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a b s t r a c t

Investigation of the time variant scaling behavior of six monthly rainfall series recorded
in central Argentina from 1860 to 2006 by using detrending fluctuation analysis (DFA)
was performed. Changes in precipitation extremes are analyzed for several regions of
Argentina using long-term monthly rainfall data (back to 1860) recorded by rain gauges
extended formore than 10 latitude-degrees, from subtropical regions until 39◦ S. Amoving
window was employed in order to analyze statistical changes. Three different types of
time patterns can be distinguished: (i) eastern stations show visible crossovers between
persistent and random behavior; (ii) north-western stations are characterized by random
behavior approximately at any time anddonot present visible crossovers betweendifferent
types of scaling behaviors; (iii) one station (i.e. Corrientes) shows a peculiar pattern, since
it is characterized by several crossovers from persistent to random behavior, indicating a
more fluctuating time dynamics without a well defined trend. The obtained results can
be interpreted in the context of the climatological conditions of Central Argentina, which
is characterized by the continental heat low in the northwest region, by the subtropical
rainforest in the eastern provinces and by a transition zone (from maritime to continental
regime) fluctuating with the South Atlantic high-pressure cell.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Themost interestingmeteorological variable within the study of climatic change at a world scale is temperature because
it responds directly to global warming and precipitation [1]. The IPCC Working Group I defines [2] as climate change a
variation in the mean state of climate or its variability with statistical significance that persists for an extended period
(typically decades or longer). This climatic change can be caused by natural internal processes or external forcing or by
persistent anthropogenic changes in the composition of the atmosphere or land use.

A strong positive trend in precipitations during the second half of the 20th century characterized the central zone of
Argentina. Considerable climate variability has been reported in this region at various temporal scales, from a decadal-
scale enhancement of spring/summer precipitation [3] to inter-annual variability associated with the El Niño–Southern
Oscillation (ENSO) phenomenon [4–6]. Other studies related to extreme monthly precipitations in the Pampean Region,
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restricted only to events under no-ENSO conditions [7], yielded interesting results over the anomalous large-scale circulation
patterns associated particularly with the dry season rainfall extremes (May to September).

One of themost prominent aspects is the increasing trend of precipitation and intense storm frequency [8]. Coastal zones
are affected because of the increase in the anticyclone frequency and augmented erosion. Although this process has been
occurring for a long time, it has been intensified in the recent years because of the sea level increase, the increment of wave
force and inadequate land use near the coast [9].

Another important factor is the intense precipitation taking place even with greater intensity in the central and coastal
regions. In fact, between March and April 2003, Argentina faced the worst climate catastrophes in the 21th century in the
Santa Fe province [10]. The catastrophe took a toll of 130,000 victims, 30 deaths, 28,000 dwellings destroyed and damages
of more than US$ 1500 million. In that event, climatic change impacts, such as the greatest precipitation rates, and the loss
of forests and bushes throughout all the Northeast region converged.

Following the report Secretaría de Ambiente y Desarrollo Sustentable de la Nación Argentina (2007), since 1999
deforestation in several provinces has allowed the expansion of soy cultivation in more than 2,000,000 hectares. It is
estimated that in the Chaco region, one of the most affected, 4,300,000 hectares will have been deforested by the year
2010 if these practice are continued.

Since the abovementioned zones are affected by the changing climatic conditions, it was deemed necessary to establish the
measure of the experimental change values in precipitation extremes.

This work aims at detecting whether there are modifications in the variability of monthly precipitation within a
retrospective context for central Argentina. Because of the irregular rainfall regime it is necessary to focus the analysis
on the study of precipitation variability for the most extended period of available instrumental records. The analysis will
be performed by means of detrended fluctuation analysis (DFA), which is a powerful tool to investigate the dynamics of
signals, even affected by trends and nonstationarities. The DFA allows us to detect scaling in observational data, and, thus,
the presence of correlated structures in their time variability. The knowledge of the time structure of an observational
series is crucial for the general understanding of the inner governing mechanisms, which could be positive feedback for
persistent series or negative feedback for antipersistent series [11]. Kurnaz [12] applied the DFA to investigate the power
lawbehavior of themonthly averages of themaximumdaily temperatures in different sites in theUS, distinguishing different
geographical regions with different power law exponents and finding different climatic zones. Suteanu [13] analyzed the
daily temperatures recorded in stations from Atlantic Canada over a time interval of more than 100 years, finding stronger
persistence for oceanic than for coastal locations, and increase of the scaling exponents with the decrease of the difference
between average minimum and maximum temperature, which could be relevant for future climate variability.

