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SUMMARY

Binary complementary pairs of sequences of lengths 2N10M26P posses some interesting properties for their
application in signal detection in noisy channels. Nonetheless, they have not been broadly used because
of their greater processing requirements as compared with binary complementary sequences with L = 2N .
The present work introduces a new approach for generation and correlation of binary complementary pairs
of sequences of length 2N10M26P that reduces the number of required operations. The proposed algo-
rithm allows not only to optimize the number of arithmetic operations but also to correlate two orthogonal
complementary pairs simultaneously with the use of a single architecture. Due to the fact that multilevel
complementary sequences algorithms are used to generate and correlate binary complementary sequences of
length 2N10M26P, the aforementioned algorithms are also improved. The proposal is theoretically proved and
its arithmetic efficiency is assessed by comparing the number of operations with that of previously published
architectures. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Research about complementary sequences (CS) [1], along with research on other sequences with
good correlation properties, is in constant evolution. The main topics being currently analyzed are
their applications, such as in Ultra Wideband communications [2], active sensing [3], and multicarrier
code-division multiple-access (CDMA) [4]; their mathematical properties [5]; and the search for new
sequences [6, 7]. For the particular case of CS, in the last years, the focus has shifted from the well-
known binary CS with lengths 2N to the less used complementary sequences of length 2N10M26P[8],
multilevel CS [9], and quadrature amplitude modulation (QAM)-CS [10] that provide more lengths and
process gain flexibility than the aforementioned sequences. These sequences have not been extensively
employed because of the complexity of the algorithms associated with their generation and correlation.
However, several works devoted to the simplification of said algorithms, rendering them more efficient,
have been recently published [11–14].

This paper proposes improved algorithms for the generation and the correlation of orthogonal pairs
of binary complementary sequences of length 2N10M26P, which notably reduce the algorithms’ com-
plexity and allows to correlate simultaneously two orthogonal complementary pairs using a single
architecture. This proposal is based on the generation algorithms for CS of length 2N10M26P of [15]
and [8], which, in turn, are based on the processing algorithms for multilevel CS. The improvement
is obtained by a reformulation of the multilevel CS generation algorithm of [16] and the analysis of
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the correlation operation to obtain an efficient algorithm for the simultaneous correlation of orthogonal
multilevel CS. The number of operations required to compute the algorithm is analytically calculated
and compared with those in the literature, to show the improvement. Field programmable gate array
(FPGA) implementation examples are provided to illustrate the amount of the logic resources needed
for the correlation algorithm.

The paper is structured as follows. Section 2 deals with the definition and properties of CS.
Section 3 develops the generation algorithm of non-power-of-2 CS. Sections 4 and 5 show the pro-
posed generation and correlation of multilevel CS, respectively. The proposed generator and correlator
of non-power-of-2 CS are described in Section 6. These algorithms are compared with those in the lit-
erature in Section 7. Section 8 provides an example of how the proposed architectures may be used in
a multi-user system; and finally, Section 9 draws the conclusions of the paper.

2. COMPLEMENTARY PAIRS OF SEQUENCES

Binary complementary pairs of sequences were defined by Golay [1] as two sequences (S1, S2) of the
same length (L), composed by binary elements (±1), with the property that the number of pairs of like
elements with any given separation in one sequence is exactly equal to the number of pairs of unlike
elements with the same separation in the other sequence. The main property of these pairs is that the
sum of the autocorrelation functions of the two sequences results in a Kronecker delta of amplitude
proportional to the length, without the presence of sidelobes.

CS1,S1
[k] + CS2,S2

[k] = 2L𝛿[k] (1)

Where: CS1,S1
and CS2,S2

are the autocorrelation functions of the sequences S1 and S2, respectively.
Taking this property as an alternative definition of complementary sequences, the concept was

extended to complementary sets of sequences [17], increasing the number of sequences from 2 to M
and multilevel complementary pairs of sequences [9, 18, 19], which are composed of elements with
amplitudes different to a binary set of symbols. The other property that characterizes complementary
sequences is the existence of orthogonal pairs or sets. For every pair (or set), there is another pair (or
set) of sequences that is orthogonal. Two pairs (or sets) are orthogonal if the sum of cross correlations
between the sequences of the pairs (or sets) is zero for every time displacement [17].

