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The classical description of colloidal suspensions is based on a series of assumptions that constitute
the standard electrokinetic model: suspended particles are surrounded by a uniform surface density
of fixed charge, the equilibrium ion density coincides with the Gouy–Chapman distribution, and the
surface conductivity coincides with the conductivity of the diffuse double layer. Although highly versatile
and relatively simple to compute, the classical model often fails to predict crucial experimental trends.
Consequently, various attempts have been made to generalize the standard electrokinetic model in order
to encompass a broader set of experimental data. Numerical results show that the Stern-layer formalism
increases the conductivity and dielectric response but decreases the electrophoretic mobility, while the
charged-layer approach leads to electrophoretic mobility values that can actually increase with the
surface layer conductivity. Here we compare the predictions of these two surface layer models regarding
the conductivity increment, the electrophoretic mobility, and the dielectric increment. We show that for
high κa (κ and a being the reciprocal Debye length and the particle radius, respectively) and intermediate
electrophoretic mobility values as well as cases when the measured mobility is higher than the maximum
value predicted by the standard electrokinetic model, the experimental data can only be interpreted using
the charged-layer model.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

The standard model, classically used for the description of the
electrokinetic behavior of colloidal suspensions, is based on the
following assumptions: suspended particles are surrounded by a
uniform surface density of fixed charge, ions can be treated as
mathematical points, and the macroscopic permittivity and viscos-
ity values remain valid at the microscopic scale up to the very
surface of the particle. With these assumptions, the equilibrium
ion density coincides with the Gouy–Chapman distribution, the
surface conductivity coincides with the conductivity of the diffuse
double layer, and the ζ potential coincides with the equilibrium
surface potential.

Accordingly, all the dielectric and electrokinetic properties of
the system depend on a series of model parameters (electrolyte
concentration, ion valences and diffusion coefficients, fluid permit-
tivity and viscosity, particle size and permittivity) and a single
variable: the ζ potential. This makes it possible to determine ζ

by means of a single stationary field measurement: either of the
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DC electrophoretic mobility or of the conductivity increment, since
both phenomena are described by the same standard model. A dif-
ficulty that often arises is that the values obtained using these two
techniques do not coincide with one another [1–3].

This discrepancy seems to reflect a fundamental failure of the
standard electrokinetic model: the surface of a colloidal particle
might be more complex than assumed by this model. A usual gen-
eralization is based on the Stern rather than the Gouy–Chapman
ion distribution, assuming that the particle surface is surrounded
by a thin layer of ions with surface density determined by adsorp-
tion isotherms [4–6] while, outside this layer, the standard model
applies. It is further assumed that ions in the surface layer are
free to move along the surface while the fluid flow is not al-
lowed. Because of this last assumption, the ζ potential coincides
now with the equilibrium potential at the outer boundary of the
surface layer. This generalization implies that the surface conduc-
tivity includes two parts: the diffuse double layer part (determined
by the ζ potential) and the surface layer part (determined by ad-
sorption). Because of this dependence, it is no longer possible to
determine the ζ potential from a single stationary field measure-
ment: both DC electrophoretic mobility and conductivity increment
measurements are required.
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While this seems to solve the compatibility problem between
ζ potential values deduced from these two individual measure-
ments [7], a new difficulty arises: the electrophoretic mobility
always decreases with the surface layer conductivity. Therefore,
this generalization does not help and actually worsens the inter-
pretation of experimental data in those cases when the measured
electrophoretic mobility is very high, higher than the theoretical
maximum [8]. Still another difficulty arises when the model is
extended to the frequency domain [9,10] and the low-frequency
dielectric dispersion parameters are compared with experimental
data [11]. Quite often, the measured dispersion amplitude is much
higher than the theoretical prediction while the characteristic fre-
quency is lower [12–14].

Another type of generalization of the standard model consists
in considering that the particle surface might not be perfectly
smooth and rigid, which has been modeled as a hairy surface [15,
16] or as a thin neutral or charged porous layer [17–24]. The soft
charged-layer generalization is also based on the assumption that
there is a thin layer surrounding the suspended particle where the
equilibrium ion density is not determined by the Gouy–Chapman
distribution, while the standard model applies outside its exter-
nal boundary. The main difference with the Stern-layer model is in
that the surface layer is considered to be made both of free ions
(mostly counterions) and of the fixed ions that constitute the sur-
face charge. Furthermore, the free ion densities inside the layer are
determined by appropriate boundary conditions rather than ad-
sorption isotherms. Finally, the fluid can move along the surface
of the particle, only hindered by the presence of the fixed charges
and the adhesion condition on its surface. It was recently shown
that this generalization of the standard electrokinetic model leads,
unlike the Stern-layer generalization, to electrophoretic mobility
values that can actually increase with the surface layer conduc-
tivity [25].

