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Abstract

The D-statistic is widely used in Statistical process control to reliably detect the out of control status, but by itself it offers no assistance as fault
identification tool. Some strategies, that work in the original or in the latent variable space, have been proposed to show the contribution of each
process variable to the calculated statistic. Nevertheless it is still an open research subject.

In this work, a straightforward strategy to decompose the D-statistic as a unique sum of each variable contribution is presented, that is applied
in the space of the original variables. Also an explanation is provided regarding the physical meaning of the negative contributions to the statistic.
The results of the proposed strategy are compared with those obtained in the latent variable space using other methods. As the new strategy works
in the original variable space, the selection of an appropriate method to calculate the number of retained latent variables which reduce the lost of
significant information, is avoided.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical process monitoring involves three activities:
detection of the out-of-control status, identification of the
variable(s) that signal this condition, and diagnosis of the source
cause for the abnormal behaviour. Monitoring focuses on the
detection and identification activities, while diagnosis provides
the information for determining the corrective action. The D-
statistic can detect the out of control status reliably but offers no
assistance in the identification of the variables responsible for
this status. Some strategies have been proposed to assign
variable-contribution values to the D-statistic taking into
account the multivariate nature of process data.

Regarding the methods that transform the data from the orig-
inal X-space to a latent variable-space, Jackson [1] proposed the
decomposition of the statistic into a sum of principal components.
If they represent a meaningful grouping of variables, the iden-
tification of out-of-control signals is readily apparent [2].
However in many examples it is difficult to associate a meaning
to a principal component and the characteristics associated with
out-of-control signals cannot be determined.
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If the D-statistic value is too large, which indicates that the
process is out of control, the scores of a new observation will be at
a large Mahalanobis distance from the center of the empirical
model based on Principal Component Analysis (PCA). Miller
et al. [3] and MacGregor et al. [4] proposed to evaluate the
contributions of each process variable to the scores that are outside
of their confidence limits. Furthermore Nomikos [5] presented an
approach to calculate the contributions of each process variable to
the D-statistic instead of to the scores, when latent variables
cannot be associated to a meaningful group of process variables.

Westerhuis et al. [6] extended the theory of contribution plots
to latent variable models with correlated scores and, introduced
control limits for the contributions that help in finding the
variables which behaviour are different with respect to those
contained in the reference data set.

Another approach for calculating variable contributions to the
D-statistic is carried out in the original X-space. Mason et al. [7]
provided a technique to decompose theD-statistic value into a sum
of N independent parts, where N is the number of measured
variables. The first term is calculated squaring a univariate t statistic
for one variable. The j-th term ( j=2,…, N) of the sum is another
component of the measurement vector adjusted by the estimates of
the mean and standard deviation of its conditional probability
distribution given the ( j−1) previously incorporated variables. As
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there exists no fixed order for incorporating measurements, the
decomposition ofD-statistic intoN independent components is not
unique. Certainly N! different non-independent partitions are
possible. The authors mention that frequently, for each partition the
main interest is focused only in two terms: the one corresponding to
the unadjusted contribution of a single selected variable and, the
term containing the adjusted contributions of one of the variables
after the adjustment of the (N−1) remaining ones. Nevertheless if
the inspection of this reduced set of terms is not enough to come to a
conclusion, all significant conditional terms should be compared to
a critical value, increasing the complexity of the identification of
the source fault. Later on, Mason et al. [8] introduced a sequential
computational scheme that reduces the number of required terms
that need to be computed in a decomposition.

In this work a new and straightforward strategy to evaluate
variable contributions to theD-statistic is presented, that is carried
out in the original X-space. Also an explanation is provided
regarding the physical meaning of the negative contributions to
the statistic. The results of the proposed strategy are compared to
those obtained byWesterhuis et al. [6] in the latent variable space.

2. The D-statistic

Let x represent an N dimensional vector of measurements
made on a process at time t. When process is in control, it is
assumed that the x vectors are independent and follow a mul-
tivariate normal distribution with mean vectorμ and covariance
matrix Σ. The population parameters are estimated using the
sample mean vector ( x̄ ) and the sample covariance matrix (S)
from a reference sample containing I observations.

A multivariate control chart for the process is based on the
D-statistic, which has the form

D ¼ x� �xð ÞTS�1 x� �xð Þ ð1Þ

and follows a [N(I2−1) / (I2− IN)]FN,I−N,α distribution where,
FN,I−N,α is the value of the F distribution for a level of
significance α, with N and (I−N) degrees of freedom.