3. GENERATION OF COMPLEMENTARY PAIRS OF SEQUENCES OF LENGTH 10 AND 26

Complementary sequences of length L = 2N10M26P, with M,P ≠ 0, have been traditionally left out
due to the fact that kernels 10 and 26 are not easily generated. In [15] and [8], these kernels for binary
complementary sequences were synthesized using the multilevel complementary sequences generation
algorithm as follows:

𝐆10a
= 𝐁1,1(z−3) × 𝐁1,−1(z−1) × 𝐁1∕2,−1(z−1) × 𝐁1,1(z−4) (2)

𝐆10b
= 𝐁1,1(z−1) × 𝐁1,1(z−3) × 𝐁1∕2,−1(z−3) × 𝐁1,1(z−2) (3)

𝐆26 =𝐁1,−1(z−12) × 𝐁1,1(z−1) × 𝐁1∕2,1(z−1) × 𝐁1∕5,−1(z−1)
×𝐁4∕13,−1(z−1) × 𝐁3∕37,1(z−1) × 𝐁81∕106,−1(z−1) × 𝐁3∕37,1(z−1)
×𝐁4∕13,1(z−1) × 𝐁1∕5,−1(z−1) × 𝐁1∕2,1(z−1) × 𝐁1,1(z−3)

(4)

Where:

𝐁an,w
j
n
(z−dn ) =

[
1 an ⋅ wj

n ⋅ z−dn

an −wj
n ⋅ z−dn

]
(5)
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Figure 1. Block diagram of an iteration of the generation algorithm [8].

is the iteration n of the generation algorithm for multilevel complementary pairs of sequences (𝐒j(z))
proposed by García et al. [16]. This algorithm is defined as follows:

𝐒j(z) =
[

Sj
1(z)

Sj
2(z)

]
=

N∏
n=1

𝐁an,w
j
n
(z−dn) ×

[
1
a0

]
(6)

Where:

• 𝐁an,w
j
n
(z−dn ) is the generation matrix (5),

• j = {0, 1} is the index of the pair in an orthogonal set,

• wj
n = ±1 is the generation seed of the iteration n,

• an ∈ R is the multilevel gain of the iteration n,

• dn is the delay of the iteration n.

Figure 1 shows a block diagram of an iteration of this algorithm.
The use of different generation seeds wj

n allows for the generation of different pairs of sequences with
the same multilevel gains. To generate a pair (S1

1, S
1
2) that is orthogonal to another pair of sequences,

(S0
1, S

0
2), w0

n must be kept equal to w1
n for the iterations 1 to N and of opposite sign for iteration 0 [20]:{

w1
n = w0

n 1 < n < N
w1

n = −w0
n n = 0

(7)

The pairs of sequences generated with these seeds (𝐒0(z) and 𝐒1(z)) are orthogonal, so the sum of
cross correlation functions between S0 and S1 is null for every k:

CS0
1 ,S

1
1
[k] + CS0

2 ,S
1
2
[k] = 0 (8)

Where: CS0
1 ,S

1
1
[k] and +CS0

2 ,S
1
2
[k] are the cross correlation of the sequences S0

1, S
1
1 and S0

2, S
1
2, respectively.

4. NEW MULTILEVEL COMPLEMENTARY PAIRS OF SEQUENCES GENERATION
APPROACH

The generation approach described in the previous section (6) depends on a multilevel processing
algorithm. To improve the binary sequences generation, that multilevel algorithm can be reformulated
in a more efficient way by analyzing the product operator. Considering the last two stages, N and N−1,
without the inclusion of superscript j to simplify the notation:

𝐁aN ,wN
(z−dN ) × 𝐁aN−1wN−1

(z−dN−1) =

=
[

1 aN ⋅ wN ⋅ z−dN

aN −wN ⋅ z−dN

]
× 𝐁aN−1wN−1

(z−dN−1)

=
[

1 aN ⋅ z−dN

aN −z−dN

]
×
[

1 0
0 wN

]
× 𝐁aN−1wN−1

(z−dN−1)

(9)
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Defining 𝚿aN
(z−dN ) as

𝚿aN
(z−dN ) =

[
1 aN ⋅ z−dN

aN −z−dN

]
(10)

Equation (9) results are

𝐁aN ,wN
(z−dN ) × 𝐁aN−1wN−1

(z−dN−1) =

= 𝚿aN
(z−dN ) ×

[
1 0
0 wN

]
× 𝐁aN−1wN−1

(z−dN−1)

