∨ a �= 1, a contradiction.

Now, if y/[α) = z/[α) and y � z, then either (y � α

and z ≤ α) or (y ≤ α and z � α). Indeed, if y, z � α then
y → z, z → y � α. But y → z, z → y ∈ [α) = {α, 1}. So
y → z = 1 and z → y = 1, that is, y = z, a contradiction.
Similarly, if we suppose that y, z ≤ α, since y → z ≥ α

and z → y ≥ α, it follows that πi (y) = πi (z) for every
i , so y = z, again a contradiction. As a consequence, each
equivalence class has at most two elements.

Thus, if y ≤ α, π0(y) ≤ π0(α) = 0 and then π0(α →
y) = 1. Then y �= α → y and y/[α) = {y, α → y}.

(c) is an immediate consequence of (b). ��
Theorem 11 Let α ∈ FV (X), α �= 1, be such that [α) =
{α, 1}, and for every x ∈ X, x ≤ α and α ∨ (α → x) = 1.
Then {[α), [α)⊥} is a pair of factor filters.

Proof X is finite since otherwise α = 1.
Let us prove condition (2) of Theorem 4. Condition (2)(i)

follows from Lemma 10 (c).
In order to prove condition (2)(ii), observe that π0(α →

y) = π0(α) → π0(y) = 1, and for i �= 0, πi (α → y) =
πi (α) → πi (y) = 1 → πi (y) = πi (y). So πi (α → y) =
πi (y) for every i ∈ I if and only if π0(y) = 1, that is,
y ∈ [α)⊥ if and only if π0(y) = 1. In addition, π0(y) = 1 is
equivalent to y � α. So y ∈ [α)⊥ if and only if y � α.
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Now, if y � α, y ∈ [α)⊥ then y = 1 ∧ y, 1 ∈ [α) and
y ∈ [α)⊥.

Suppose that y ≤ α and let us prove that y is the greatest
lower bound of α and α → y. Consider c such that c ≤ α

and c ≤ α → y. Then π0(c) = π0(y) = π0(α) = 0, and, for
i �= 0, πi (c) ≤ πi (α → y) = πi (y). So πi (c) ≤ πi (y) for
every i ∈ I . Thus c ≤ y and consequently y = α∧(α → y).

Uniqueness is immediate.
For condition (2)(iii), we want to prove that for z ∈ [α)⊥,

α ∧ z exists. But from Lemma 10 (c), z = α → y for some
y ≤ α. Then, by the previous condition, (α → y) ∧ α = y,
so α ∧ z exists in FV (X). ��

In the next theorem we prove that if V is a subvariety of
HBCK and V is not k-potent for any k ∈ N, then V contains
the subvariety L- of Łukasiewicz BC K -algebras.

Observe first that if A = B⊕C is a subdirectly irreducible
algebra in HBCK generated by a 2-element set {g1, g2} ⊆ A,
then {g1, g2} ∩ C �= ∅. Suppose that {g1, g2} ∩ C = {g1}.
Then B ∼= C ∼= 2, the 2-element BC K -algebra, and A =
2⊕2, which is the 3-element Hilbert chain (and consequently,
idempotent). If {g1, g2} ⊆ C , then A ∼= C and then A is a
Łukasiewicz BC K -chain.

Let L- n be the subvariety generated by Łn .

Theorem 12 Let V be a subvariety of HBCK. If V is not
k-potent for any k ∈ N, then L- ⊆ V .

Proof Suppose that V is a subvariety of HBCK that is not
k0-potent for some k0 ∈ N. Since (εk) is an identity in two
variables, the 2-generated free algebra FV (2) is not k0-potent.
Then there exists a 2-generated subdirectly irreducible alge-
bra A ∈ V that is not k0-potent. By the observation preceding
this theorem, A is a Łukasiewicz BC K -chain. If A is infinite,
then V (A) = L- , and hence L- ⊆ V . If A is finite, A ∼= Łs ,
with s ≥ k0 + 1, that is, L- s ⊆ V , with s ≥ k0 + 1.

Suppose now that V is not k-potent for any k ∈ N. Then
L- n ⊆ V for every n ∈ N. Therefore V (Łn : n ∈ N)= L- ⊆ V .

��
Theorem 13 If V is a subvariety of HBCK and V is not
k-potent for any k ∈ N, then FV (X) is indecomposable.

Proof The case |X | = 1 is trivial since then FV (X) ∼= Ł1.
Suppose that |X | > 1 and suppose that FV (X) is decom-
posable. Then there exists α satisfying the conditions of
Theorem 6. By Lemma 8, if f is a homomorphism from
FV (X) onto a subdirectly irreducible algebra A in V , then
f (α) = 0 if and only if A ∼= Ł1 and f (α) = 1 other-
wise. Consider the homomorphism g : FV (X) → Cω such
that for a fixed x0 ∈ X , g(x0) = (0, 1) and g(X \ {x0}) =
{(0, 0)}. Since {(0, 1), (0, 0)} generates Cω, g is onto and
g(α) = (1, 0). Consider π : Cω → Cω/Łω

∼= Ł1. Then
π ◦ g : FV (X) → Ł1 is onto and (π ◦ g)(X) = 0 and
(π ◦ g)(α) = 1, a contradiction. ��

Consider now the term J (x, y) = (((x → y) → y) →
x) → x introduced by Cornish (1981). We define recur-
sively for l ≥ 1 the terms Jl(x1, x2, . . . , xl) by J1(x1) =
x1, J2(x1, x2) = J (x1, x2), and Jl+1(x1, x2, . . . , xl+1) =
J (Jl(x1, x2, . . . , xl), xl+1) (Berman and Blok 2004).

As a consequence of the proof of Berman and Blok (2004,
Theorem 2.5) it follows that for a1, a2, . . . , al in an algebra A
in HBCK, Jl(a1, a2, . . . , al) = Jl(aσ(1), aσ(2), . . . , aσ(l)),
for every bijection σ of the set {1, 2, . . . , l}. Then for a finite
set S = {s1, . . . , sn} we write J (S) = Jn(s1, . . . , sn).

Theorem 14 Let Vk is a k-potent subvariety of HBCK. If
X is a finite set of variables with at least two elements, then
FVk (X)has a unique non-trivial pair of factor filters {F, F⊥}
given by

F = {1, α = J ({(x → y)k−1 → x, x, y ∈ X})}.
Proof Let us see that π0(α) = 0 and πi (α) = 1 for i �= 0.
Indeed, for i = 0, π0 : FVk (X) → Ł1 (Ł1 = {e0 =
1, e = 0}) and πi (x) = 0 for every x ∈ X . So (π0(x) →
π0(y))k−1 → π0(x) = 0 for every x, y ∈ X , so π0(α) = 0.
For i > 0, πi : FVk (X) → Ai , where Ai = Bi ⊕ Ci ,
and Ci = Łn , with n ≤ k. Now, πi (X) generates Ai . Then,
for n = 1 there exists x ∈ X such that πi (x) = e. Thus
(πi (x) → πi (y))k−1 → πi (x) = 1, and consequently
πi (α) = 1. If n > 1, there exist x, y ∈ X , x �= y, such that
πi (x) = ed and πi (y) = en , with (d, n) = 1. Then (πi (x) →
πi (y))k−1 → πi (x) = 1 and consequently πi (α) = 1.

Then it is easy to check that α satisfies the conditions of
Theorem 11. ��
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