As it is shown in Eq. (1), the statistic has a quadratic form and
its value is always equal or greater than zero considering that the
covariance matrix is positive semi-definite. The minimum value
of the statistic is achieved when x= x̄ . In the case that only one
variable deviates from its mean value, for instance, xj= x̄ j, j=2,
Fig. 1. D(x1, x2) surfaces an
…, N and, x1≠ x̄ 1, a positive value of the D-statistic might be, a
priori, associated with the deviation of x1 with respect to x̄ 1, and
considered as the contribution of this variable to the statistic.

Furthermore notice that if two vectors of measurements are at
the same Euclidean distance from x̄ , but one of them deviates in
contradiction with the behaviour indicated by the covariance
matrix structure, the D-statistic value increases more for this
one, as it is exemplified in the next section.

3. Decomposition of the D-statistic

Let us consider the simple case in which a population
represented by two variables (x1 and x2) is monitored. The mean
vector is x̄ =[ x̄ 1 x̄ 2] and correlation matrix S is

S ¼ s21 q12s1s2
q12s1s2 s22

� �
ð2Þ

where s1 and s2 are the standard deviation for x1 and x2
respectively and, ρ12 is the correlation factor between x1 and x2.

Eq. (1) for the D-statistic can be reformulated in terms of the
variable deviations as follows:

D ¼ 1

1� q12ð Þ2s1s2 ð s2s1 x1 � �x1ð Þ2þ s1
s2

x2 � �x2ð Þ2

�2q12 x1 � �x1ð Þ x2 � �x2ð ÞÞ ð3Þ

In accordance with the correlation matrix, for given mag-
nitudes of variable deviations, if ρ12N0 the smallest value of D
will be achieved when both variable deviations present the same
sign. On the other hand, if ρ12b0 the smallest value occurs
when the variable deviations are of opposite sign.

The D-statistic for a new observation is zero if x1= x̄ 1 and
x2= x̄ 2. If x1≠ x̄ 1, the minimum value of the statistic given x1 is
not achieved for x2= x̄ 2. In Fig. 1 a plot of D in terms of x1
and x2 is presented. The value of variable x2 for which D is
minimum given x1 is indicated as x2

⁎,x1. As can be seen in this
figure, x2

⁎,x1 depends on the selected value for x1.

For the monitoring of N variables, the D-statistic can be
formulated as

D ¼
XN
i¼1

XN
j¼1

ai; jxixj; ð4Þ
d D(x2, parameter: x1).



Fig. 2. Contribution of the k-variable to D.

Table 1
Numerical example. Data reported by De Maesschalck et al. [10]

Observation x1 x2 x3 x4

1 4.00 3.00 1.00 2.00
2 5.00 4.00 2.00 3.50
3 8.00 7.00 3.00 4.00
4 8.00 6.00 5.00 4.00
5 9.00 7.00 2.00 3.00
6 6.00 3.00 5.00 3.00
7 6.00 5.00 3.00 2.50
8 10.00 8.00 2.00 3.00
9 2.00 3.00 1.50 3.40
10 4.00 4.00 3.00 3.00
11 6.00 6.00 6.00 4.00
12 6.50 4.50 0.00 2.00
13 9.00 8.00 5.00 5.00
14 4.00 5.00 1.00 1.00
15 4.00 6.00 3.00 5.00
16 6.00 7.00 2.00 4.00
17 2.50 4.50 6.00 4.00
18 5.00 5.50 8.00 3.00
19 7.00 5.50 1.00 2.50
20 8.00 5.00 3.00 3.00
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where aij are the elements of the inverse of the covariance matrix
(A=S−1) and, for the sake of simplicity it is considered that

xk ¼ xmeasured
k � �xk : ð5Þ

for k=1,…,N.
Let us reformulate the D-statistic in terms of the variable xk

as follows and, call it Dk

D ¼ Dk ¼ ak; kx
2
k þ ð2XNj ¼ 1

j p k

ak; jxjÞxk þ XN
i ¼ 1
i p k

XN
j ¼ 1
j p k

ai; jxixj: ð6Þ

The value of xk (xk⁎) for whichD is minimum given the (N−1)
values of the remaining variables (Dk