= 𝚿aN
(z−dN ) ×

[
1 aN−1 ⋅ wN−1 ⋅ z−dN−1

aN−1 ⋅ wN −wN−1 ⋅ wN ⋅ z−dN−1

] (11)

Considering that wn is ±1 and the product wn ⋅ wn = 1, the matrix on the right can be split as follows:

𝐁aN ,wN
(z−dN ) × 𝐁aN−1wN−1

(z−dN−1) =

= 𝚿aN
(z−dN ) ×

[
1 aN−1 ⋅ wN ⋅ z−dN−1

aN−1 ⋅ wN −z−dN−1

]
×
[

1 0
0 wN ⋅ wN−1

]
= 𝚿aN

(z−dN ) ×𝚿aN−1⋅wN
(z−dN−1)

×
[

1 0
0 wN ⋅ wN−1

]
(12)

Generalizing this process for all stages, the new generation algorithm is obtained:

𝐒(z) =
N∏

n=1

𝚿𝛼n
(z−dn ) ×

[
1
𝛼0

]
(13)

with

𝛼n = an ⋅
N∏

i=n+1

wi

𝛼N = aN

(14)

Figure 2 depicts a block diagram of an iteration of this algorithm.
In order to generate orthogonal pairs, the sign of w0 must be changed. In (14), it can be seen that 𝛼0

is the only 𝛼n affected by w0. Based on that, the generation of the orthogonal pairs depends only on the
input signal of the generator, yielding the proposed generation algorithm:

𝐒j(z) =
N∏

n=1

𝚿𝛼n
(z−dn) ×

[
1

𝛼0 ⋅ (−1)j
]

(15)

Figure 3 illustrates the block diagram of the proposed multilevel complementary sequences genera-
tor.

Figure 2. Block diagram of an iteration of the proposed generator.
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Figure 3. Block diagram of the proposed multilevel generator.

5. SIMULTANEOUS CORRELATION OF MULTILEVEL COMPLEMENTARY PAIRS OF
SEQUENCES

Several applications (e.g., multi-user communications systems) require the simultaneous processing
of two orthogonal pairs of sequences. In the said cases, the conventional correlation approach entails
the use of four different correlators, each one configured with the corresponding sequence and seed.
However, this solution leads to an inefficient use of the resources, because there are many common
operations in both correlators. In [12], a more efficient correlator was proposed that uses a single archi-
tecture to correlate with one pair, thereby needing only two correlators. By analyzing it, it can be
improved even further.

In that manuscript, it was shown that the sum of correlations of two inputs (R1(z),R2(z)) with respect
to a pair of sequences (Yj(z)) can be written in matrix form as

Yj(z) =
[

Sj
1(1∕z) Sj

2(1∕z)
]
×
[

R1(z)
R2(z)

]
=𝐒j(1∕z)H ×

[
R1(z)
R2(z)

] (16)

Where: S1(1∕z) and S2(1∕z) are the complex conjugates of S1(1∕z) and S2(1∕z), respectively, and (.)H
is the Hermitian operation.

Working with this expression and using (15), the following equation is obtained:

𝐒j(1∕z)H =

(
N∏

n=1

𝚿𝛼n
(zdn) ×

[
1

𝛼0 ⋅ (−1)j
])H

=
[

1
𝛼0 ⋅ (−1)j

]H

×

(
N∏

n=1

𝚿𝛼n
(zdn)

)H

=
[

1 𝛼0 ⋅ (−1)j
]
×

1∏
n=N

𝚿𝛼n
(zdn)H

(17)

To make a practically feasible system, all the powers of z on the equation describing its behavior
must be non-positive, but as it can be observed in (17), the correlation equation obtained has positive
powers of z. To solve this, 𝚿∗

𝛼n
(z−dn) is defined:

𝚿∗
𝛼n
(z−dn ) = z−dn ⋅𝚿𝛼n

(zdn)H =
[

z−dn 𝛼N ⋅ z−dn

𝛼n 1

]
(18)

Replacing (18) in (17), the final sum of correlations results in

Yj(z) =
[

1 𝛼0 ⋅ (−1)j
]
×

1∏
n=N

𝚿∗
𝛼n
(z−dn ) ×

[
R1(z)
R2(z)

]
(19)
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Figure 4. Block diagram of the proposed multilevel correlator.

