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Letter to the Editors

What is the Mixed-Models Controversy?
From: John A. Nelder

Imperial College, London, UK

Two papers have recently been published in this journal which purport to deal with the mixed-
models controversy (Lencina et al., 2005; Lencina & Singer, 2006, to be referred to as L1 and L2).
In my view they do not represent the current state of thinking on this subject. My own work begins
with Nelder (1977) and continues with papers in 1982, and particularly with Nelder (1994, 1995).
Further papers are Nelder (1997), whose title includes the phrase ‘The great mixed-model muddle’,
and Nelder (1998). In Nelder (1994) I describe what I regard as three false steps that have generated
confusion and show how a consistent treatment may be developed. The two most important ideas
are (1) marginality relations between terms in a factorial model, and (2) why constraints must not
be put on parameters because they are required on estimates.

1 Marginality

Consider a simple model with two classifying factors A and B. The terms in the full factorial
model are 1, A, B and A.B where 1 represents the grand mean. These terms are ordered by
their marginality relations; A and B are subspaces of the two-way table of effects A.B and 1 is a
subspace of both A and B. We say that 1 is marginal to A and B and both A and B are marginal
to A.B. If a model is going to make statistical sense it must respect the marginality relations
between the terms, meaning that any term must be preceded by the terms that are marginal to it .
Thus 1+A, 1+B, 1 +A+B, 1+A+B+A.B satisfy these conditions but 1+A+A.B does not. This
last model implies that the two-way table of effects A.B, which, whether fixed or random, can be
completely arbitrary, nonetheless is to have a null margin showing no variation. The probability
of this is zero, and hence I contend that this model, though expressible mathematically, makes
no statistical sense. These models correspond to statistically uninteresting hypotheses; the fact
that they are mathematically expressible does not imply that they make statistical sense. Note
that Type III and IV sums of squares in SAS break these marginality rules, and even Scheffé
(1959) comes unstuck here.

2 Constraints on Parameters

Every one agrees that estimates of parameters in factorials obtained by least squares will need
to be constrained if we are to obtain unique values for them. Thus it is common in the example
above to set the sums of the A and B effects to be zero and also the row and column totals for
the interaction A.B. The possible constraints are not unique, and any contrast given a value by
this procedure is said to be estimable. Thus the following are not estimable whatever set of valid
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constraints is used

μ, α1, β1, γ11, μ + α1, β2 + β3, γ11 − γ12.

The false step in many expositions of fitting these models is to assume that because constraints
have been put on the estimates of the parameters, similar constraints must be put on expectations
of the sums of squares in mixed models. Without such constraints the formulae for the expectation
of fixed and random terms are entirely consistent, with sums of squares for the fixed effects
and the variance components for the random effects having the same form. To the extent that
fixed effects can be thought of as random effects with the variance becoming infinite, this is
what we should require. For details of these expectations see Tables 1 and 2 in Nelder (1994).
It is noticeable that in L1, equation (1), the αs are constrained to sum to zero, whereas in L2,
equation (1), they are not. L2 is correct and L1 is incorrect. It is not clear that the authors are
aware of this.

Conclusion

The great mixed-model muddle has now been resolved by the recognition of two simple
principles, and I commend this approach to the authors.
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1 Introduction

We begin by apologizing for the lamentable omission of Professor Nelder’s interesting and
controversial papers both in Lencina et al. (2005) and in Lencina & Singer (2006). Although
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the focus of our papers is much narrower than that of his articles, we feel that any manuscript
touching on the topic of parametrization and definition of hypotheses in linear mixed models
should necessarily refer to his numerous contributions to this field.

Essentially, we compare two stochastic models (one with constrained parameters, denoted CP
and the other with unconstrained parameters, denoted UP by Voss (1999)) that are extensively
employed to analyze data from balanced experiments with a fixed and a random factor. The two
models generate different test statistics presumably directed at the same hypothesis, namely that
of the non-existence of the random factor main effect in the presence of the interaction. Differing
opinions over which statistic should be used is what we call the ‘mixed-model controversy’
following Voss (1999). Our objective is to provide an answer to this very specific question. To
retain this focus, we do not discuss the general issue of model building or add to a debate over
the reasonableness of the hypothesis under investigation. We explicitly state this in the abstract
of Lencina et al. (2005).

The focus of Professor Nelder’s comments is on broader issues that we avoid in either paper,
and not on the specific problem we address. In particular, he

(1) considers the hypothesis under investigation of no practical interest since it does not satisfy
what he calls the ‘marginality principle’;

(2) claims that constraints should not be put on the model parameters and therefore, that the CP
model should be discarded.

Since such concerns relate to the narrower problem we address, we appreciate the opportunity
to place our results in this context and further contribute to the discussion.