MIN) is calculated using the
following partial derivative equation

ADk

Axk jxi¼cte;i¼1::N ;ipk
¼ AD

Axk jxi¼cte;i¼1::N ;ipk

¼ 2ak;kxk þ ð2XNj ¼ 1
j p k

ak;jxjÞ: ð7Þ

The resulting formulas for xk⁎ and Dk
MIN are the following

x4k ¼ �

PN
j ¼ 1
j p k

ak;jxj

ak;k
; ð8Þ

DMIN
k ¼ �

ð PNj ¼ 1
j p k

ak; jxjÞ2

ak;k
þ
XN
i ¼ 1
i p k

XN
j ¼ 1
j p k

ai;jxixj

¼ �ak;kx
42
k þ

XN
i ¼ 1
i p k

XN
j ¼ 1
j p k

ai;jxixj; ð9Þ

and, the difference between the value of the D-statistic for the
observed value for variable xk and Dk

MIN is

D� DMIN
k ¼ ak;k xk � x4k

� �2
: ð10Þ
It would be valuable to use this difference to measure the
contribution of the xk variable to the statistic value, but it should
be notice that some problems may arise. For example, if all
variables except x1 are at their mean values and, variable xj is
strongly correlated with x1, the contribution measure of xj
estimated using Eq.(10) will be large, even if xj remains at its
mean value. To avoid these problems, a new formulation is
developed in which Eq. (10) is included.

The sum of the Dk
MIN for k=1,…, N is

XN
k¼1

DMIN
k ¼

XN
k¼1

�ak;kx
⁎2
k þ

XN
i ¼ 1
i p k

XN
j ¼ 1
j p k

ai;jxixj

0
BB@

1
CCA

¼
XN
k¼1

�ak;kx
⁎2
k

� �þXN
k¼1

XN
i ¼ 1
i p k

XN
j ¼ 1
j p k

ai;jxixj

0
BB@

1
CCA; ð11Þ

and considering that ai,j=aj,i, Eq. (11) is re-written as follows

XN
k¼1

DMIN
k ¼ N � 2ð ÞDþ

XN
k¼1

ak;k x2k � x⁎2k
� �

: ð12Þ

The D-statistic is obtained from Eq. (12). It is evaluated as
the sum of the contributions of each variable, ck

D (k=1,…, N)

D ¼
XN
k¼1

ak;k
2

xk � x⁎k
� �2þ x2k � x⁎2k

� �h i

¼
XN
k¼1

ak;k x2k � x⁎kxk
� � ¼XN

k¼1

cDk ð13Þ

The contribution ck
D is represented in Fig. 2. The picture

shows that the contribution has a quadratic form and its roots are
located at xk=0 (xk

measured− x̄ k=0) and xk=xk⁎.



Table 2
Test observations

Test number Observation Euclidean distance to the mean

TEST1 [1.000 5.350 3.125 3.245] 5.000
TEST2 [11.00 5.350 3.125 3.245] 5.000
TEST3 [1.000 7.000 3.125 3.245] 5.265
TEST4 [11.00 7.000 3.125 3.245] 5.265
TEST5 [8.000 7.000 11.00 5.000] 8.475
TEST6 [2.000 8.000 8.000 7.000] 7.803
TEST7 [2.100 3.100 7.900 4.900] 6.769
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Eq. (13) provides a straightforward decomposition of the
D-statistic into the contributions of each variable. They are
obtained in the space of the original variables using the same
formulation for all of them.

The proposed decomposition of the D-statistic also allows
to understand the meaning of a negative variable-contribution
and to estimate a bound for it. For the case shown in Fig. 2, ck

D is
negative if 0bxkbxk⁎. The minimum contribution value is ckmin

D

that is located at xk= xk⁎ / 2. If xk is out of 0≤ xk≤ xk⁎ the
D-statistic is positive and it increases with |xk|. The value of
variable xk contradicts the correlation structure if xkb0. On
the other hand, a value of xk> xk⁎ represents a large positive
deviation with respect to the mean, in the direction indicated
by the correlation matrix.

4. Application examples

In this section variable contributions to the D-statistic are ob-
tained using both our proposed strategy and the method presented
byWesterhuis et al. [6]. Results are compared for two case studies.

In Westerhuis approach the decomposition of the D-statistic
for a new observation using a previously developed empirical
model in terms of latent variables was defined as follows

D ¼
XN
k¼1

tTnewB
�1 xnew;kp

T
k PTP
� ��1

h iT
¼
XN
k¼1

cDk ð14Þ

where P is the loading matrix with R retained P.C,s, tnew is the
vector of scores obtained by projecting the new measurement
Fig. 3. Variance reconstruction using: A—the co
xnew onto the model and, B is the covariance matrix of the score
vectors corresponding to the reference population.

