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Covering functors without groups

José A. de la Peña and Maŕıa Julia Redondo ∗

Abstract

Coverings in the representation theory of algebras were introduced for the
Auslander-Reiten quiver of a representation finite algebra in [15] and later for
finite dimensional algebras in [2, 7, 11]. The best understood class of covering
functors is that of Galois covering functors F : A → B determined by the action
of a group of automorphisms of A. In this work we introduce the balanced

covering functors which include the Galois class and for which classical Galois
covering-type results still hold. For instance, if F : A → B is a balanced
covering functor, where A and B are linear categories over an algebraically
closed field, and B is tame, then A is tame.

Introduction and notation

Let k be a field and A be a finite dimensional (associative with 1) k-algebra. One
of the main goals of the representation theory of algebras is the description of the
category of finite dimensional left modules Amod. For that purpose it is important to
determine the representation type of A. The finite representation type (that is, when
A accepts only finitely many indecomposable objects in Amod, up to isomorphism)
is well understood. In that context, an important tool is the construction of Galois
coverings F : Ã → A of A since Ã is a locally representation-finite category if and
only if A is representation-finite [7, 12]. For a tame algebra A and a Galois covering
F : Ã → A, the category Ã is also tame, but the converse does not hold [9, 14].

Coverings were introduced in [15] for the Auslander-Reiten quiver of a representation-
finite algebra. For algebras of the form A = kQ/I, where Q is a quiver and I an admis-
sible ideal of the path algebra kQ, the notion of covering was introduced in [2, 7, 11].
Following [2], a functor F :A → B, between two locally bounded k-categories A and
B, is a covering functor if the following conditions are satisfied:

∗The research for this paper was initiated during a visit of the second named author to UNAM,
México.
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(a) F is a k-linear functor which is onto on objects;

(b) the induced morphisms

⊕

Fb′=j

A(a, b′) → B(Fa, j) and
⊕

Fa′=i

A(a′, b) → B(i, F b)

are bijective for all i, j in B and a, b in A.

We denote by (b′f
•

a)b′ 7→ f and (•bfa′)a′ 7→ f the corresponding bijections. We shall
consider Fλ: Amod → Bmod the left adjoint to the pull-up functor F

•
: Bmod → Amod,

M 7→ MF , where Cmod denotes the category of left modules over the k-category C,
consisting of covariant k-linear functors.

The best understood examples of covering functors are the Galois covering func-
tors A → B given by the action of a group of automorphisms G of A acting freely
on objects and where F :A → B = A/G is the quotient defined by the action. See
[2, 5, 7, 11, 12] for results on Galois coverings. Examples of coverings which are not
of Galois type will be exhibited in Section 1.

In this work we introduce balanced coverings as those coverings F :A → B where

bf
•

a = •

bfa for every f ∈ B(Fa, Fb). Among many other examples, Galois coverings
are balanced, see Section 2. We shall prove the following:

THEOREM 0.1 Let F :A → B be a balanced covering. Then every finitely gener-
ated A-module X is a direct summand of F

•
FλX.

In fact, according to the notation in [1], we show that a balanced covering functor
is a cleaving functor, see Section 3. This is essential for extending Galois covering-type
results to more general situations. For instance we show the following result.

THEOREM 0.2 Assume that k is an algebraically closed field and let F :A → B be
a covering functor. Then the following hold:

(a) If F is induced from a map f : (Q, I) → (Q′, I ′) of quivers with relations, where
A = kQ/I and B = kQ′/I ′, then B is locally representation-finite if and only
if so is A;

(b) If F is balanced and B is tame, then A is tame.

More precise statements are shown in Section 4. For a discussion on the represen-
tation type of algebras we refer to [1, 13, 9, 6, 14].
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1 Coverings: examples and basic properties

1.1 The pull-up and push-down functors

Following [2, 7], consider a locally bounded k-category A, that is, A has a (possibly
infinite) set of non-isomorphic objects A0 such that

(a) A(a, b) is a k-vector space and the composition corresponds to linear maps
A(a, b)⊗k A(b, c) → A(a, c) for every a, b, c objects in A0;

(b) A(a, a) is a local ring for every a in A0;

(c)
∑

b

A(a, b) and
∑

b

A(b, a) are finite dimensional for every a in A0.