Equation (19) shows an improved correlation algorithm for one pair of sequences. To obtain the sum
of correlations with respect to both orthogonal pairs, 𝐘(z) is defined:

𝐘(z) =
[

Y0(z)
Y1(z)

]
(20)

Reordering the terms of 𝐘(z), the proposed simultaneous correlation algorithm for orthogonal multi-
level sequences is obtained.

𝐘(z) =

⎡⎢⎢⎢⎢⎣
[

1 𝛼0

]
×

1∏
n=N

𝚿∗
𝛼n
(z−dn)H[

1 −𝛼0

]
×

1∏
n=N

𝚿∗
𝛼n
(z−dn)H

⎤⎥⎥⎥⎥⎦
×
[

R1(z)
R2(z)

]
(21)

𝐘(z) =
[

1 𝛼0
1 −𝛼0

]
×

1∏
n=N

𝚿∗
𝛼n
(z−dn )H ×

[
R1(z)
R2(z)

]
(22)

Figure 4 shows a block diagram of the simultaneous correlation algorithm described in (22) obtained
using a reasoning similar to that in [12].

6. PROPOSED GENERATOR AND CORRELATOR OF BINARY COMPLEMENTARY
SEQUENCES OF LENGTH 2N10M26P

Using the reasoning in Section 4, the kernels shown in Section 3 can be generated using the modified
architecture with the following equations:

𝐆10a
= 𝚿1(z−3) ×𝚿1(z−1) ×𝚿−1∕2(z−1) ×𝚿1(z−4); j = 0 (23)

𝐆10b
= 𝚿1(z−1) ×𝚿1(z−3) ×𝚿1∕2(z−3) ×𝚿−1(z−2); j = 1 (24)

𝐆26 = 𝚿1(z−12) ×𝚿−1(z−1) ×𝚿−1∕2(z−1) ×𝚿−1∕5(z−1)
×𝚿4∕13(z−1) ×𝚿−3∕37(z−1) ×𝚿−81∕106(z−1) ×𝚿3∕37(z−1)
×𝚿4∕13(z−1) ×𝚿1∕5(z−1) ×𝚿−1∕2(z−1) ×𝚿−1(z−3); j = 1

(25)

Regardless of the approach applied to generate the sequences, they can be correlated using the archi-
tecture described in (22). To obtain the correlation, the order of the stages of (23)–(25) must be reversed.

𝐂10a
= 𝚿∗

1(z
−4) ×𝚿∗

−1∕2(z
−1) ×𝚿∗

1(z
−1) ×𝚿∗

1(z
−3); j = 0 (26)

𝐂10b
= 𝚿∗

−1(z
−2) ×𝚿∗

1∕2(z
−3) ×𝚿∗

1(z
−3) ×𝚿∗

1(z
−1); j = 1 (27)

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2017)
DOI: 10.1002/cta



GENERATION AND CORRELATION OF ORTHOGONAL CPS OF LENGTHS 2N10M26P

𝐂26 = 𝚿∗
−1(z

−3) ×𝚿∗
−1∕2(z

−1) ×𝚿∗
1∕5(z

−1) ×𝚿∗
4∕13(z

−1)
×𝚿∗

3∕37(z
−1) ×𝚿∗

−81∕106(z
−1) ×𝚿∗

−3∕37(z
−1) ×𝚿∗

4∕13(z
−1)

×𝚿∗
−1∕5(z

−1) ×𝚿∗
−1∕2(z

−1) ×𝚿∗
−1(z

−1) ×𝚿∗
1(z

−12); j = 1

(28)

To further demonstrate the applicability of the proposed algorithm, two examples of its use are shown
below.

6.1. Example of correlation of kernel 10

Golay [1] found two kernels for length 10 complementary pairs of sequences. The first kernel is
composed by the following sequences:

S1 =
[

1 −1 −1 1 1 1 1 1 1 −1
]

S2 =
[

1 −1 −1 −1 1 −1 1 −1 −1 1
] (29)

These sequences can be correlated with the proposed architecture using (26) as follows. In the first
iteration, they should be affected by 𝚿∗

1(z
−3):[

C3,1(z)
C3,2(z)

]
= 𝚿∗

1(z
−3) ×

[
S1(z)
S2(z)

]
(30)