2. The detrended fluctuation analysis

Persistent temporal fluctuations in signal variability correspond to the 1/f β-power spectrum, where f is the frequency
and the scaling exponent β > 0. Generally, by using a least square method to fit the spectrum plotted on log–log scales and
estimate the scaling coefficient, we are able to obtain quantitative information on the strength of persistent correlations
of the signal and to gain insight into the kind of mechanisms that may be responsible of its generation. The strength of
these correlations provides useful information about the inherentmemory of the system [14–17]. The detrended fluctuation
analysis (DFA) [18] avoids spurious detection of correlations that are artifacts of trends and nonstationarity that often affects
experimental data. Such trends have to be well distinguished from the intrinsic fluctuations of the system in order to find
the correct scaling behavior of the fluctuations. The DFA method was shown to be able to quantify scaling in noisy signals
for a wide range of correlations; revealing that there is a competition between a trend and a noise, and that this competition
can lead to crossovers in the scaling, which can be explained by the superposition of the separate results of the DFAmethod
on the noise and on the trend, assuming that the noise and the trend are not correlated, and that the scaling properties
of the noise and the apparent scaling behavior of the trend are known [19]. Studies on the effects of different types of
nonstationarities often encountered in real data (gaps, spikes and outliers, different standard deviations or correlation
properties within the same signal) showed the appearance of crossovers in the scaling behavior [20].

The DFA method works as follows. In order to analyze the rainfall time series, we briefly present an introduction to the
DFA, which is constituted by the following steps:

(1) Consider the signal x(i), where i = 1, . . . ,N , and N is the total number of samples. We integrate the signal x(i) and
obtain

y(k) =

k−
i=1

x(i) − ⟨x⟩, (1)

where ⟨x⟩ is the mean value of x.
(2) The integrated signal y(k) is divided into boxes of equal length n.
(3) For each n-size box, we fit y(k), using a polynomial yn(k), which represents the trend in that box.
(4) The integrated signal y(k) is detrended by subtracting the local trend yn(k) in each box of length n.
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Fig. 1. Map of the rainfall stations and annual mean rainfall.

(5) For a given n-size box, the root-mean-square fluctuation, F(n), for this integrated and detrended signal is given by

F(n) =

 1
N

N−
k=1

[y(k) − yn(k)]2. (2)

(6) The above procedure is repeated for all the available scales (n-size box) to furnish a relationship between F(n) and the
box size n, which for long-range power-law correlated signals is a power-law

F(n) ∼ nα. (3)

(7) The scaling exponent α quantifies the strength of the long-range power-law correlations of the signal: if α = 0.5, the
signal is uncorrelated; if α > 0.5 the correlations of the signal are persistent, where persistence means that a large
(small) value (compared to the average) is more likely to be followed by a large (small) value; if α < 0.5 the correlations
of the signal are antipersistent, which indicates that a large (small) value (compared to the average) is more likely to
be followed by a small (large) value. The DFA exponent α and the spectral exponent β are related to each other by
α = (1 + β)/2 [21].

3. Data analysis

Rainfall data were obtained from the archives of the National Weather Service (Servicio Meteorologico Nacional) and the
National Institute of Agricultural Technology (INTA: Instituto Nacional de Tecnologia Agropecuaria). The time series were
chosen for their record length and reliability of observations, and were checked for missing data before performing the
analysis. Only Tucuman and Corrientes presented missing data, which were filled by using a regression method [22]. In
particular Tucuman datawere comparedwith Famailla data (from INTA), 35 km apart; while Corrientes datawere compared
with the data of two close stations (Resistencia and Goya, at about 22 km). However, the amount of missing data is less than
5% of the record length. The monthly rainfall series recorded in central Argentina were: (1) Buenos Aires (BUE) spanning
from 1861 to 2006, (2) Bahia Blanca (BHI) spanning from 1860 to 2006, (3) Cordoba (CDB) spanning from 1873 to 2006,
(4) Corrientes (COR) spanning from 1876 to 2006, (5) Mar del Plata (MDP) spanning from 1888 to 2006 and (6) Tucuman
(TUC) spanning from1880 to 2006. Fig. 1 shows themean annual rainfall distribution for the base period 1961–1990 together
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Fig. 2. Rainfall data after removing the seasonal periodicities.