For a locally bounded k-category A, we denote by AMod (resp. ModA) the cate-
gory of covariant (resp. contravariant) functors A → Modk; by Amod (resp. modA)
we denote the full subcategory of locally finite-dimensional functors A → modk of the
category AMod (resp. ModA). In case A0 is finite, A can be identified with the finite-
dimensional k-algebra ⊕a,b∈A0A(a, b); in this case the category AMod (resp. Amod) is
equivalent to the category of left A-modules (resp. finitely generated left A-modules).

According to [6], in case k is algebraically closed, there exist a quiver Q and an
ideal I of the path category kQ, such that A is equivalent to the quotient kQ/I.
Then any module M ∈ AMod can be identified with a representation of the quiver
with relations (Q, I). Usually our examples will be presented by means of quivers
with relations.

Let F :A → B be a k-linear functor between two locally bounded k-categories.
The pull-up functor F

•
: BMod → AMod, M 7→ MF admits a left adjoint Fλ: AMod →

BMod, called the push-down functor, which is uniquely defined (up to isomorphism)
by the following requirements:

(i) FλA(a,−) = B(Fa,−);

(ii) Fλ commutes with direct limits.

In particular, Fλ preserves projective modules. Denote by Fρ: AMod → BMod the
right adjoint to F

•
.

For covering functors F :A → B we get an explicit description of Fλ and Fρ as
follows:

Lemma 1.1 [2]. Let F :A → B be a covering functor. Then
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(a) For any X ∈ Amod and f ∈ B(i, j),

FλX(f) = (X(bf
•

a)):
⊕

Fa=i

X(a) →
⊕

Fb=j

X(b), with
∑

Fb=j

F (bf
•

a) = f.

In particular, F
•
(a,−):FλA(a,−) → B(Fa,−) is the natural isomorphism given

by (bf
•

a)b 7→ f .

(b) For any X ∈ Amod and f ∈ B(i, j)

FρX(f) = (X(•bfa)):
∏

Fa=i

X(a) →
∏

Fb=j

X(b), with
∑

Fa=i

F (•bfa) = f.

In particular, F
•
D(−, b):FρDA(−, b) → DB(−, F b) is the natural isomorphism

induced by (•bfa)a 7→ f . �

1.2 The order of a covering

The following lemma allows us to introduce the notion of order of a covering.

Lemma 1.2 Let F :A → B be a covering functor. Assume that B is connected and
a fiber F−1(i) is finite, for some i ∈ B0. Then the fibers have constant cardinality.

Proof. Let i∈B0 and 0 6=f ∈B(i, j). For a∈F−1(i),
∑

Fb=j

dimkA(a, b) = dimkB(i, j).

Hence |F−1(i)|dimkB(i, j) =
∑

Fa=i

∑

Fb=j

dimkA(a, b) =
∑

Fb=j

∑

Fa=i

dimkA(a, b) =

|F−1(j)|dimkB(i, j) and |F−1(i)| = |F−1(j)|. Since B is connected, the claim fol-
lows. �

In case F :A → B is a covering functor with B connected and A0 is finite, we
define the order of F as ord (F ) = |F−1(i)| for any i ∈ B0. Thus ord (F )|B0| = |A0|.

We recall from the Introduction that a covering functor F :A → B is balanced if

bf
•

a = •

bfa for every couple of objects a, b in A.

Lemma 1.3 Let F :A → B be a balanced covering functor, then Fλ = Fρ as functors

Amod → Bmod. �
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1.3 Examples

(a) Let A be a locally bounded k-category and let G be a group of k-linear automor-
phisms acting freely on A (that is, for a ∈ A0 and g ∈ G if ga = a, then g = 1). The
quotient category A/G has as objects the G-orbits in the objects of A; a morphism
f : i → j in A/G is a family f : (bfa) ∈

∏

a,b A(a, b), where a (resp. b) ranges in i (resp.
j) and g · bfa = gbfga for all g ∈ G. The canonical projection F :A → A/G is called a
Galois covering defined by the action of G.

