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bstract

Five different objective functions were studied with the purpose of analyzing their performance for parameters estimation of vapor–liquid
quilibrium models for a series of 13 non-polar and 13 polar asymmetric binary mixtures at high pressures. Peng–Robinson equation of state
oupled with the Wong–Sandler mixing rules were used for modeling the VLE in all cases. The first two objective functions are based on the
alculation of the distribution coefficients for each component in the mixture and the remaining objective functions involve additional calculations
f other quantities such as the bubble point pressure. In general, the optimal parameters obtained from all objective functions showed a good
rediction capacity of the behavior of the vapor phase. It is also demonstrated that a good prediction of the pressure depends on the form of the
bjective function. It was found that one objective function has slight advantages over the other analyzed objective functions: first, it does not

nvolve additional iterative calculations as the bubble point or isothermal flash for each data point; second, the optimal second virial coefficient
nteraction parameter shows to be in concordance with the statistical thermodynamic postulates; and finally, VLE predictions using the optimal
arameters obtained with the help of this objective function show very good representations of both the vapor phase and pressure.

2006 Elsevier B.V. All rights reserved.
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. Introduction

In chemical processes design, an accurate prediction of the
hase equilibria of the involved mixtures is essential. There-
ore, an appropriate thermodynamic model for representing
hase behavior is required. The selection of a model requires
he knowledge of at least the main characteristics of compo-
ents in the mixture (polar and, non-polar molecules, light
ases and heavy components) and system temperature and
ressure. Usually, a γ–Φ approach is considered at low and
oderated pressures. As both system pressure and asymme-
ry (which can be identified by a noticeable difference among
he infinite dilution activity coefficients of each component)
ncrease, a Φ–Φ approach is most appropriate. In this case,
n equation of state (EOS) coupled with an appropriate mix-
ng rule for the attractive-term and the covolume is strongly
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equired for an accurate prediction of the vapor–liquid equilib-
ium (VLE).

The van der Waals (vdW) mixing rules can only represent
ixtures of components with similar sizes. They are generally

imited to non-polar and slightly polar mixtures. Moreover, its
eometry is inadequate for composition variations and, although
any works have been developed to improve the vdW mix-

ng rules [1–9], they are, generally, unsuitable for describing
omplex systems. Since many mixtures involved in chemical
rocesses are highly nonideal, mixing rules based on excess
ree energy takes great importance for representing the proper-
ies of nonideal mixtures. This kind of mixing rules has been
riginally developed by Huron and Vidal [10] who equated the
xcess Gibbs free energy at infinite pressure derived from a
ubic EOS to that obtained from a liquid-activity coefficient
odel in order to calculate the attractive-term parameter, am.
dditionally, they proposed a linear relationship for the covol-

me parameter, bm. Due to inconsistencies in this mixing rule
11,12], some researchers have made several efforts to relax
he infinite-pressure limit imposed on the Huron–Vidal mixing
ule [13–18], obtaining satisfactory VLE predictions for many
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omplex mixtures. Other mixing rules based on zero reference
ressure models have been developed by Twu and coworkers
19–21]. Such models reproduce the excess Gibbs free energy
s well as the liquid activity coefficients of any activity model
ithout requiring any additional binary interaction parameter.
Alternatively, the Wong–Sandler mixing rules [11], using the

nfinite pressure reference state and including the correct zero-
ressure limit for the composition dependence of the second
irial coefficient, are currently one of the most popular mixing
ules for cubic EOS. Several authors have shown the applicabil-
ty of these mixing rules in phase equilibrium prediction [22–33]
nd others have demonstrated their limitations [19–21,34].