with the geographical location of the rainfall stations, according to the climatic regions of Argentina [23]. Fig. 2 shows the
time variation of the rainfall data after removing the seasonal periodicities. The seasonal periodicities were removed by
means of a Fourier filtering. TheDFAwas performed also on themagnitude time series. Similar investigationwere performed
on air temperature time series by Podobnik et al. [24]. Fig. 3 shows the results of theDFAperformed on the rainfall time series
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Fig. 3. DFA results for the rainfall time series and their magnitudes.

and their magnitudes. Four stations (BUE, BHI, MDP and COR) show almost similar scaling between the original times series
and their magnitudes; but TUC and CDB reveal striking differences in the scaling of themagnitude of the rainfall time series.
In particular two scaling regimes are visible with a crossover at about 1 year. The power-law correlations are persistent
below this crossover, and antipersistent for timescales larger than 1 year. For TUC and CDB this indicates that on timescales
shorter than 1 year, an increase (decrease) of rainfall is followed predominantly by an increase (decrease) of the rainfall;
whereas on timescales longer than 1 year an increase (decrease) of rainfall is very likely followed by a decrease (increase) of
rainfall.
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Fig. 4. Probability density functions and skewness of the rainfall time series. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Following Podobnik et al. [25], an analysis of the level of asymmetry was performed on the rainfall time series. Fig. 4
shows the probability distributions of the six monthly rainfall data. It is clearly visible that TUC and CDB are characterized
by the presence of the highest peak approximately centered on zero. Although the skewness of all the stations is positive,
indicating a right-skew shape of the probability density function, with a relative predominance of values higher than the
sample mean, COR has a skewness significantly lower than those of the other stations.

In order to evaluate the cross-correlation between any rainfall serieswe applied theDetrended Cross-Correlationmethod
(DCCA), which is developed similarly to the DFA. Podobnik et al. [26] used the DCCA to study the effect of periodic trends on
systemswith power-law cross-correlations. If the two series are cross-correlated the detrended covariance FDCCA scaleswith
the scale n, FDCCA ≈ nγ , where γ is approximately the average between the scaling exponents of the two series. Generally,
if the detrended covariance oscillates around zero, there are no power-law cross-correlations with an unique exponent, but
either no cross-correlations or only short range cross-correlations exist between the two series [27–29]. The results of the
DCCA reveal that the cross-correlation between two rainfall time series is not characterized by a single power-law behavior,
but is more complex, showing the co-existence of more than scaling regime in some cases (see Fig. 5a, as an example) or a
‘‘perturbed’’ single scaling behavior (see Fig. 5b, as an example). These results indicate that the cross-correlation relationship
between two rainfall time series are not simply of power-law type.