A particular situation is illustrated by the following algebras (given as quivers
with relations):

A:

•

ρ0 //

γ0

""E
EE

EE
EE

EE
EE

EE
EE

EE
E •

ρ1 //

γ1

!!D
DD

DD
DD

DD
DD

DD
DD

DD
D •

•
σ0

//

ν0

<<yyyyyyyyyyyyyyyyyy
•

σ1
//

ν1

==zzzzzzzzzzzzzzzzz
•

B: •

α0

""

β0

<< •

α1

""

β1

<< •















ρ1ρ0 = ν1γ0
σ1σ0 = γ1ν0
ρ1ν0 = ν1σ0

σ1γ0 = γ1ρ0

{

α1α0 = β1β0

β1α0 = α1β0

The algebra A is tame, but B is wild when char k = 2 [9]. The cyclic group C2

acts freely on A and A/C2 is isomorphic to B.
(b) Consider the algebras given by quivers with relations and the functor F as

follows:

a2

α2
##

β2

;; b2
ρ2

;; b1

ρ1
{{

a1

α1
{{

β1

cc
F

−→ a

α
  

β

>> b ρdd

both algebras with rad 2 = 0 and Fα1 = α, Fα2 = α+ β, Fβi = β, Fρi = ρ, i = 1, 2.
It is a simple exercise to check that F is a balanced covering, but obviously it is not
of Galois type.

(c) Consider the functor

A:

b1

a2

β2

>>~~~~~~~~

α2   @
@@

@@
@@

@
a1

α1

``@@@@@@@@

β1~~~~
~~

~~
~~

b2

F
−→ B: a

α
  

β

>> b

5



where Fαi = α, i = 1, 2, Fβ1 = β, Fβ2 = α+β. Since F (β2−α2) = β and F (β1) = β,
then b2β

•

a2
= −α2 and •

b2
βa2 = 0. Hence F is a non-balanced covering functor.

For the two dimensional indecomposable A-moduleX given byX(a2) = k,X(b2) =
k,X(α2) = id and zero otherwise, it follows that F

•
FλX is indecomposable and hence

X is not a direct summand of F
•
FλX .

(d) As a further example, consider the infinite category A and the balanced cov-
ering functor defined in the obvious way:

A: · · · •

β′

2

<< •

β2

||

α′

1

<< •

α1

||

β′

1

<< •

β1

||
α0ee

F
−→ •β 99 αee

where both categories A and B have rad2 = 0.

1.4 Coverings of schurian categories

We say that a locally bounded k-category B is schurian if for every i, j ∈ B0,
dimkB(i, j) ≤ 1.

Lemma 1.4 Let F :A → B be a covering functor and assume that B is schurian,
then F is balanced.

Proof. Let 0 6= f ∈ B(i, j) and Fa = i, Fb = j. Since B is schurian, there is a
unique 0 6= b′f

•

a ∈ A(a, b′) with Fb′ = j and a unique 0 6= •

bfa′ ∈ A(a′, b) with Fa′ = i
satisfying F b′f

•

a = f = F •

bfa′ . In case b = b′, then a = a′ and bf
•

a = •

bfa. Else b 6= b′

and bf
•

a = 0. In this situation a 6= a′ and •

bfa = 0. �

Proposition 1.5 Let F :A → B be a covering functor with finite order and B
schurian. Then for every M ∈ Bmod, FλF•

M ∼= Mord (F ).