The purpose of this paper is to compare the predictions of the
Stern-layer and the charged-layer generalizations of the standard
electrokinetic model for the dielectric and electrokinetic response
of dilute suspensions of colloidal spherical particles in AC electric
fields. We present numerical results of both surface layer models
regarding the conductivity increment, the electrophoretic mobility,
and the dielectric increment. We show that for high κa (κ and a
being the reciprocal Debye length and the particle radius, respec-
tively) and intermediate electrophoretic mobility values, as well as
cases when the measured mobility is higher than the maximum
value predicted by the standard electrokinetic model [8], the ex-
perimental data can only be interpreted using the charged-layer
model.

2. Considered models

The Stern-layer and the charged-layer models considered here
as generalizations of the standard model are those proposed by
Mangelsdorf and White (M-W) [6] and by López-García, Grosse,
and Horno (L-G-H) [25], respectively. In order to simplify the forth-
coming discussion and to reduce to a minimum the number of
parameters, we consider that the electrolyte solution is binary, uni-
valent, and with equal diffusion coefficient values for the two ionic
species. We also consider that the permittivity outside the particle
core has a constant value up to its surface and that the ion diffu-
sion coefficient value is the same in the surface layer and in the
bulk.

2.1. The dynamic Stern-layer (M-W) model

Since the Stern-layer model proposed by Mangelsdorf and
White is fully described in [6] for the DC and in [26] for the AC
cases, while a numerical AC solution is given in [10], we will only
outline here its main features. It is assumed that the particle bears
a fixed surface charge that is located precisely on the core sur-
face, which is surrounded by a surface layer. The “electrokinetic
radius” a includes that layer, and the standard electrokinetic equa-
tions apply for r > a. The surface layer contains free adsorbed ions
immersed in a fluid that is not allowed to move.

The equilibrium surface charge density of free ions in the sur-
face layer σ 0

s = σ 0
s1 + σ 0

s2 is determined by means of adsorption
Langevin-type isotherms:

σ 0
sj = z jeN j

n∞
K j

exp
{−z je

kB T

[
ψ0(a) − σ 0

d
C2

]}
1 + ∑2

k=1
n∞
Kk

exp
{−zke

kB T

[
ψ0(a) − σ 0

d
C2

]} . (1)

In this expression, the lower index j refers to the ion type, z je is
the ion charge (z1 = −z2 = 1), n∞ the bulk molar ion density, K j

the dissociation constant (expressed as K j = 10−pK j ), N j the max-
imum surface ion density, ψ0(r) the equilibrium electric potential,
σ 0

d the surface charge of the diffuse double layer, and C2 the outer
surface layer capacity per unit area.

2.2. The charged-layer (L-G-H) model

The mathematical formulation of the charged-layer model pro-
posed by López-García et al. [25] is identical to that presented
earlier for the description of the dielectric and electrokinetic prop-
erties of dilute suspensions of soft particles [17,18,23,24]. We will
only recall here the main features of this model for sake of com-
pleteness and to specify the nomenclature. The model is based on
the following assumptions:

(a) The particle is made of a rigid core surrounded by a thin
surface layer of thickness h ≈ 1 nm. The radius of the whole sys-
tem is a and for r > a the standard electrokinetic equations apply.

(b) The fixed charges of the particle are uniformly distributed
inside the surface layer, rather than forming a surface charge on
the core surface. This assumption implies that the core is not nec-
essarily a perfectly smooth sphere, that the fixed charges might
have a finite size and need not be completely immersed inside the
core, and that a hairy surface is a possible reality [15,16].

(c) Both the free ions and the fluid can move inside the surface
layer, which seems reasonable since if hydrated ions are allowed
to move then water molecules should also be able to move.

(d) Ions are free to move across the external boundary of the
surface layer driven by the electric potential and ion concentration
gradients, as well as the fluid flow (we do not introduce any ad-
sorption isotherms). Since one of the boundary conditions at r = a
is the continuity of the ion concentrations, the ion densities inside
the surface layer are close to the densities just outside it.