2 Is the “Marginality Principle” Universal?

Professor Nelder asserts that the hypothesis under dispute is not interesting since it assumes
null marginal effects for one factor in a two-way table when interaction is present. We agree
that in most cases, his assertion is true. However, this is not a universal rule and many authors,
including several discussants (Lindley, Cox, Preece, Tukey, Frane and Jennrich) of Nelder (1977)
have provided examples where the hypothesis of null random effects in the presence of interaction
is reasonable. We consider an additional example in Lencina et al. (2005).

Nelder (1995) admits to being dogmatic on this issue. Since a null marginal effect in the
presence of interaction violates his dogma, he claims that those who discuss such a problem are
not in line with the ‘current state of thinking on this subject’. For those who follow Professor
Nelder’s point of view, the discussion ends here, since the controversy exists only if we admit
interest in such hypothesis.

Given the numerous practical examples where the hypothesis makes sense, we adopt a more
flexible position and address the mixed-model controversy in our articles. This is in line with
Lindsey (1995), who states that ‘one should avoid being dogmatic, laying down certain rules
which must always be followed’.

3 Should We Place Constraints on Parameters?

Professor Nelder pointed out an inconsistency in the specification of the fixed effects in
Lencina et al. (2005, equation (1)), where the corresponding parameters are constrained, and
Lencina & Singer (2006, equation (1)), where they are not. He asserts that while the latter
is correct, the former is not. Although we prefer the constrained version of the model, both
alternatives are correct and do not interfere in the theoretical results presented in either paper.
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Professor Nelder emphasizes the use of constraints for the estimability purposes, whereas we
advocate the use of constraints for the interpretability of parameters. If, for example, we add
the constraint

∑a
i=1 αi = 0 to the fixed-effects parameters in Lencina & Singer (2006, equation

(1)), the terms μ and αi , i = 1, . . . , a have clear interpretations. If left unconstrained, they are
meaningless.

This seems to be a recurrent theme. Nelder (1998, equation (1)) uses the terms ‘grand
mean’, ‘row effects’, ‘column effects’ and ‘interaction between rows and columns’ to refer to
parameters that are not defined; since the estimating equations obtained from the minimization
of

∑
(yi jk − ν − αi − β j − γi j )

2 have infinite solutions, the one adopted by Nelder (1998,
equation (2)) is based on a specific set of constraints on the estimates. How are these constraints
chosen? The answer is clear, if we specify the parameters in his expression (1) by placing the
constraints

∑

i

αi =
∑

j

β j =
∑

i

γi j =
∑

j

γi j = 0.

The constraints on the fixed-effects parameters are better motivated if we consider a finite
population set-up. In the setting outlined in Lencina et al. (2005) suppose that N homogeneous
metal pieces are processed in each of a machines to produce screws and that we are interested
in their lengths, assumed to be observed without error. Let the length of screw s produced
by machine i (i = 1, . . . , a) be yis, a non-stochastic value. The mean length of the screws
produced by machine i is μi = N−1

∑N
s=1 yis . Letting μ = (aN )−1

∑a
i=1

∑N
s=1 yis represent the

grand mean length, one way to define machine effects is to consider the difference between the
mean length of the pieces produced by each machine and the grand mean, namely, αi = μi −
μ, i=1, . . . , a. Becauseμ = a−1

∑a
i=1 μi , there is a natural constraint between the parametersαi ,

i = 1, . . . , a, and it is
∑a

i=1 αi = 0. This constraint results from the definition of the grand mean
and thus is not related to the estimation. In fact, up to here, there are no random terms involved.
It is possible to define machine effects differently; if for example, one wishes to refer the results
to those of a specific machine, say 1, then the effect of machine i, i = 2, . . . , a could be defined
as αi = N−1

∑N
s=1 yis − μ with μ = N−1

∑N
s=1 y1s denoting the mean length of the screws

produced by machine 1. On the other hand, if a different number of pieces is manufactured
in different machines, the grand mean could be defined as μ = ∑a

i=1 Niμi/
∑a

i=1 Ni ; then
the constraint between the αi is

∑a
i=1 Niαi = 0. These constraints are neither arbitrary nor

inconsistent; they correspond to different definitions of machine effects and do not depend
on the sample data. We believe that parameters in statistical models should mimic those in the
population; by doing so, the restrictions will emerge naturally. This approach has been considered
by Hinkelmann & Kempthorne (1994), for example.