C3,1 = [ 0 0 0 2 −2 −2 0 2 0 2 0 0 0 ]
C3,2 = [ 0 0 0 2 0 2 0 2 2 −2 0 0 0 ] (31)

The resulting sequences are affected by 𝚿∗
1(z

−1) in the following iteration:[
C2,1(z)
C2,2(z)

]
= 𝚿∗

1(z
−1) ×

[
C3,1(z)
C3,2(z)

]
(32)

C2,1 = [ 0 0 0 0 4 −2 0 0 4 2 0 0 0 0 ]
C2,2 = [ 0 0 0 0 −2 −4 0 0 −2 4 0 0 0 0 ] (33)

The obtained sequences are processed by the last two stages, 𝚿∗
−1∕2(z

−1) and 𝚿∗
1(z

−4), respectively:[
C1,1(z)
C1,2(z)

]
= 𝚿∗

−1∕2(z
−1) ×

[
C2,1(z)
C2,2(z)

]
(34)

C1,1 = [ 0 0 0 0 0 5 0 0 0 5 0 0 0 0 0 ]
C1,2 = [ 0 0 0 0 0 5 0 0 0 −5 0 0 0 0 0 ] (35)

[
C0,1(z)
C0,2(z)

]
= 𝚿∗

1(z
−4) ×

[
C1,1(z)
C1,2(z)

]
(36)

C0,1 = [ 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 ]
C0,1 = [ 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 ] (37)

The last step for the correlation is the product with 𝛼0 and the addition, resulting in

Y = [ 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 ] (38)

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2017)
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These equations demonstrate that the correlator works as expected, yielding as result of the
correlation a single Kronecker delta of amplitude equal to 2L, without sidelobes.

6.2. Example of correlation of kernel 26

In [8], a kernel 26, based on a pair of sequences found in [21], is generated:

S1 = [ 1 1 1 1 −1 1 1 −1 −1 1 −1 1 −1
1 −1 −1 1 −1 1 1 1 −1 −1 1 1 1 ]

S2 = [ 1 1 1 1 −1 1 1 −1 −1 1 −1 1 1
1 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 ]

(39)

These sequences can be correlated using the proposed algorithm and (28), following a process anal-
ogous to the previous example, with 12 iterations rather than 4. Starting with C12,1 = S1 and C12,2 = S2,
the partial results of the correlation (C11 to C0) are shown in the following equations. For notation pur-
poses, the leading and trailing zeros of the vectors are represented as 𝟎k, where k represent the amount
of zeros.

C11,1 = [ 𝟎12 2 2 2 2 −2 2 2 −2 −2 2 −2 2 0 2 𝟎12 ]
C11,2 = [ 𝟎12 −2 0 −2 −2 2 −2 2 2 2 −2 −2 2 2 2 𝟎12 ] (40)

C10,1 = [ 𝟎13 4 2 4 4 −4 4 0 −4 −4 4 0 0 −2 𝟎13 ]
C10,2 = [ 𝟎13 −2 0 0 0 0 −4 0 0 0 4 −4 −2 −4 𝟎13 ] (41)

C9,1 = [ 𝟎14 5 2 4 4 −4 6 0 −4 −4 2 2 1 𝟎14 ]
C9,2 = [ 𝟎14 −1 −2 −2 2 2 0 2 2 −6 4 2 5 𝟎14 ] (42)

C8,1 = [ 𝟎15 26 12 22 18 −22 30 −2 −22 −14 6 8 𝟎15 ]∕5
C8,2 = [ 𝟎15 8 6 −14 −6 −6 −10 −6 34 −22 −12 −26 𝟎15 ]∕5

(43)

C7,1 = [ 𝟎16 74 36 46 42 −62 70 −10 −30 −54 6 𝟎16 ]∕13
C7,2 = [ 𝟎16 −6 54 30 −2 50 14 −106 46 36 74 𝟎16 ]∕13

(44)

C6,1 = [ 𝟎17 212 90 124 120 −188 196 −4 −96 −162 𝟎17 ]∕37
C6,2 = [ 𝟎17 −162 −96 −4 −128 −56 304 −124 −90 −212 𝟎17 ]∕37

(45)

C5,1 = [ 𝟎18 481 234 182 312 −208 −52 130 −39 𝟎18 ]∕53
C5,2 = [ 𝟎18 39 −130 52 286 −650 182 234 481 𝟎18 ]∕53

(46)