Generally, VLE at high pressures can be calculated using
ctivity coefficient model parameters from available values at
ow pressures. However, in the case of highly asymmetric mix-
ures, especially those containing light gases and heavy solutes,
uch parameters are not available. In such cases, it is possible
o calculate the activity coefficient model parameters and the
nteraction parameter from VLE data by optimizing an appro-
riate objective function (OF). This approach has the advantage
f achieving a moderate computing time and a good accuracy
n the phase equilibrium prediction. These OF can be derived
rom the least squares principle or from the maximum likeli-
ood principle [35]. In the least squares principle, the error is
efined as the difference between the experimental point and the
alculated value. Then, the OF to minimize is the quadratic error
ummation over the experimental data set:

=
np∑
i=1

nc∑
j=1

(uexp
i,j − ucal

i,j )
2

(1)

here np is the number of experimental data points, nc the num-
er of components and uij are the dependent variables. The
pplication of the maximum likelihood principle requires the
nowledge of the measurement error for each experimental vari-
ble. In this case, the OF is similar to that of the least squares
rinciple, but the statistical variance associated with the mea-
ured variables (σ2

ij) should be taken into account:

=
np∑
i=1

nm∑
j=1

(wexp
ij − wcal

ij )
2

σ2
ij

(2)

here wij are the measured variables (liquid composition, x;
apor composition, y; temperature, T; and pressure, P), and
m is the number of measured variables. The optimal param-
ters which minimize the Eq. (2) are those that maximize the
ikelihood function of the parameters [36]. The maximum like-
ihood principle requires that the measurements are only subject
o random errors. In addition, the model must be capable of rep-
esenting the measurements within an order less than the order
f the experimental uncertainties [37]. At the present time, the
east squares principle (Eq. (1)) is the most popular for obtain-
ng interaction parameters from VLE data. Additionally, several

f these computational methods applicable to parameters opti-
ization from VLE data have been strongly analyzed [36–44].
In the present work five different OF were analyzed in order to

valuate their accuracy to represent both the vapor phase and the

w
e
e
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ressure behavior in isothermal asymmetric binary mixtures at
igh pressures. The Peng–Robinson EOS [45] coupled with the
ong–Sandler mixing rules [11] have been used in the VLE esti-
ation. The NRTL model [46] was utilized to predict the excess
elmholtz free energy. The second virial coefficient binary inter-

ction parameter k12 and the NRTL model parameters τ12 and
21 were calculated for 13 non-polar and 13 polar asymmetric
ixtures at high pressures by optimizing each one of the five

nalyzed OF. A Levenberg–Marquardt minimization algorithm
as used in all cases.

. Equation of state and mixing rules

The Peng–Robinson (PR) equation of state [45] has the fol-
owing form:

= RT

v − b
− a

v(v + b) + b(v − b)
(3)

here P is the pressure, T the absolute temperature and R is the
deal gas constant. a and b are the energy and the size parameters,
espectively, which are calculated from:

= 0.457235
R2T 2

c

Pc
α(Tr) (4)

= 0.077796
RTc

Pc
(5)

he subscripts c and r denote critical and reduced conditions,
espectively. The correlation for the α function is:

(Tr) = [1 + κ(1 − √
Tr)
]2

(6)

= 0.37464 + 1.54226ω − 0.26992ω2 (7)

here ω is the acentric factor. In order to apply the PR EOS to
ixtures, the Wong–Sandler [11] mixing rules were used. The

m and bm parameters have the following form:

m = bm

[∑
i

zi

ai

bi

+ A-
E∞
C

]
(8)

ith

m =
∑

i

∑
jzizj

(
b − a

RT

)
ij

1 −∑izi
ai

biRT
− A-

E∞
CRT

(9)

= 1√
2

ln(
√

2 − 1) (10)

nd

b − a

RT

)
ij

= (b − (a/RT ))i + (b − (a/RT ))j
2

(1 − kij)

(11)
here kij is a second virial coefficient binary interaction param-
ter, z is the molar fraction and A-

E∞ is the excess Helmholtz free
nergy at infinite pressure which is calculated from an excess
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J.A. López et al. / Fluid Phas

ibbs free energy model. The thermodynamic relation between
hese excess free energies is:

-
E(T, P, x) = A-

E(T, P, x) + PV-
E(T, P, x) (12)

Since at low pressures, V-
E is small, the difference between

-
E and A-

E is also small. Consequently, Wong and Sandler [11]
stablished the following approximation:

-
E(T, P = low,x) = A-

E(T, P = low,x) = A-
E(T, P = ∞, x)

(13)

Therefore, the excess Helmholtz free energy is much less
ressure-dependent than the excess Gibbs free energy. In this
ork, the excess Helmholtz free energy at infinite pressure was

alculated with the NRTL model [46]:

A-
E∞

RT
=
∑

i

zi

(∑
jzjτjigji∑
kzkgki

)
(14)

ij = exp(−αijτij) (15)

In the case of binary mixtures, α12 (=α21), τ12 and τ21 are
he three parameters of the NRTL model. As recommended by
enon and Prausnitz [46], a constant value of α12 (0.3) was used

n this work. In this contribution, the adjustable parameters of
he NRTL model: τ12 and τ21 and the second virial coefficient
inary interaction parameter k12 have been determined using
xperimental phase equilibrium data at isothermal conditions
or each of the 13 non-polar and the 13 polar asymmetric binary
ystems by the minimization of five different OF.