Different sets of constraints, as for example, deviations from means constraints or reference
cell constraints do not alter the estimates of estimable linear combinations of parameters. The
advantage of placing constraints on parameters is that it clarifies their interpretation. Rather than
being motivated by estimability, constraints on parameters define interpretable models which
we believe should precede the estimation and hypothesis-testing phases of the analysis. Both
in teaching and consulting, we feel that starting off with well-defined parameters will help to
specify both the operational objectives of the problem and the analysis strategy. In this process,
the meaning of the parameters plays a fundamental role. This position has been also expressed
by many authors, including Professor Cox in his reply to Nelder (1977).

Nelder (1994) also mentions cases where constraints placed on random-effects parameters
lead to statistical inconsistencies by requiring that the sum of independent normal random
variables with non-zero variance be identically equal to zero. We agree with his criticism and note
that this is not the case with the CP model because the constrained random variables, namely,
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(τD)i j subject to
∑a

i=1(τ D)i j = 0 are not independent. In fact, we assume that (τD)i j ∼ N[0,
(1 − a−1)σ 2

τ D] with Cov[(τD)i j , (τD)i ′ j ] = −a−1σ 2
τ D , i �= i ′ so that the constraint is naturally

satisfied.
In the context of a two-way fixed-effects study, placing constraints on estimates (as advocated

by Nelder), or on parameters will produce identical estimates of estimable quantities. In the
context of a two-way mixed-model, the two approaches lead to different expected mean squares
for the term commonly taken to represent the main random effects in the presence of interaction.
How to test for null random main effects in a mixed-model is where the mixed model controversy
occurs.

One of Professor Nelder’s main argument for using unconstrained parameters in a mixed model
is that this approach leads to ANOVA tables with the same patterns for the expected mean squares
irrespective of the nature (fixed or random) of the effects included in the model. Obtaining the
results is definitely facilitated under such an approach, but we do not see why this feature should
be used to justify the choice of the models. In giving such advice, more emphasis seems to be
placed on form than on substance. In particular, Nelder (1994) argues that to avoid confusion,
UP models should be used since they produce simple patterns for the expected mean squares for
fixed and random effects. This, however, masks the difference in the interpretation of the UP
and CP model parameters. We advocate that the decision on the appropriate test should rely on
a clear identification of the hypothesis of null random effects (in the presence of an interaction).
The difference between the variance components corresponding to ‘random effects’ under the
CP and the UP mixed models has been discussed by Hocking (1973) and Voss (1999), with
results summarized by Lencina et al. (2005). The parameter used to represent the random-effect
variance in the CP model, σ 2

D , is different from the parameter representing the ‘random-effects
variance’, σ 2

B , in the UP model. In fact, aσ 2
D = aσ 2

B + σ 2
αB . This difference is not accounted for

in Nelder (1994, Table 2). Instead, the same notation is used for the ‘random effects variance’
in the expected mean squares table for the CP and UP models. Using the notation from Lencina
et al. (2005), the equivalent representation of the expected mean squares for a mixed model
comparable to Nelder (1994, Table 2) is given in Table 1.

Table 1
Expected mean squares for the CP and UP models.

CP Model UP Model
A Fixed A Fixed

Term B Random B Random

A σ 2
τ D + b

∑
τ σ 2

αB + b
∑

α

B a σ 2
D σ 2

αB + a σ 2
B

AB σ 2
τ D σ 2

αB

This clearly illustrates that the hypothesis H : σ 2
D = 0 is not equivalent to the hypothesis

H : σ 2
B = 0. Which of them corresponds to a hypothesis of null random effects? We motivated an

answer by defining the main effects for the random factor in terms of the potentially observable
random variables in the study, similar to what is done for a fixed effect. Our conclusion is that
the hypothesis of null random effects (in the presence of the interaction) is H : σ 2

D = 0 under the
CP model but is H : σ 2

αB + a σ 2
B = 0 under the UP model. Therefore, the hypothesis σ 2

B = 0
under the UP model does not have the same interpretation as H : σ 2

D = 0 under the CP model.
Furthermore, working in a finite population set-up, Wilk & Kempthorne (1955) obtain

covariance structures that are similar to those in the CP model. This was our comment in the last
paragraph of Lencina et al. (2005).
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The importance that Professor Nelder places on obtaining the same simple patterns of expected
mean squares for fixed and random effects in a mixed model, and on placing constraints on
estimates, not parameters, does not appear to clarify what he calls the basic mixed-model
muddle. In order to distinguish what test to use for null random effects in the CP and UP
models, the crux of the problem is defining interpretable parameters, which in some cases
requires the use of constraints. Thus we disagree with Professor Nelder in his advice to avoid
parameter constraints when specifying mixed models. Although different opinions are at stake,
we believe that discussions regarding the interpretation of statistical models and their use in
practical problems are always welcome. We end by thanking Professor Nelder for calling our
attention to such important issues.
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