Note that this model includes a single free parameter λ, re-
lated to the resistance exerted by the fixed charges in the surface
layer to the fluid flow inside it according to the Debye–Bueche
model [27]. The drag coefficient in the soft particle model is de-
fined as [17]

λ2 = γ

η
,

where γ is the force per unit volume and unit fluid velocity while
η is the fluid viscosity.

3. Predictions of the models and discussion

In what follows we compare the behavior of the standard elec-
trokinetic model for bare colloids to those of the M-W and of
the L-G-H models. We consider different values of the product κa,
where

κ =
√

2e2n∞1000N A

ε∞k T
(2)
B
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Table 1
Parameter values used in the calculations except when specified otherwise.

Radius of the core and surface layer a = 100 × 10−9 m
Thickness of the surface layer h = 1 × 10−9 m
Absolute permittivity outside the core ε∞ = 78.55 × 8.85 × 10−12 F m−1

Absolute permittivity of the core 2 × 8.85 × 10−12 F m−1

Viscosity of the suspending medium η = 0.89 × 10−3 poise
Temperature T = 298 K
Number of ion species in the solution 2
Ion valences z1 = −z2 = 1
Ion diffusion coefficients D1 = D2 = 2 × 10−9 m2 s−1

Electrolyte concentration such that κa = 30
Dimensionless surface potential y0(a) = 4
M-W maximum surface layer charge eN1 = eN2 = 80 μC cm−2

Outer surface layer capacity C2 = 130 μF cm−2

is the reciprocal Debye length, ε∞ is the permittivity of the elec-
trolyte solution, and N A is the Avogadro number, and calculate the
different magnitudes as a function of the equilibrium dimension-
less surface potential defined as

y0(a) = eψ0(a)

kB T
. (3)

For the bare particle and the M-W models, this parameter pre-
cisely coincides with the dimensionless ζ potential. However, this
is not exactly the case for the L-G-H model since the adhesion
boundary condition applies at r = a − h rather than r = a. Nev-
ertheless, this does not allow us to define the ζ potential in the
L-G-H model as the equilibrium potential of the core, since the ad-
hesion condition shifts to r = a when λ → ∞ (the ζ potential is
an ill-defined parameter in the case of soft particles [19]).

In order to reduce to a minimum the number of parameters
we consider, for the L-G-H model, the two extreme cases: λ = 0
(free fluid flow in the surface layer) and λ → ∞ (no fluid flow).
Higher values of this parameter up to λ → ∞ are certainly mean-
ingful, due to the possible presence of additional features of the
particle surface that contribute to further reduce the fluid flow:
roughness, hairiness, etc. As for the M-W model, we also consider
two extreme cases: pK2 → ∞ while pK1 remains finite (no ad-
sorbed co-ions, surface layer fully saturated with counterions) and
pK1 = pK2 → −∞ (no adsorbed ions). Actually this last case needs
not be calculated since it exactly coincides with the bare particle
model. The remaining parameter values are given in Table 1.

Figs. 1–3 represent the dielectric spectrum of the permittivity
increment 
ε(ω) defined as

ε(ω) = ε∞[
1 + φ
ε(ω)

]
, (4)

where ε(ω) and ε∞ are the permittivities of the suspension and
of the electrolyte solution while φ is the volume fraction of parti-
cles, and illustrate its dependence on the surface potential and the
product κa. Fig. 1 shows that the L-G-H model leads to roughly
a threefold increase of the low-frequency dispersion amplitude as
compared to the bare particle model. As expected, the disper-
sion amplitude is higher the lower the value of λ (the stronger
the fluid flow in the surface layer). The M-W model leads to an
even higher dispersion amplitude for the surface layer fully sat-
urated with counterions while, as already stated, it leads to the
same behavior as the bare particle model in the opposite limit:
pK j → −∞. The reason for the higher value of the dispersion am-
plitude predicted by the M-W model with fully saturated surface
layer as compared to the L-G-H model is simply due to a higher
free counterion surface density (eN j value in Table 1) [28]. This is
verified by the dash and dot line in Fig. 1 that was obtained using
the M-W model with pK j values that lead precisely to the same
counterion and co-ion surface densities as in the L-G-H model. As
expected, the results of both models coincide when the surface ion
densities are the same and there is no fluid flow: λ → ∞. Finally,
Fig. 1. Permittivity increment, Eq. (4), spectra calculated for y0(a) = 4 and κa = 30.
Bare particle model and M-W model with pK j → −∞, dashed line; M-W model
with surface layer saturated with counterions, dotted line; L-G-H model with the
indicated λ values, full lines. Remaining parameters given in Table 1. M-W model
with pK j values that lead precisely to the same counterion and co-ion surface den-
sities as the L-G-H model, dash and dot line. Bare particle model with the same
fixed charge value as in the L-G-H model (or in the M-W model corresponding to
the dash and dot line), dash and double dot line.