. Asymmetric binary mixtures

In the present work, 13 non-polar (gas + non-polar solute)
nd 13 polar (gas + polar solute) asymmetric binary mixtures
ave been analyzed. The experimental conditions and the lit-
rature source of each data set are shown in Tables 1 and 2.
ata for 37 isotherms with 364 experimental points were stud-

ed for gas + non-polar mixtures and 33 isotherms with 315
xperimental points were studied for gas + polar mixtures. Sev-
ral mixtures containing carbon dioxide and other compounds
limonene, isoamyl acetate, ethyl caproate, ethyl laurate, 1-
eptanol, linalool, decanal) have a great importance in the field
f supercritical fluid extraction. For example, the limonene and
he linalool are the principal compounds of citrus oil. Since
he linalool is one of the most important flavor fractions of
his oil, it is common to remove the limonene to concentrate
he oxygenated compounds as the linalool. On the other hand,
sters as isoamyl acetate, ethyl caproate and ethyl laurate are
idely used in the food, cosmetic and pharmaceutical indus-

ries. The production of these compounds is generally carried
ut by chemical synthesis, but the use of toxic organic solvents
or food and health products is being progressively restricted.
herefore, the supercritical fluid extraction with carbon dioxide
s one of the industrial alternatives to produce these and other
sters [69].

The VLE study of carbon dioxide + styrene mixtures has a
reat importance in petrochemical industries. Styrene is com-
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only produced by dehydrogenation of ethylbenzene. As the
eaction is not completed, separation of styrene + ethylbenzene
ixtures using supercritical carbon dioxide as a solvent may

e an attractive method [70]. Additionally, some works have
hown that the synthesis of polystyrene from the polymeriza-
ion of styrene in supercritical carbon dioxide has an increasing
mportance as production process [71–74].

. Objective functions

In order to determine the optimal parameters for the VLE
odel, two OF that take into account the coefficient distribu-

ion calculation and three OF that require bubble point pressure
alculation from an additional iterative process have been ana-
yzed. The first two OF are implicit models which are based on
he calculation of the distribution coefficients for each compo-
ent:

1 =
np∑
i=1

nc∑
j=1

[
ln Kcal

i,j − ln K
exp
i,j

]2
(16)

2 =
np∑
i=1

nc∑
j=1

[
y

exp
i,j − Kcal

i,j x
exp
i,j

]2
(17)

here K is the distribution coefficient for both phases. The
emaining OF involve additional iterative procedures for calcu-
ating their optimal values and are explicit models because the
djusted variables are calculated from a bubble point pressure
alculation algorithm. Therefore, the implementation of these
F has larger computing time requirements in comparison with

he implicit functions. The studied explicit OF are:

3 =
np∑
i=1

[
P

exp
i − Pcal

i

P
exp
i

]2

(18)

4 =
np∑
i=1

nc∑
j=1

[
y

exp
i,j − ycal

i,j

y
exp
i,j

]2

(19)

5 =
np∑
i=1

[
P

exp
i − Pcal

i

P
exp
i

]2

+
np∑
i=1

nc∑
j=1

[
y

exp
i,j − ycal

i,j

y
exp
i,j

]2

(20)

here P is the bubble point pressure and y represents the molar
raction in vapor phase. As it has seen shown, OF f5 is a comple-
ent of functions f3 and f4. However, this does not assure that

he binary parameters obtained by these three functions will be
dentical. Although these OF have very similar computing times,
he vapor–liquid equilibrium calculations using their optimal
arameters will give a major precision represented in the pres-
ure or the vapor phase composition (or both), but this depends
f the objective function form.