C4,1 = [ 𝟎19 338 156 130 234 −182 −26 104 𝟎19 ]∕37
C4,2 = [ 𝟎19 104 −26 −182 442 −130 −156 −338 𝟎19 ]∕37

(47)

C3,1 = [ 𝟎20 10 4 2 10 −6 −2 𝟎20 ]
C3,2 = [ 𝟎20 2 6 −10 2 4 10 𝟎20 ] (48)

C2,1 = [ 𝟎21 52 26 0 52 −26 𝟎21 ]∕5
C2,2 = [ 𝟎21 −26 52 0 −26 −52 𝟎21 ]∕5

(49)

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2017)
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C1,1 = [ 𝟎22 13 0 0 13 𝟎22 ]
C1,2 = [ 𝟎22 −13 0 0 13 𝟎22 ] (50)

C0,1 = [ 𝟎25 26 𝟎25 ]
C0,2 = [ 𝟎25 −26 𝟎25 ] (51)

The last correlation step is the product with 𝛼0 and the final addition, yielding the final correlation
result.

Y = [ 𝟎25 52 𝟎25 ] (52)

Equations (39) and (52) show the expected correlation results, demonstrating that the proposed
algorithm also works in binary complementary sequences of length 2N10M26P with M,P ≠ 0.

7. RESULTS

In order to evaluate the proposal, a comparison of the required amount of operations between the differ-
ent approaches was conducted. In the work by García et al. [8], the number of operations is presented
after an additional optimization of the algorithm’s iterations. In such optimization, products by 1 are
removed and products by −1 are implemented as a sign change in the additions/subtractions of the iter-
ation, which makes the algorithm lose regularity. Even though this optimization can also be applied to
the proposed algorithm, for the sake of simplicity and to keep the structure regular, this optimization is
disregarded for the calculations of the number of operation

Table I. Operations required for
the generation of complementary

sequences.

Additions

Efficient [8] 2 ⋅ (N + 4M + 12P)
Proposed 2 ⋅ (N + 4M + 12P)

Products
Efficient [8] 3 ⋅ (N + 4M + 12P)
Proposed 2 ⋅ (N + 4M + 12P)

Delays
Efficient [8] 2N10M26P − 1
Proposed 2N10M26P − 1

Table II. Operations required for the corre-
lation of complementary sequences.

Additions

Efficient [8] 8 ⋅ (N + 4M + 12P) − 2
Optimized [12] 4 ⋅ (N + 4M + 12P) + 2
Proposed 2 ⋅ (N + 4M + 12P) + 2

Products
Efficient [8] 12 ⋅ (N + 4M + 12P)
Optimized [12] 6 ⋅ (N + 4M + 12P)
Proposed 2 ⋅ (N + 4M + 12P) + 1

Delays
Efficient [8] 4 ⋅ (2N10M26P − 1)
Optimized [12] 2 ⋅ (2N10M26P − 1)
Proposed 2N10M26P − 1
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Table III. FPGA correlator implementa-
tion resources and speed.

L Stages Slices Max frequency

4 2 21 266.52 MHz
8 3 39 152.07 MHz
10 4 61 118.96 MHz
16 4 53 125.61 MHz
20 5 73 107.34 MHz
26 12 164 18.54 MHz
32 5 66 107.91 MHz
40 6 90 102.26 MHz
64 6 82 105.45 MHz

Table I lists the required number of additions, products, and delays to generate a pair of binary
complementary sequences of length 2N10M26P, as a function of their length, through the values of N,
M, and P. The values in the table are calculated as follows:

• Each iteration of the algorithm in [8] uses 2 additions, 3 products, and dn delays.
• Each iteration of the proposed algorithm uses 2 additions, 2 products, and dn delays.
• Power of 2 sequences use 1 algorithm iteration, with a total delay of 2.
• Power of 10 sequences use 4 algorithm iterations, with a total delay of 10.
• Power of 26 sequences use 12 algorithm iterations, with a total delay of 26.

It can be seen from this table that the proposed generation architecture uses two thirds of the products
of the algorithm of [8], which represents a 33% reduction in the total number of products. It is also note-
worthy that, with the proposed generator, it is possible to generate both orthogonal pairs by changing
its input, while with the generator in [8], this is achieved by modifying the coefficients of the algorithm.