It should be mentioned that there exist several methods to
calculate R, therefore as Valle et al. [9] mentioned, the decision
to choose the R value could be very subjective. Consequently,
certain amount of the available information could be lost by the
projection.

4.1. Numerical example

Let us consider as reference population the one reported by
De Maesschalck et al. [10] that is composed by 20 observations
of four variables, as shown in Table 1. The corresponding
mean vector is x̄ =[6 5.35 3.125 3.245]. In addition, seven
test observations are proposed to show how their effects on
the D-statistic are interpreted by each strategy. These test ob-
servations are included in Table 2. Notice that the pairs of
measurements TEST1/TEST2 and TEST3/TEST4 have the same
Euclidean distance from the mean vector but some variables
present deviations of different sign and magnitude.

Since the strategy developed by Westerhuis et al. [6] uses a
latent variable model, two PCA of the reference data are per-
formed considering both the covariance matrix and the
correlation matrix. Figs. 3 and 4 show the total variance recon-
struction and the variable variance reconstruction, respectively.
In view of the results shown in Fig. 4, it is decided to perform
the comparative studies using a PCA based on the correlation
matrix because it provides better variable reconstructions in the
plane defined by the first and second P.C.s.

In Table 3 the D-statistic values are presented for 2, 3 and 4
retained P.C.s; also the limit values for two levels of signifi-
cance (α=0.05 and α=0.01) are provided. The statistic values
that are greater than the critical ones are underlined.

The same statistic value is obtained for TEST1 and TEST2. It
is independent of the deviation sign because the three remaining
variables are at their mean values. Thus any deviation sign
equally contradicts the correlation structure.

For TEST3 and TEST4 two variables deviate with respect to
their means. The deviation of variable 2 is the same for both
observations. In contrast, the deviation of variable 1 has the
variance matrix, B—the correlation matrix.



Table 4
Variable contributions to D (cDk )

Fig. 4. Variable reconstruction: A—covariance matrix, B—correlation matrix.
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same magnitude but different sign. Note that DTEST3>DTEST4

and it is also greater than the critical value when all P.C.s are
taken into account, that is, when there is no lost of information
regarding the correlation matrix structure.

The difference between TEST3 and TEST4 arises because the
sign of TEST3's deviation contradicts more the correlation
structure. Furthermore it should be noticed that the value of
DTEST3 remains lower than the critical value and also lower than
DTEST4 when the number of retained P.C.s is reduced.

For the observation TEST5, DTEST5 is greater than the statistic
critical value for α=0.05 but not for α=0.01. Regarding TEST6,
DTEST6 is larger than the critical value of the statistic for both
levels of significance. The D-statistic value for TEST7 decreases
slightlywhen the number of retained P.C.s. diminishes.When two
of them are considered, a false alarm is produced for α =0.05.

Table 4 shows the values of the variable contributions to the
statistic for each observation. They are calculated using our
methodology presented in Section 3, which is identified as O.S.
(original space) and, the strategy based on latent variables for 4,
3 and 2 retained P.C.s.
Table 3
Critical D values for different number of retained principal components

Observation Retained
components

D value Critical D value
(α =0.05)

Critical D value
(α =0.01)

TEST1, TEST2 4 11.92 14.99 23.80
TEST1, TEST2 3 2.852 11.25 18.25
TEST1, TEST2 2 1.718 7.88 13.33
TEST3 4 24.49 14.99 23.80
TEST3 3 2.198 11.25 18.25
TEST3 2 0.702 7.880 13.33
TEST4 4 5.832 14.99 23.80
TEST4 3 4.138 11.25 18.25
TEST4 2 3.315 7.880 13.33
TEST5 4 15.36 14.99 23.80
TEST5 3 15.32 11.25 18.25
TEST5 2 10.22 7.88 13.33
TEST6 4 27.42 14.99 23.80
TEST6 3 20.34 11.25 18.25
TEST6 2 14.74 7.880 13.33
TEST7 4 10.88 14.99 23.80
TEST7 3 10.12 11.25 18.25
TEST7 2 10.12 7.880 13.33
For observations TEST1 and TEST2, only variable 1 deviates
from its mean value. Consequently the statistic value is equal to
the contribution of that variable.