In the literature, some authors have used OF f1 for the param-
ters optimization of VLE data in asymmetric mixtures of light

ases + hydrocarbons and alcohols [75] and carbon dioxide + n-
lkanes [76], obtaining good predictions for pressure and not
ery good predictions for vapor composition. OF f2 and f4 are
he less used to estimate binary interaction parameters in both
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Table 1
Experimental conditions for non-polar asymmetric binary mixtures

System np T (K) Pressure range (bar) Reference

Hydrogen + n-hexadecane 7 461.65 20.3–252.7 [47]

Helium + toluene

5 423.50 51.4–151.6 [48]
5 464.40 50.9–152.0 [48]
5 505.20 51.4–153.2 [48]
5 545.60 50.63–151.7 [48]

Nitrogen + toluene
5 464.50 51.9–152.2 [48]
5 505.50 50.8–152.3 [48]
5 545.20 51.1–151.6 [48]

Carbon dioxide + propane
25 230.00 8.9–71.1 [49]
17 270.00 32.0–79.5 [49]

Carbon dioxide + n-pentane
12 310.15 5.6–73.1 [50]
13 333.15 5.9–87.5 [50]
16 363.15 9.4–96.7 [50]

Carbon dioxide + benzene
8 298.15 8.9–57.7 [51]
9 313.15 14.8–77.5 [51]

Carbon dioxide + styrene

9 333.15 60.3–112.0 [52]
9 338.15 62.4–119.0 [52]

10 343.15 60.0–131.0 [52]
8 348.15 62.9–134.2 [52]

Carbon dioxide + n-decane
22 344.30 63.8–127.4 [53]
26 377.60 103.4–164.8 [53]

Carbon dioxide + limonene
5 313.20 39.4–78.7 [54]
5 323.20 39.4–92.7 [54]
5 333.20 49.9–102.6 [54]

Ethane + n-decane
10 410.95 9.4–91.7 [55]
12 444.25 7.0–115.0 [55]

Propylene + benzene

10 453.15 15.0–60.0 [56]
9 473.15 20.0–60.0 [56]
6 523.15 40.0–60.0 [56]
3 543.15 45.0–55.0 [56]

n-Pentane + toluene
11 293.15 0.02–0.56 [57]
11 303.15 0.04–0.82 [57]
11 313.15 0.07–1.16 [57]

n-Hexane + benzene

10 303.15 0.15–0.25 [57]
10 313.15 0.24–0.37 [57]
10 323.15 0.36–0.54 [57]
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ymmetric and asymmetric systems at high pressures. On the
ther hand, OF f3 and f5 are the most popular for estimating
oth the binary interaction parameter and the activity coeffi-
ient models parameters from VLE data at high pressures and
emperatures. Therefore, it is necessary to develop a detailed
tudy which involves explicit and implicit models and to find an
dequate OF that guarantees small computing times and suitable
xactitude for representing the VLE with respect to the corre-
ated data.
. Results and discussion

The parameters estimation was performed using the
evenberg-Marquardt minimization algorithm for each mixture

�

.15 0.52–0.76 [57]

ith OF f1–f5. Therefore, 185 minimizations in gas + non-polar
inary mixtures and 165 minimizations in gas + polar binary
ixtures were carried out. The optimal NRTL model param-

ters (τ12 and τ21) and the second virial coefficient interaction
arameter (k12) are reported for the non-polar asymmetric binary
ixtures and for the polar asymmetric binary mixtures in the

upplementary material.
The deviations between experimental data and calculated val-

es with PR EOS and the Wong–Sandler mixing rules were
stablished through the relative percentage deviations in the bub-
le point pressure:
P =
np∑
i=1

|Pexp − Pcal|
Pexp

(
100

np

)
(21)
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Table 2
Experimental conditions for polar asymmetric binary mixtures

System np T (K) Pressure range (bar) Reference

Nitrogen + methanol
8 298.15 6.7–101.9 [58]
8 308.15 6.8–101.5 [58]
8 318.15 7.4–98.5 [58]

Nitrogen + dimethylether
16 288.15 4.4–84.8 [59]
15 308.15 7.8–84.3 [59]
15 318.15 10.2–83.3 [59]

Carbon dioxide + isoamylacetate
7 308.15 10.3–69.3 [60]
8 318.15 10.0–80.3 [60]
9 328.15 10.3–90.7 [60]