Table II lists the number of additions, delays, and products needed for the simultaneous correlation
of orthogonal binary complementary pairs of sequences of length 2N10M26P in the same way as in
Table I. The values of the table are calculated as follows:

• Each iteration of the algorithm in [8] and [12] uses 2 additions, 3 products, and dn delays.
• Four instances of the algorithm in [8] are required, each with one of its outputs unused.
• Two instances of the algorithm in [12] are required.
• Each iteration of the proposed algorithm uses 2 additions, 2 products, and dn delays.
• Power of 2 sequences use 1 algorithm iteration, with a total delay of 2.
• Power of 10 sequences use 4 algorithm iterations, with a total delay of 10.
• Power of 26 sequences use 12 algorithm iterations, with a total delay of 26.
• Two final additions are required to obtain the results.

This table reflects that the reduction obtained with respect to the efficient approach of [8] is four
times in the number of additions and delays and almost six times in the products. With respect to the
approach of [12], the proposed correlator needs half as many additions and delays and a three times
less products that represents a reduction of 50% in the additions and delays and a 66% in the number of
products. This significant reduction in the number of operations is of great relevance for the practical
use of these sequences.

To do a further analysis, the proposed correlation algorithm was implemented in a Xilinx Spartan
6 FPGA using several lengths of sequences. The products were implemented using Look-up tables
(LUTS). Their input width depends on the required number of input bits, with a maximum of 18 bits
per input, and have a maximum of 36 bits of output. Each algorithm stage output is trimmed to a width
of 18 bits. Table III lists the number of used slices and the maximum frequency obtained in those
implementations.

From this table, there are results that are worthy to analyze. Correlations with sequences with L = 10
need more resources than L = 16 even though both lengths require the same number of stages. The
cause of this is that one stage of L = 10 has a product with a constant different to ±1, .5 that requires
an additional bit in the multiplication. The same happens for sequences with L = 20 and L = 40.
For L = 26 (and every product of 26), there are nine correlation stages with products with a constant
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different to ±1, and many of them require the full 18 bits to have an acceptable error. This directly
impacts in the maximum frequency obtained for that length, being 5.8 times slower than for a similar
2N10M length.

8. APPLICATION IN A NOISY MULTI-USER SYSTEM

The previous section dealt with the mathematical aspects of the proposed architectures. This section
provides a particular example of the use of binary sequences in multi-user systems and the usefulness
of a simultaneous correlator of orthogonal pairs of complementary sequences. The system under study
is composed of two remote units that asynchronously send an alarm signal to the central unit over the
same physical medium. The alarm signal of unit 1 (U0) is encoded with a binary complementary pair of
sequences of length 40, while the alarm signal of unit 2 (U2) is encoded with a binary complementary
pair of sequences of the same length, orthogonal to the first one. Figure 5 depicts a block diagram of
the system, where the blocks identified as generators are implemented with the architectures shown in
Figure 3.

Figure 5. Example multi-user system operating with a multilevel complementary sequences’ coding.

Figure 6. Both alarms without noise. [Colour figure can be viewed at wileyonlinelibrary.com]
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U0 = [S0
1, S

0
2]

U1 = [S1
1, S

1
2]

(53)

The signals are sent in baseband without modulation, sending the second sequence (Sj
2) after the first

sequence of the pair (Sj
1). Assuming a situation in which the two remote units transmit an alarm with a

delay of 10 samples between them (U1 starts 10 samples after U0). Figure 6 shows the alarm signals and
how they are composed. Figure 7 illustrates the received signal in the central unit without the presence
of noise, where it can be seen how the alarm signals overlap in time.

Considering a channel Signal to noise ratio (SNR) of 0dB, Figure 8 shows the received signal plus
noise. From this figure, it can be seen that the transmitted signals are completely immersed in noise
and cannot be easily discerned from it.

In the central unit, the proposed correlator is used to process the received signals. Figure 9 shows
the processed signals. The first output is shown in blue and the second output in green. As it can be
observed, the received alarms can now be easily identified overcoming not only the noise influence but
also the superposition in time of the signals. All signal processing was carried out with the optimized
architectures proposed in this work, reducing the amount of mathematical calculations, which is a key
issue for the hardware implementation of the system.