Proof. For any 0 6= f ∈ B(i, j) we get

FλF•
M(i) =

⊕

Fa=iM(i) ∼ //

(M(F bf
•

a ))
��

Mord (F )(i)

diag (M(f),...,M(f))

��
FλF•

M(j) =
⊕

Fb=j M(j) ∼ // Mord (F )(j)

Since for each a there is a unique b with bf
•

a 6= 0 such that F bf
•

a = f , then the square
commutes. �

Remark: If B is not schurian the result may not hold as shown in [9, (3.1)] for a
Galois covering F :B → C with B as in Example (1.3.a).
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1.5 Coverings induced from a map of quivers

Let q:Q′ → Q be a covering map of quivers, that is, q is an onto morphism of oriented
graphs inducing bijections i+ → q(i)+ and i− → q(i)− for every vertex i in Q′, where
x+ (resp. x−) denotes those arrows x → y (resp. y → x). For the concept of covering
and equitable partitions in graphs, see [10].

Assume that Q is a finite quiver. Let I be an admissible ideal of the path algebra
kQ, that is, Jn ⊂ I ⊂ J2 for J the ideal of kQ generated by the arrows of Q.
We say that I is admissible with respect to q if there is an ideal I ′ of the path
category kQ′ such that the induced map kq: kQ → kQ′ restricts to isomorphisms
⊕

q(a)=i I
′(a, b) → I(i, j) for q(b) = j and

⊕

q(b)=j I
′(a, b) → I(i, j) for q(a) = i.

Observe that most examples in (1.3) (not Example (c)) are built according to the
following proposition:

Proposition 1.6 Let q:Q′ → Q be a covering map of quivers, I an admissible ideal
of kQ and I ′ an admissible ideal of kQ′ making I admissible with respect to q as in the
above definition. Then the induced functor F : kQ′/I ′ → kQ/I is a balanced covering
functor.

Proof. Since q is a covering of quivers, it has the unique lifting property of paths.
Hence for any pair of vertices i in Q and a in Q′ with q(a) = i, we have that

⊕

q(b)=j kQ
′(a, b)

k(q)
∼ //

��

kQ(i, j)

��
⊕

F (b)=j kQ
′/I ′(a, b) F // kQ/I(i, j)

is a commutative diagram with F an isomorphism. This shows that F is a covering
functor.

For any arrow i
α

−→ j in Q and q(a) = i, there is a unique b in Q′ and an
arrow a

α′

−→ b with q(α′) = α. Hence the class bf
•

a of α′ in kQ′/I ′(a, b) satisfies that
F (bf

•

a) is the class f = ᾱ of α in kQ/I(i, j). By symmetry, bf
•

a = •

bfa. For arbitrary
f ∈ kQ/I(i, j), f is the linear combination

∑

λifi, where fi is the product of classes
of arrows in Q. Observe that for arrows i

α
−→ j

β
−→ m we have c(β̄ᾱ)

•

a = (cβ̄
•

b )(
•

bᾱa) =
(cβ̄

•

b)(bᾱ
•

a). It follows that F is balanced. �

In the above situation we shall say that the functor F is induced from a map
q: (Q′, I ′) → (Q, I) of quivers with relations.
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2 On Galois coverings

2.1 Galois coverings are balanced

Proposition 2.1 Let F :A → B be a Galois covering, then F is balanced.

Proof. Assume F is determined by the action of a group G of automorphisms of A,
acting freely on the objects A0. Let i, j be objects of B and f ∈ B(i, j). Consider
a, b in A with Fa = i, Fb = j and (b′f

•

a)b′ ∈
⊕

Fb′=j

A(a, b′) with
∑

Fb′=j

F (b′f
•

a) = f .

For each object b′ with Fb′ = j, there is a unique gb′ ∈ G with gb′(b
′) = b. Then

(gb′(b′f
•

a))b′ ∈
⊕

b′ A(gb′(a), b) =
⊕

Fa′=i A(a
′, b) with

∑

b′ F (gb′(b′f
•

a)) =
∑

b′ F (b′f
•

a) =
f . Hence gb′(b′f

•

a) =
•

bfgb′ (a) for every Fb′ = j. In particular, for gb = 1 we get bf
•

a =
•

bfa. �

2.2 The smash-product

We say that a k-category B is G-graded with respect to the group G if for each pair
of objects i, j there is a vector space decomposition B(i, j) =

⊕

g∈G Bg(i, j) such that
the composition induces linear maps

Bg(i, j)⊗Bh(j,m) → Bgh(i,m).