Carbon dioxide + ethylcaproate
8 308.20 17.0–64.6 [61]

10 318.20 17.0–78.2 [61]
12 328.20 17.3–92.2 [61]

Carbon dioxide + ethyllaurate
8 308.15 14.8–70.0 [62]
8 318.15 14.8–83.1 [62]
9 328.15 14.8–100.1 [62]

Carbon dioxide + 1-heptanol
8 374.63 40.4–145.7 [63]
6 431.54 68.3–168.1 [63]

Carbon dioxide + linalool
5 313.20 40.0–79.9 [64]
5 323.20 40.0–97.8 [64]

Carbon dioxide + decanal
10 288.20 19.3–48.1 [65]
11 303.20 21.7–67.6 [65]
12 313.20 82.2–16.8 [65]

Ethane + 2-propanol
9 308.15 21.9–49.9 [66]
8 313.15 31.7–53.6 [66]

Ethane + cyclohexanol
10 333.15 10.0–190.0 [67]
10 393.15 10.0–190.0 [67]
10 453.15 10.0–190.0 [67]

Ethylene + 1-decanol
9 308.15 10.3–103.6 [55]

11 318.15 14.6–124.0 [55]

Propane + 1-decanol
7 408.15 12.2–63.5 [55]
8 448.15 3.9–58.2 [55]

n
483.15 20.9–21.3 [68]
493.15 25.1–24.5 [68]

p

�
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r

-Hexane + 1-propanol
13
14

The absolute mean deviation in the molar fraction in the vapor
hase is a follows:

y =
np∑
i=1

|yexp − ycal| 1

np
(22)

They are also reported in the supplementary material. The
ptimal parameters shown in Tables 1 and 2 in the supplemen-
ary material were used to predict the phase equilibrium of the
onsidered mixtures. The agreement with the experimental data
s generally satisfactory as shown in Figs. 1–10.

Experimental and predicted phase equilibrium for the carbon
ioxide + limonene binary system is shown in Fig. 1. Predic-
ions with the optimal parameters obtained from OF f3 and f5 are
ompared. It can be appreciated that predictions corresponding

o f5 are slightly better than those corresponding to f3. Figs. 2–4
how experimental and predicted VLE for ethane + n-decane,
ropylene + benzene and n-hexane + benzene binary mixtures,
espectively. In these three figures, the OF that do not involve

Fig. 1. Experimental and predicted VLE for carbon dioxide + limonene binary
system. Comparison of accuracy of two objective functions. Experimental data
taken from Iwai et al. [54]. Prediction with PR EOS coupled with the WS mixing
rules.
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Fig. 2. Experimental and predicted VLE for ethane + n-decane binary system.
Comparison of accuracy of two objective functions. Experimental data taken
from Gardeler et al. [55]. Prediction with PR EOS coupled with the WS mixing
rules.

Fig. 3. Experimental and predicted VLE for propylene + benzene binary system.
Comparison of accuracy of two objective functions. Experimental data taken
from Guo et al. [56]. Prediction with PR EOS coupled with the WS mixing
rules.

Fig. 4. Experimental and predicted VLE for n-hexane + benzene binary system.
Comparison of accuracy of two objective functions (OF 2 and OF 3, identical
predictions). Experimental data taken from Li et al. [57]. Prediction with PR
EOS coupled with the WS mixing rules.

Fig. 5. Experimental and predicted VLE for carbon dioxide + ethyl caproate
binary system. Comparison of accuracy of two objective functions. Experimental
data taken from Hwu et al. [61]. Prediction with PR EOS coupled with the WS
mixing rules.

Fig. 6. Experimental and predicted VLE for carbon dioxide + ethyl laurate
binary system. Experimental data taken from Cheng et al. [62]. Prediction with
PR EOS coupled with the WS mixing rules with the obtained parameters from
OF 2.