Fig. 2. As for Fig. 1, but calculated for y0(a) = 6 and κa = 30.

Fig. 3. As for Fig. 1, but calculated for y0(a) = 4 and κa = 100.
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Fig. 4. Dielectric increment, Eq. (5), as a function of the dimensionless surface po-
tential, Eq. (3), calculated for κa = 30. Bare particle model and M-W model with
pK j → −∞, dashed line; M-W model with surface layer saturated with counteri-
ons, dotted line; L-G-H model with the indicated λ values, full lines. Remaining
parameters given in Table 1.

Fig. 1 also shows the bare particle model behavior calculated us-
ing the same value of the fixed charge as in the L-G-H model (or
in the M-W model corresponding to the dash and dot line): dash
and double dot line. As can be seen, the bare particle model leads,
under equal fixed charge rather than equal surface potential con-
dition, to a higher dispersion amplitude than the M-W model, due
to a higher surface conductivity (all the free ions are immersed in
a fluid that is allowed to flow).

Fig. 2, together with Fig. 1, illustrates the dependence of the
dielectric dispersion on the surface potential. While all the consid-
ered models lead to higher dispersion amplitude values for higher
surface potentials, as expected, the relative differences are smaller
than those in Fig. 1 because the dielectric dispersion amplitudes
converge to a common value (corresponding to an infinite sur-
face conductivity) for high surface potentials. For this same reason,
the dependence of the dispersion amplitude on λ decreases with
the surface potential. For λ = 0, the L-G-H model leads now to a
higher dispersion than the M-W model with surface layer fully sat-
urated with counterions. This happens because the ion density in
the surface layer increases with the surface potential according to
the L-G-H model while, according to the M-W model, it remains at
the constant value given in Table 1.

Fig. 3, together with Fig. 1, illustrates the dependence of the di-
electric dispersion on the product κa. As expected, all the consid-
ered models lead to higher dispersion amplitude values for higher
κa since, at constant surface potential and particle size, the ion
density in the diffuse double layer increases with κa. Irrespective
of the value of λ, the L-G-H model leads now to higher dispersion
amplitudes than the M-W model with surface layer fully saturated
with counterions. This happens because the ion density in the sur-
face layer increases with κa according to the L-G-H model while,
according to the M-W model, it remains at the constant value
given in Table 1. Figs. 1 and 3 also show that the dependence of
the dispersion amplitude on λ increases with the product κa. This
happens because the relative contribution of the conductivity of
the surface layer (which depends on the value of λ) to the total
surface conductivity increases with κa.

Fig. 4 shows the dielectric increment defined as


ε = lim
ω→0


ε(ω) (5)

as a function of the surface potential, calculated for κa = 30. The
bare particle model shows the well-known behavior correspond-
(a)

(b)

Fig. 5. (a) Conductivity increment, Eq. (6), and (b) dielectric increment, Eq. (5), as
functions of the dimensionless electrophoretic mobility, Eq. (7), calculated for κa =
10. Bare particle model and M-W model with pK j → −∞, dashed line; M-W model
with surface layer saturated with counterions, dotted line; L-G-H model with the
indicated λ values, full lines. Remaining parameters given in Table 1.

ing to the amplitude of the low-frequency dielectric dispersion.
The L-G-H model leads to much higher dielectric increment val-
ues at intermediate surface potentials because of the additional
surface conductivity of the surface layer and of the increased sur-
face conductivity of the diffuse layer. This behavior coincides with
the often observed experimental behavior [12,13,29–32]. At high
surface potential values, the surface layer conductivity tends to
infinity while the dielectric increment attains a finite value. The
bare particle model tends to this same limiting value for high sur-
face potentials when the diffuse double layer conductivity tends to
infinity. As for the M-W model with surface layer fully saturated
with counterions, it predicts very high dielectric increments at low
surface potentials, since the surface layer conductivity is indepen-
dent of the surface potential. At high surface potentials, it predicts
lower dielectric increment values than the L-G-H model, because
the free ion density in the surface layer is lower. Finally, for very
high surface potentials, when the diffuse double layer conductivity
tends to infinity, it tends to the same limiting value as the L-G-H
and the bare particle models.