Regarding the observation TEST3, c1
D>c2

D for all the analysed
cases. This indicates x1 deviation contradicts more the correlation
structure than x2. Although observations TEST3 and TEST4 are at
the same Euclidean distance with respect to the mean, TEST4

originates a lower violation of the correlation structure. Conse-
quently x1 and x2 contributions to DTEST4 are lower than the
corresponding values for DTEST3 in the original space and also
when all the P.C.s are retained.

As it is shown in Table 4, the proposed strategy provides the
same variable contribution values as the method by Westerhuis
et al. [6] when all P.C.s are retained. This fact is demonstrated
in Appendix 1. Also it can be observed that the sign of vari-
able contributions sometimes change for different numbers of
retained P.C.s.
Observation cD1 cD2 cD3 cD4 D Strategy

TEST1, TEST2 11.92 0.000 0.000 0.000 11.92 4 P.C.s
TEST1, TEST2 2.852 0.000 0.000 0.000 2.852 3 P.C.s
TEST1, TEST2 1.718 0.000 0.000 0.000 1.718 2 P.C.s
TEST1, TEST2 11.92 0.000 0.000 0.000 11.92 O.S.
TEST3 16.59 7.906 0.000 0.000 24.49 4 P.C.s
TEST3 2.367 −0.169 0.000 0.000 2.198 3 P.C.s
TEST3 1.065 −0.362 0.000 0.000 0.702 2 P.C.s
TEST3 16.59 7.906 0.000 0.000 24.49 O.S.
TEST4 7.256 −1.425 0.000 0.000 5.832 4 P.C.s
TEST4 3.337 0.801 0.000 0.000 4.138 3 P.C.s
TEST4 2.371 0.944 0.000 0.000 3.315 2 P.C.s
TEST4 7.256 −1.425 0.000 0.000 5.832 O.S.
TEST5 1.024 −0.233 14.97 −0.402 15.36 4 P.C.s
TEST5 0.7743 0.121 15.10 −0.682 15.32 3 P.C.s
TEST5 −0.187 0.477 6.917 3.016 10.22 2 P.C.s
TEST5 1.024 −0.233 14.97 −0.402 15.36 O.S.
TEST6 9.872 7.986 1.292 8.266 27.42 4 P.C.s
TEST6 3.465 0.681 0.239 15.96 20.34 3 P.C.s
TEST6 1.449 0.081 5.553 7.662 14.74 2 P.C.s
TEST6 9.872 7.986 1.292 8.266 27.42 O.S.
TEST7 0.582 3.290 3.905 3.105 10.88 4 P.C.s
TEST7 2.626 1.261 4.242 1.996 10.13 3 P.C.s
TEST7 2.657 1.252 4.156 2.056 10.12 2 P.C.s
TEST7 0.582 3.290 3.905 3.105 10.88 O.S.



Table 5
Tubular reactor

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

Mean 2.108 4.060 1.948 6.243 6.248
Standard deviation 0.077 0.142 0.124 0.106 0.010

Variable 6 Variable 7 Variable 8 Variable 9 Variable 10

Mean 0.997 6.346 6.289 6.270 5.728
Standard deviation 0.027 0.012 0.009 0.009 0.232

Mean and standard deviation of the scaled data.
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Furthermore it can be demonstrated that the proposed strategy
reproduces the results provided by Westerhuis's technique for a
lower number of retained P.C.s, when an appropriate covariance
matrix is used. In this case the minimum variable-contribution
concept is maintained, allowing a clearer interpretation of the
sign of variable contributions to the D-statistic.

4.2. Tubular reactor example

Let us consider a tubular reactor where the reaction A+
B→3C takes place. The set of measured variables is composed
by ten observations: the inlet composition of A, B and C com-
pounds, inlet reactor temperature, refrigerant temperature, inlet
flowrate, reactor temperature at axial positions of 10m and 20m,
outlet reactor temperature and outlet composition of C com-
pound, which are identified as variables 1 to 10, respectively.