Then the smash product B # G is the k-category with objects B0 ×G, and for pairs
(i, g), (j, h) ∈ B0 ×G, the set of morphisms is

(B # G)((i, g), (j, h)) = Bg−1h(i, j)

with compositions induced in natural way.
In [4] it was shown that B # G accepts a free action of G such that

(B # G)/G
∼

−→ B.

Moreover, if B = A/G is a quotient, then B is a G-graded k-category and

(A/G) # G
∼

−→ A.

Proposition 2.2 Let F :A → B be a covering functor and assume that B is a G-
graded k-category. Then

8



(i) Assume A accepts a G-grading compatible with F , that is, F (Ag(a, b)) ⊆ Bg(Fa, Fb),
for every pair a, b ∈ A0 and g ∈ G. Then there is a covering functor F # G:A #
G → B # G completing a commutative square

A # G
F#G //

��

B # G

��
A

F // B

where the vertical functors are the natural quotients. Moreover F is balanced if
and only if F # G is balanced.

(ii) In case B is a schurian algebra, then A accepts a G-grading compatible with F .

Proof. (i): For each a, b ∈ A0, consider the decomposition A(a, b) =
⊕

g∈GAg(a, b)
and B(Fa, Fb) =

⊕

g∈G Bg(Fa, Fb). Since these decompositions are compatible with

F , then Ag(a, b) = F−1(Bg(Fa, Fb)), for every g ∈ G.
For α ∈ (A # G)((a, g), (b, h)) = Ag−1h(a, b) = F−1(Bg−1h(Fa, Fb)), we have

(F # G)(α) = Fα ∈ Bg−1h(Fa, Fb) = (B # G)((Fa, g), (Fb, h)).

(ii): Assume B is schurian and take a, b ∈ A0 and g ∈ G. Either Bg(Fa, Fb) =
B(Fa, Fb) 6= 0, if A(a, b) 6= 0 or Bg(Fa, Fb) = 0, correspondingly we set Ag(a, b) =
A(a, b) or Ag(a, b) = 0. Observe that the composition induces linear maps Ag(a, b)⊗
Ah(b, c) → Agh(a, c), hence A accepts a G-grading compatible with F . �

Remark: In the situation above, the fact that A and B # G are connected categories
does not guaranty that A # G is connected. For instance, if B = A/G, then A #
G = A×G.

The following result is a generalization of Proposition 2.2(ii).

Proposition 2.3 Let F :A → B be a (balanced) covering functor induced from a
map of quivers with relations. Let F ′:B′ → B be a Galois covering functor induced
from a map of quivers with relations defined by the action of a group G. Assume
moreover that B′ is schurian. Then A accepts a G-grading compatible with F making
the following diagram commutative

A # G
F#G //

��

B′

F ′

��
A

F // B

9



Proof. Let A = k∆/J , B = kQ/I and B′ = kQ′/I ′ be the corresponding presenta-
tions as quivers with relations, F induced from the map δ: ∆ → Q, while F ′ induced
from the map q:Q′ → Q. For each vertex a in ∆ fix a vertex a′ in Q′ such that
F ′a′ = Fa.
Consider an arrow a

α
→ b in ∆ and α the corresponding element of A. We claim

that there exists an element gα ∈ G such that F (α) ∈ Bgα(Fa, Fb). Indeed, we

get F (α) = β = F ′(β ′) for arrows Fa
β
→ Fb and a′

β′

→ gαb
′ for a unique gα ∈ G.

Therefore F (α) ∈ Bgα(Fa, Fb). We shall define Agα(a, b) as containing the space kα.
For this purpose, consider g ∈ G and any vertices a, b in ∆, then Ag(a, b) is the space
generated by the classes u of the paths u : a → b such that F (u) ∈ Bg(Fa, Fb). Since
the classes of the arrows in ∆ generate A, then A(a, b) =

⊕

g∈G Ag(a, b). We shall
prove that there are linear maps

Ag(a, b)⊗ Ah(b, c) → Agh(a, c).