The permittivity spectra calculated in this work, together with
the conductivity and electrophoretic mobility values obtained
in [25], make it possible to analyze the range of experimental data
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(a)

(b)

Fig. 6. As for Fig. 5, but calculated for κa = 30.

that could be interpreted using the considered models. This is done
in Figs. 5–7, which represent the conductivity and dielectric incre-
ments as functions of the dimensionless electrophoretic mobility,
calculated for three values of the product κa. Each line in these
plots corresponds to a given particle–electrolyte solution combina-
tion: all the system parameters are kept constant except the fixed
surface charge that varies from zero to a very high value. The con-
ductivity increment 
K is defined as

K = K ∞[1 + φ
K ], (6)

where K and K ∞ are the conductivities of the suspension and
of the electrolyte solution, while the dimensionless electrophoretic
mobility is defined as

ue = 3eη

2ε∞kB T

ve

E
, (7)

where ve is the electrophoretic velocity and E is the applied elec-
tric field.

Given a measured electrophoretic mobility value, the bare par-
ticle model predicts single conductivity increment and dielectric
increment values if the mobility value is low, two possible values
if the mobility value is high, and no possible values if the mobil-
ity value is very high. As noted in the Introduction, these predicted
values are quite often incompatible with the experimental data.

On the contrary, for any measured electrophoretic mobility
value, the L-G-H model predicts a continuous range (or two con-
(a)

(b)

Fig. 7. As for Fig. 5, but calculated for κa = 100.

tinuous ranges) of possible conductivity increment and dielectric
increment values. In Figs. 5–7, these ranges are determined by the
intersect of the vertical straight line corresponding to the elec-
trophoretic mobility value, with the area delimited by the λ = 0
and the λ → ∞ curves. For low κa values, the possible conductiv-
ity increment and dielectric increment values lie in rather narrow
ranges. However, these ranges become extremely broad at high κa
and, furthermore, possible solutions appear for electrophoretic mo-
bility data that are higher than the maximum predicted by the
bare particle model.

As for the M-W model, it also predicts broad continuous ranges
of possible conductivity increment and dielectric increment values
for any measured electrophoretic mobility value. In Figs. 5–7, these
ranges are determined by the intersect of the vertical straight line
corresponding to the electrophoretic mobility value with the area
delimited by the dotted curve corresponding to the surface layer
fully saturated with counterions and the bare particle model curve.
While the M-W model generally predicts even broader ranges than
the L-G-H model, there are two important exceptions to this be-
havior:

(a) High κa and intermediate electrophoretic mobility values.
Under these conditions the L-G-H model could make it possible to
interpret higher conductivity increment and dielectric increment
values than the M-W model.

(b) High electrophoretic mobility. Since the M-W model always
predicts lower electrophoretic mobility values than the bare par-
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ticle model, any mobility value that surpasses the bare particle
model maximum could only be interpreted using the L-G-H model.

4. Conclusion

The generalizations of the standard electrokinetic model pro-
posed by Mangelsdorf and White [6] and by López-García et
al. [25] are used to analyze the frequency response of dilute sus-
pensions of spherical colloidal particles to AC electric fields. We
compare the predictions of these models regarding the conduc-
tivity increment, the electrophoretic mobility, and the dielectric
increment.

It should be noted that we are not trying to find out which one
of these models better represents the particle–electrolyte solution
interface, because actually they complement each other seeking to
encompass a broader set of possible particle–electrolyte solution
interfaces. Smooth particles with active adsorption sites are cer-
tainly best represented by the M-W model, while the L-G-H model
is more appropriate for particles that are rough, hairy, or have pro-
truding charged groups.

Our results suggest that measurements of the electrophoretic
mobility and of the conductivity and permittivity increments could
provide useful information for the characterization of the inter-
face properties in colloidal suspensions. This is specially true for
high κa and intermediate electrophoretic mobility values as well
as cases when the measured mobility is higher than the maximum
value predicted by the standard electrokinetic model since, under
these conditions, the experimental data can only be interpreted us-
ing the L-G-H model.
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