The evaluation of the time variation of the scaling behavior of rainfall data was carried out using a time window shifting
through the series. Each time window selects a subseries of the rainfall data, the DFA was applied to this subseries and,
then, the scaling exponent estimated. The scaling exponent was estimated on the timescale range between 4 months and
Nw/4, where Nw is the length of the time window. Fig. 6 shows the time variation of the scaling exponent α, calculated
on a shifting time window of 40 years with a shift of 1 year. Each value was associated with the time of the first rainfall
datum in the window. The range of variation of α is quite small, between approximately 0.45 and 0.8 for BUE, but smaller
for the other time series. Therefore, in order to evaluate the significance of the obtained values with respect to random
behavior, in each plot of Fig. 6 the 5% and 95% confidence curves are also shown. The calculation of the confidence curves
proceeded in the followingmanner. In eachwindow, one thousand shuffles of the selected rainfall subserieswere generated.
Shuffling destroys as much of the original dynamical structure (i.e. correlations) in a time series as possible, thus making
the subseries realizations of white noise characterized by a scaling exponent close to 0.5. Then the DFA was performed
on each shuffle of the subseries and the scaling exponent of the shuffle was calculated. The range of scaling values that
contain 5% and the 95% of the scaling coefficients of the shuffles for a given time window are respectively the 5% and the
95% confidence curves. Therefore if the scaling exponent of the original subseries (selected by the shifting time window) is
higher than the corresponding 95% confidence value, this indicates a significant persistent character of the subseries; if the
scaling exponent of the original subseries is lower than the corresponding 5% confidence value, this indicates a significant
antipersistent character of the subseries; while if the scaling exponent is within the region delimited by both the confidence
curves, then the scaling exponent is not significantly different from that obtained by the random shuffling and thus indicates
a random, uncorrelated, white-noise-type behavior.

Three different types of time patterns can be distinguished: (1) TUC and CDB are characterized by random behavior
approximately at any time and do not present visible crossovers between different types of scaling behaviors; (2) BUE, BHI
and MDP show visible crossovers between persistent and random behaviors. In particular BUE shows a crossover around
1914, BHI at about 1882 and 1917 andMDP at around 1900. It is quite striking that almost concomitantly BUE and BHI change
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Fig. 5. Examples of the DCCA applied to the rainfall time series.

their dynamics from a persistent to a random behavior. It is also interesting that all three time series are characterized by
persistent temporal fluctuations in the early years of measurements (up to 1900–1917), while later their behavior is almost
stable characterized by randomness; (3) COR shows a different pattern, because it is characterized by several crossovers,
indicating a more changing time dynamics without a well defined trend.

In order to check if the obtained results could be influenced by the choice of the length of the shifting time window,
similar analysis was performed using 30-year-long and 50-year-long time windows. The results, shown in Fig. 7, indicate
that there is no dependence on the length of the time window.

4. Conclusions

We studied the time variation of the scaling behavior of rainfall monthly data of six sites in Argentina. The results were
checked against the randomness and the dependence on the length of the time window. The typical behaviors shown by all
the rainfall time series is persistent and/or purely random. Antipersistence does not feature in any of the analysed series.
We found that there exist different scaling patterns, which characterize the eastern (Buenos Aires, Bahia Blanca andMar del
Plata) and the north-western stations (Tucuman and Cordoba), showing twofold and single trends respectively; the scaling
behavior of the eastern stations changes between persistence and randomnesswith visible time crossovers, while the north-
western stations are almost permanently in a random regime. Corrientes data are, instead, featured by a peculiar pattern,
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Fig. 6. Time variation of DFA scaling exponent α for the six rainfall data, shown in Fig. 2, using a 40-year long time window and shift of 1 year.

well distinct from the previous ones, since they are characterized by amore fluctuating behavior, indicating amore unstable
regime.

Such results can be interpreted, taking into account of the climatological conditions of the Central Argentina,which iswell
defined by the influence of the Atlantic Ocean. The distance from this source of water vapor defines precipitation regimes
of the region. Besides, the continental thermal low located between 20° S and 30° S, over the relative high and dry terrain
east of the Andes produces orographic rainfall over the eastern slopes of the ‘‘sierras’’ in Tucuman and extends its effect
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Fig. 7. Comparison of the α-curves for the six rainfall data shown in Fig. 2, using 30-, 40- and 50-year-long time windows. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

further south toward Cordoba [30]. The increase of rainfall to the East exhibits a maritime character and defines a rainforest
regime that affects the Mesopotamia provinces, in which Corrientes is located [30]. Mar del Plata, Buenos Aires and Bahia
Blanca are located in a transition zone, which lies between humid (maritime) and dry (continental) subtropical regions [31],
characterized by a very rapid decrease of vapor pressure from the coast in the direction of the pampas, East to West.
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The obtained results indicates how the scaling behavior of the rainfall time series is a good indicator of the climatology
of an investigated area and can contribute in deepening the understanding of the complex climatological interactions.
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