Indeed, if u ∈ Ag(a, b) and v ∈ Ah(b, c) for paths u : a → b and v : b → c in ∆, let
F (u) = F ′(u′) and F (v) = F ′(v′) for paths u′ : a′ → gb′ and v′ : b′ → hc′ in Q′. Since
B′ is schurian then the class of the lifting of F (vu) to B′ is (gv′)u′. Therefore

F (v)F (u) = F ′((gv′)u′) ∈ Bgh(Fa, Fb).

By definition, the G-grading of A is compatible with F . We get the commutativity
of the diagram from Proposition 2.2. �

2.3 Universal Galois covering

Let B = kQ/I be a finite dimensional k-algebra. According to [11] there is a k-
category B̃ = kQ̃/Ĩ and a Galois covering functor F̃ : B̃ → B defined by the action of
the fundamental group π1(Q, I) which is universal among all the Galois coverings of
B, that is, for any Galois covering F :A → B there is a covering functor F ′: B̃ → A
such that F̃ = FF ′. In fact, the following more general result is implicitely shown in
[11]:

Proposition 2.4 [11]. The universal Galois covering F̃ : B̃ → B is universal among
all (balanced) covering functors F :A → B induced from a map q: (Q′, I ′) → (Q, I) of
quivers with relations, where A = kQ′/I ′. �
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3 Cleaving functors

3.1 Balanced coverings are cleaving functors

Consider the k-linear functor F :A → B and the natural transformation
F (a, b):A(a, b) → B(Fa, Fb) in two variables. The following is the main observa-
tion of this work.

THEOREM 3.1 Assume F :A → B is a balanced covering, then the natural trans-
formation F (a, b):A(a, b) → B(Fa, Fb) admits a retraction E(a, b):B(Fa, Fb) →
A(a, b) of functors in two variables a, b such that E(a, b)F (a, b) = 1A(a,b) for all
a, b ∈ A0.

Proof. Set E(a, b):B(Fa, Fb) → A(a, b), f 7→ •

bfa which is a well defined map. For
any α ∈ A(a, a′), β ∈ A(b, b′), we shall prove the commutativity of the diagrams:

B(Fa, Fb)
E(a,b)

//

B(Fa,Fβ)
��

A(a, b)

A(a,β)
��

B(Fa, Fb′)
E(a,b′)

// A(a, b′)

B(Fa′, F b)
E(a′,b)

//

B(Fα,F b)
��

A(a′, b)

A(α,b)
��

B(Fa, Fb)
E(a,b)

// A(a, b)

For the sake of clarity, let us denote by ◦ the composition of maps. Indeed, let
f ∈ B(Fa, Fb) and calculate

∑

Fa′=Fa F (β ◦ •

bfa′) = Fβ ◦ f , hence

A(a, β) ◦ E(a, b)(f) = β ◦ •

bfa =
•

b′(Fβ ◦ f)a = E(a, b′) ◦B(Fa, Fβ)(f),

and the first square commutes. Moreover, let h ∈ B(Fa′, F b) and calculate
∑

Fb′=Fb F (b′h
•

a′ ◦α) = h◦Fα and therefore bh
•

a′ ◦α = b(h ◦ Fα)•a. Using that F is bal-
anced we get that E(a, b)◦B(Fa, Fb)(h) = •

b(h◦Fα)a =
•

bha′◦α = A(α, b)◦E(a′, b)(h).
�

Given a k-linear functor F :A → B the composition F
•
Fλ: AMod → AMod is

connected to the identity 1 of AMod by a canonical transformation ϕ:F
•
Fλ → 1

determined by F
•
FλA(a,−)(b) =

⊕

Fb′=FbA(a, b
′) → A(a, b), (fb′) 7→ fb, see [1,

page 234]. Following [1], F is a cleaving functor if the canonical transformation ϕ
admits a natural section ε: 1 → F

•
Fλ such that ϕ(X)ε(X) = 1X for each X ∈ AMod.

The following statement, essentially from [1], yields Theorem 0.1 in the Introduction.

Corollary 3.2 Let F :A → B be a balanced covering, then F is a cleaving functor.