Thirty seven runs are used to build the reference population.
The mean and standard deviation of the scaled data are shown in
Table 5, and the correlation matrix is included in Table 6. Four
additional simulated runs are considered to show the perfor-
mance of the strategies to identify the variables which deviations
are considered in each test run, and not to isolate the source of the
Table 6
Tubular reactor

Var 1 2 3 4 5

1 1.000 0.210 0.072 −0.584 −0.015
2 0.210 1.000 0.257 −0.468 −0.036
3 0.072 0.257 1.000 −0.269 0.102
4 −0.584 −0.468 −0.269 1.000 0.241
5 −0.015 −0.036 0.102 0.241 1.000
6 0.207 0.135 0.136 0.011 0.135
7 0.556 0.229 0.285 −0.648 0.560
8 0.332 0.052 0.280 −0.135 0.728
9 0.053 −0.105 0.112 0.148 0.987
10 0.948 0.376 0.119 −0.485 0.214

Correlation matrix.

Table 7
Variable contributions to D (ck

D) calculated into the original variable space (OS)

Run c1
D c2

D c3
D c4

D c5
D

A1 3.040 −0.020 336.8 3.770 39
A2 −356.0 −33.10 −0.100 −207.0 −1486
A3 −523.0 35.70 1.000 −273.0 955
A4 11.75 −111.0 2.890 34.64 −912

The greatest variable contribution for each run is indicated in bold.
faults. For run (A1) an increment in the composition of com-
ponent C in the feed is simulated. An increase in the outlet
temperature is considered in run (A2). The third run, (A3), shows
a reduction in both the refrigerant temperature and the reactor
temperature at 10 m as well as a high value on the C concen-
tration at the reactor outlet. The last run, (A4), corresponds to a
reduction in the outlet temperature and an increment in the inlet
concentration of component C.

Variable contributions to the D-statistic, calculated using O.S.
strategy, are presented in Table 7 for each run the D-statistic is
greater than the critical values (Dα=0.05=30.2,Dα =0.01=41.9 for
I=37 andN=10), consequently an alarm arises in the space of the
original variables.

A PCA of the same data gives that a total variance recon-
struction of 75.4% is achieved when three P.C.s are retained,
using the Cattell's criterion [1]. If only two P.C.s are retained,
this value is reduced to 64%.

Table 8 contains variable contribution values calculated using
the strategy based on latent variables when three P.C.s. are con-
sidered in the analysis. Only the statistic value for (A1) is greater
than the critical values (Dα=0.05=9.404, Dα=0.01=14.405). To
highlight the effects of an incorrect selection of R, an analysis
considering just two retained P.C.s is included. In this case, none
of the observations originate an alarm, as Table 9 indicates
(Dα=0.05=6.903, Dα=0.01=11.130).

In Tables 7 to 9, the greatest variable contribution for each run is
indicated in bold. As can be seen in Table 7, for (A1) the main
contribution corresponds to the third variable (inlet C concentra-
tion), which is consistent with the actual simulated deviation The
same result is obtained using the other strategy (see Tables 8 and 9).

For (A2) the decomposition in the original variable space
identifies a problem in the outlet reactor temperature (variable 9)
but this is not pointed out correctly in the latent variable space.
6 7 8 9 10

0.207 0.556 0.332 0.053 0.948
0.135 0.229 0.052 −0.105 0.376
0.136 0.285 0.280 0.112 0.119
0.011 −0.648 −0.135 0.148 −0.485
0.135 0.560 0.728 0.987 0.214
1.000 0.081 0.071 0.115 0.271
0.081 1.000 0.703 0.648 0.614
0.071 0.703 1.000 0.760 0.465
0.115 0.648 0.760 1.000 0.246
0.271 0.614 0.465 0.246 1.000

c6
D c7

D c8
D c9

D c10
D

.85 0.540 21.59 2.770 −59.70 −3.290
5.300 74.70 4.100 1294 805.3

.8 −0.900 504.0 16.20 −1287 680.0

.0 1.320 −83.80 3.120 736.6 358.4



Table 8
Variable contributions to D (ck

D) with 3 P.C.s

Run c1
D c2

D c3
D c4

D c5
D c6

D c7
D C8

D c9
D c10

D

A1 0.436 −0.010 113.1 0.125 −0.036 0.084 −0.14 −0.180 0.019 0.204
A2 0.035 0.007 −0.010 0.062 0.081 −0.030 0.245 −0.150 0.012 −0.06
A3 0.133 0.098 −0.150 0.259 0.097 0.0435 0.3343 −0.189 0.116 0.011
A4 −0.010 0.142 −0.060 0.081 0.157 0.083 0.250 −0.160 0.155 0.106

The greatest variable contribution for each run is indicated in bold.