Figure 7. Both transmitted alarm signals overlapped in time without noise. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 8. Signal at the input of the central unit (R) in the case of SNR=0dB. [Colour figure can be viewed
at wileyonlinelibrary.com]
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Figure 9. Processed signals after correlation. [Colour figure can be viewed at wileyonlinelibrary.com]

9. CONCLUSIONS

This paper presented a new approach for the generation of binary complementary pairs of sequences of
lengths 2N10M26P, which enables the generation of orthogonal pairs by changing only the input of the
generator. This work also presented a new approach for the correlation that simultaneously computes
the correlation with respect to two orthogonal pairs of complementary sequences of lengths 2N10M26P.
Given the fact that multilevel sequences’ algorithms are used in the generation and correlation of these
sequences, the generation and correlation of multilevel complementary sequences were also improved.
The proposed algorithms were compared with the algorithms described in the literature, yielding a
33% reduction in the number of products required by the proposed generation algorithms, a 50% of
the required additions and delays, and 66% of the products for the correlation algorithm, which is an
important achievement for the practical implementation of these sequences.
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10. Budišin S, Spasojević P. Paraunitary generation/correlation of QAM complementary sequence pairs. Cryptography
and Communications 2014; 6(1):59–102. DOI: 10.1007/s12095-013-0087-9.

11. Soltanalian M, Naghsh MM, Stoica P. A fast algorithm for designing complementary sets of sequences. Signal
Processing 2013; 93(7):2096–2102. DOI: http://dx.doi.org/10.1016/j.sigpro.2013.02.008. http://www.sciencedirect.
com/science/article/pii/S0165168413000613 [accessed on July 2013].

12. Hadad M, Funes M, Donato P, Carrica D. Simultaneous correlation architecture for multilevel complementary
sequences. Electronics Letters 2014; 50(11):810–812. DOI: 10.1049/el.2014.0707.

13. Donato PG, Hadad MN, Funes MA, Carrica DO. Generation and correlation algorithms for ternary complementary
pairs of sequences of length 3 ⋅2n. International Journal of Circuit Theory and Applications 2015; 43(9):1235–1242.

14. García E, Ureña J, García J, Pérez M. Efficient architectures for the generation and correlation of binary CSS
derived from different kernel lengths. IEEE Transactions on Signal Processing 2013; 61(19):4717–4728. DOI:
10.1109/TSP.2013.2273883.

15. Budisin S. Golay kernel 10 decomposition. Electronics Letters 2011; 47(15):853–855. DOI: 10.1049/el.2011.1327.
16. García E, García J, Ureña J, Pérez M, Hernández A. Generation algorithm for multilevel LS codes. Electronics Letters

2010; 46(21):1465–1467. DOI: 10.1049/el.2010.2073.
17. Tseng C-C, Liu C. Complementary sets of sequences. IEEE Transactions on Information Theory 1972; 18(5):644–

652. DOI: 10.1109/TIT.1972.1054860.
18. Darnell M, Kemp AH. Synthesis of multilevel complementary sequences. Electronics Letters 1988; 24(19):

1251–1252.
19. Budisin S. New complementary pairs of sequences. Electronics Letters 1990; 26(13):881–883. DOI:

10.1049/el:19900576.
20. Donato P, Funes M, Hadad M, Carrica D. Simultaneous correlation of orthogonal pairs of complementary sequences.

Electronics Letters 2009; 45(25):1332–1334. DOI: 10.1049/el.2009.2119.
21. Jauregui JS. Complementary sequences of length 26 (corresp.) IRE Transactions on Information Theory 1962;

8(4):323–323. DOI: 10.1109/TIT.1962.1057733.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2017)
DOI: 10.1002/cta

http://www.sciencedirect.com/science/article/pii/S0165168413000613
http://www.sciencedirect.com/science/article/pii/S0165168413000613

	Generation and correlation of orthogonal complementary pairs of sequences of lengths 2N10M26P based on an improved multilevel complementary sequences approach
	Summary
	Introduction
	Complementary Pairs of Sequences
	Generation of Complementary Pairs of Sequences of Length 10 and 26
	New Multilevel Complementary Pairs of Sequences Generation Approach
	Simultaneous Correlation of Multilevel Complementary Pairs of Sequences
	Proposed Generator and Correlator of Binary Complementary Sequences of Length 2N10M26P
	Example of correlation of kernel 10
	Example of correlation of kernel 26

	Results
	Application in a Noisy Multi-User System
	Conclusions
	Acknowledgements
	REFERENCES