11



Proof. Observe that F
•
Fλ is exact, preserves direct sums and projectives (the last

property holds since F
•
B(i,−) = ⊕Fa=iA(a,−)). Hence to define ε: 1 → F

•
Fλ it

is enough to define ε(A(a,−)):A(a,−) → F
•
FλA(a,−) with the desired properties.

For b ∈ A0, consider εb:A(a, b) →
⊕

Fb′=Fb A(a, b
′) = F

•
FλA(a,−)(b) the canonical

inclusion. For h ∈ A(b, c) we shall prove the commutativity of the following diagram:

A(a, b)
εb //

A(a,h)

��

⊕

Fb′=Fb A(a, b
′)

(A(a,•
c′
Fhb′)

��
A(a, c)

εc //
⊕

Fc′=FcA(a, c
′)

Let f ∈ A(a, b), since F is balanced A(a, •

c′Fhb′) ◦ εb(f) = •

c′Fhb ◦ f = c′Fh•

b ◦ f =
εc ◦A(a, h)(f), since c′Fh•

b = h if c′ = c and it is 0 otherwise. This is what we wanted
to show. �

4 On the representation type of categories

4.1 Representation-finite case

Recall that a k-category A is said to be locally representation-finite if for each object
a of A there are only finitely many indecomposable A-modules X , up to isomorphism,
such that X(a) 6= 0. For a cleaving functor F :A → B is was observed in [1] that in
case B is of locally representation-finite then so is A. In particular this holds when
F is a Galois covering by [7]. We shall generalize this result for covering functors.

Part (a) of Theorem 0.2 in the Introduction is the following:

THEOREM 4.1 Assume that k is algebraically closed and let F :A → B be a cov-
ering induced from a map of quivers with relations. Then B is locally representation-
finite if and only if so is A. Moreover in this case the functor Fλ: Amod → Bmod
preserves indecomposable modules and Auslander-Reiten sequences.

Proof. Let F :A → B be induced from q: (Q′, I ′) → (Q, I) where A = kQ′/I ′ and
B = kQ/I. Let B̃ = kQ̃/Ĩ be the universal cover of B and F̃ : B̃ → B the universal
covering functor. By Proposition 2.4 there is a covering functor F ′: B̃ → A such that
F̃ = FF ′.

(1) Assume that B is a connected locally representation-finite category. Since
F is induced by a map of quivers with relations, then Proposition 1.6 implies that
F is balanced. Hence Corollary 3.2 implies that F is a cleaving functor. By [1,
(3.1)], A is locally representation-finite; for the sake of completness, recall the sim-
ple argument: each indecomposable A-module X ∈ Amod is a direct summand of

12



F
•
FλX =

n
⊕

i=1

F
•
Nni

i for a finite family N1, . . . , Nn of representatives of the isoclasses

N of the indecomposable B-modules with N(i) 6= 0 for some i = F (a) with X(a) 6= 0.
(2) Assume that A is a locally representation-finite category. First we show that

B is representation-finite. Indeed, by case (1), since F ′: B̃ → A is a covering induced
by a map of a quiver with relations, then B̃ is locally representation-finite. By [12],
B is representation-finite. In particular, [7] implies that F̃λ preserves indecomposable
modules, hence Fλ and F ′

λ also preserve indecomposable modules.
Let X be an indecomposable A-module. We shall prove that X is isomorphic

to F ′

λN for some indecomposable B̃-module N . Since indecomposable projective
A-modules are of the form A(a,−) = F ′

λB̃(x,−) for some x in B̃, using the con-
nectedness of ΓA, we may assume that there is an irreducible morphism Y

f
−→ X

such that Y = F ′

λN for some indecomposable B̃-module N . If N is injective, say
N = DB̃(−, j), there is a surjective irreducible map (hi) : N → ⊕iNi such that all

Ni are indecomposable modules and 0 // Sj
// N

(hi) // ⊕iNi
// 0 is an exact

sequence. Then Y = DA(−, F ′j) and the exact sequence

0 // SF ′j
// Y

(F ′

λ
(hi))// ⊕iF

′

λ(Ni) // 0

yields the irreducible maps starting at Y (ending at the indecomposable modules
F ′