Table 9
Variable contributions to D (ck

D) with 2 P.C.s

Run c1
D c2

D c3
D c4

D c5
D c6

D c7
D C8

D c9
D c10

D

A1 −0.045 −0.001 2.981 0.025 0.014 −0.010 −0.045 −0.034 0.010 −0.026
A2 −0.060 −0.099 −0.007 0.275 0.868 −0.032 −0.062 0.412 0.702 0.001
A3 −0.035 0.007 −0.010 0.062 0.081 −0.033 0.245 −0.146 0.119 −0.057
A4 −0.003 0.132 −0.051 0.079 0.163 0.085 0.249 −0.159 0.155 0.109

The greatest variable contribution for each run is indicated in bold.
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For Case (A3), Table 7 shows that the major contributions to
theD-statistic are provided by the refrigerant temperature (variable
5), the outlet C concentration (variable 10) and the temperature at
10 m (variable 7). When 3 or 2 P.C.s are considered, the only
important contribution is attributed to the temperature at 10 m.

The variable contributions for Case (A4) are presented in
Table 7 and they indicate problems with the temperature and
C concentration at the reactor outlet (variables 9 and 10). This
situation is not highlighted in the results shown in Tables 8 and 9.

It should be mentioned that some of the alarms that are no
fired by the D-statistic in the latent variable space could be
eventually detected by the Square Prediction Error (SPE)-
Statistic, which is used for monitoring the residual part in the
PCA model. However this work is just devoted to analyze the
performance of the proposed D-statistic decomposition.

5. Conclusions

In this work a strategy to decompose theD-statistic as the sum
of variable contributions is proposed, that can be applied in the
original variable space. The proposed decomposition provides a
clear understanding of positive and negative variable-contribu-
tions and estimates a bound for the negative ones.

The estimation of each variable contribution is the same
obtained by other authors in the latent variable space when all the
principal components are retained. The proposed technique can
be applied to monitor measured variables in the original space
using only the D-statistic, without the lost of information origi-
nated by the projection into an incorrectly dimensioned P.C. space
that may lead to detection faults (Type II Error), as for example in
the case of TEST3, and false alarms (Type I Error) as in TEST7.

Problems in applying the proposed technique may arise
when the number of variables is large in comparison with the
number of samples. In this case the correlation matrix becomes
ill-conditioned. Since the method uses the inverse of this matrix,
only an analysis in the latent variable space can be performed.
Nevertheless, it must be kept in mind that the results are
obtained based on an unreliable correlation matrix. Otherwise if
the correlation matrix is well conditioned, the interpretation of
monitoring results using the proposed technique is straightfor-
ward independently of the number of variables.
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Appendix 1

Given the empirical model in terms of the whole set of latent
variables

X ¼ TPT; ðA1Þ

whereX is the data matrix and, T and P represent the matrices of
scores and loadings respectively, the contribution of a new
measured variable to the D-statistic is calculated by Westerhuis
et al. [6] as follows

cDk ¼ tTnewB
�1 xnew;kp

T
k PTP
� ��1

h iT
ðA2Þ

The inverse of the covariance matrix of scores (B−1) is
defined as

B�1 ¼ TTT

I � 1

� ��1

ðA3Þ

where

T ¼ XP ðA4Þ

and consequently,

tTnew ¼ xT
newP: ðA5Þ
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If the empirical model is based on PCA then, PT=P−1

because P is an orthonormal matrix. In consequence, Eq. (A2)
can be reformulated as

cDk ¼ xT
newP

PTXTXP

I � 1

� ��1

xnew;kp
T
k

� 	T
¼ xT

newP PTSP
� ��1

pkxnew;k ðA6Þ

As matrices PT, S and P are square and non-singular, the
reversal rule for inverse products can be applied, consequently

cDk ¼ xT
newPP�1S�1 PT

� ��1
pkxnew;k ðA7Þ

cDk ¼ xT
newS

�1Ppkxnew;k ðA8Þ

The product of (Ppk) is a column vector with only one non-zero
element for position k, thus the contribution is evaluated as follows

cDk ¼
XN
j¼1

xnew; jajk

 !
xnew;k ¼ akkx

2
k þ

XN
j ¼ 1
j p k

akjxj

0
BBB@

1
CCCAxk

¼ akk x2k þ

PN
j ¼ 1
j p k

akjxj

akk
xk

0
BBBBBB@

1
CCCCCCA ðA9Þ

Eq. (A9) is the same obtained for the proposed strategy in the
original variable space.
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