λ(Ni)). Therefore X = F ′

λ(Nr) for some r, as desired. Next, assume that N is not in-
jective and consider the Auslander-Reiten sequence ξ: 0−→N

g
−→N ′

g′

−→N ′′ −→ 0 in

B̃mod. We shall prove that the push-down F ′

λξ: 0 −→ F ′

λN
F ′

λ
g

−→ F ′

λN
′
F ′

λ
g′

−→ F ′

λN
′′ −→ 0

is an Auslander-Reiten sequence in Amod. This implies that there exists a direct sum-
mand N̄ of N ′ such that X

∼

−→ F ′

λN̄ which completes the proof of the claim.
To verify that F ′

λξ is an Auslander-Reiten sequence, let h:F ′

λN → Z be non-
split mono in Amod. Consider HomA(F

′

λN,Z)
∼

−→HomB̃(N,F ′

•
Z), h 7→ h′ which is

not a split mono (otherwise, then HomB̃(F
′

•
Z,N)

∼

−→HomA(Z, F
′

ρN), ν 7→ ν ′ with
νh′ = 1F ′

•Z . By Lemma 1.3, F ′

λ = F ′

ρ and ν ′h = 1Z). Then there is a lifting
h̄:N ′ → F ′

•
Z with h̄g = h′. Hence HomB̃(N

′, F ′

•
Z)

∼

−→ HomA(F
′

λN
′, Z), h̄ 7→ h̄′ with

h̄′F ′

λg = h.
We show that Fλ preserves Auslander-Reiten sequences. Let X be an indecom-

posable A-module of the form X = F ′

λN for an indecomposable B̃-module N . Then
FλX = FλF

′

λN = F̃λN . Since by [12], F̃λ preserves indecomposable modules, then
FλX is indecomposable. Finally, as above, we conclude that Fλ preserves Auslander-
Reiten sequences. �
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4.2 Tame representation case

Let k be an algebraically closed field. We recall that A is said to be of tame repre-
sentation type if for each dimension d ∈ N and each object a ∈ A0, there are finitely
many A− k[t]-bimodules M1, . . . ,Ms which satisfy:

(a) Mi is finitely generated free as right k[t]-module i = 1, . . . , s;
(b) each indecomposable X ∈ Amod with X(a) 6= 0 and dimkX = d is isomorphic

to some module of the form Mi ⊗k[t] (k[t]/(t− λ)) for some i ∈ {1, . . . , s} and λ ∈ k.
In fact, it is shown in [13] that A is tame if (a) and (b) are substituted by the

weaker conditions:
(a’) Mi is finitely generated as right k[t]-module i = 1, . . . , s;
(b’) each indecomposable X ∈ Amod with X(a) 6= 0 and dimkX = d is a direct

summand of a module of the form Mi ⊗k[t] (k[t]/(t − λ)) for some i ∈ {1, . . . , s} and
λ ∈ k.

The following statement covers claim (b) of Theorem 0.2 in the Introduction.

THEOREM 4.2 Let F :A → B be a balanced covering functor. If B is tame, then
A is tame.

Proof. Let a ∈ A0 and d ∈ N. Let M1, . . . ,Ms be the B − k[t]-bimodules satisfying
(a) and (b): each indecomposable M ∈ Bmod with M(Fa) 6= 0 and dimkM ≤ d is
isomorphic to some Mi ⊗k[t] (k[t]/(t− λ)) for some i ∈ {1, . . . , s} and λ ∈ k.
By Corollary 3.2 each indecomposable X ∈ Amod with X(a) 6= 0 and dimkX =
d is a direct summand of some F

•
(Mi ⊗k[t] (k[t]/(t − λ))), which is isomorphic to

F
•
Mi⊗k[t](k[t]/(t−λ)), for some i ∈ {1, . . . , s} and λ ∈ k. Hence A satisfies conditions

(a’) and (b’). �
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