Fig. 7. Experimental and predicted VLE for carbon dioxide + 1-heptanol binary
system. Experimental data taken from Elizalde-Solis et al. [63]. Prediction with
PR EOS coupled with the WS mixing rules with the obtained parameters from
OF 3.
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Fig. 8. Experimental and predicted VLE for carbon dioxide + linalool binary
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Fig. 10. Experimental and predicted VLE for n-hexane + 1-propanol binary sys-
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ystem. Comparison of accuracy of two objective functions. Experimental data
aken from Iwai et al. [64]. Prediction with PR EOS coupled with the WS mixing
ules.

dditional iterative calculations as the bubble point pressure (f1
nd f2) are compared with those that involve this kind of cal-
ulations (f3–f5). It is important to note that the advantage of
sing implicit methods over explicit ones is the great reduction
n the computing time. As it was mentioned in a previous work
76], explicit methods require on the average nine times more
PU time per iteration related to the implicit methods. A good
greement with the experimental data can be seen in these fig-
res. Moreover, in ethane + n-decane and propylene + benzene
symmetric binary mixtures (see Figs. 2 and 3, respectively),
he predictions obtained from implicit methods do not present
ery well the VLE near the critical point. In the case of n-
exane + benzene symmetric binary mixture (see supplementary

aterial), the predictions with the optimal parameters obtained

rom OF f2 and f3 are almost identical. Moreover, differences
etween predictions from explicit and implicit methods can be
ound when the asymmetry of the mixtures was increased.

ig. 9. Experimental and predicted VLE for carbon dioxide + decanal binary
ystem. Comparison of accuracy of two objective functions. Experimental data
aken from Vázquez da Silva et al. [65]. Prediction with PR EOS coupled with
he WS mixing rules.
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em. Comparison of accuracy of two objective functions. Experimental data
aken from Oh et al. [68]. Prediction with PR EOS coupled with the WS mixing
ules.

Fig. 5 shows the experimental and predicted VLE for the
ighly asymmetric carbon dioxide + ethyl caproate binary sys-
em. Here, OF f2 and f4 are compared. In both cases, the vapor
hase representations are very accurate taking into account the
ange of experimental data. It can be observed that OF f4 gave
oor predictions for pressure, while OF f2 gave excellent pre-
ictions.

VLE for carbon dioxide + ethyl laurate asymmetric binary
ystem is shown in Fig. 6. Experimental data are compared with
he calculations with optimal parameters obtained from OF f2.
t the three considered temperatures, all the predictions were

ccurate in both pressure and vapor phase composition.
The capability of OF f3 is analyzed in Fig. 7. This figure

hows the experimental and predicted phase equilibrium for car-
on dioxide + 1-heptanol binary system. The predictions with
he optimal parameters obtained using this OF are very accurate
elated to the experimental data. Moreover, for the two consid-
red temperatures, the deviations corresponding to OF f3 and f5
re similar (see Table 2 in supplementary material).

Two important systems for the analysis of supercritical fluid
xtraction with carbon dioxide are shown in Fig. 8 (carbon
ioxide + linalool) and Fig. 9 (carbon dioxide + decanal). Again,
mplicit and explicit models are compared. Although all predic-
ions are very similar for both asymmetric mixtures, calculations
eveloped with OF f2 present light deviations near the critical
oint of both mixtures.

Experimental and predicted VLE (with the optimal param-
ters obtained from OF f3 and f4) for n-hexane + 1-propanol
inary system are compared in Fig. 10. Both OF are explicit
odels. The predictions with OF f4 are not accurate in the range

f experimental data (see Fig. 10), while those ones with OF f3
re very satisfactory.

In terms of numerical capacity, OF f1 shows a bigger numer-

cal instability than the other analyzed OF. First, for sev-
ral binary mixtures (hydrogen + n-hexadecane at 461.65 K,
elium + toluene at 505.20 and 545.60 K, nitrogen + toluene at
45.20 K, n-pentane + toluene at 303.15 and 313.15 K, carbon
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Table 3
Average deviations in the VLE prediction of parameters obtained from each
objective function for both non-polar and polar binary systems

Objective function Non-polar systems Polar systems

�P �y �P �y

f1 5.6838 0.0150 11.2268 0.0133
f2 2.1224 0.0319 2.7097 0.0185
f3 1.4706 0.0430 2.7518 0.0098
f
f

c
e
o
t
m
r
d
t
s
t
f
o

F
+

F
2
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ioxide + ethyl laurate at 318.15 K and carbon dioxide + decanal
t 313.20 K), the optimal second virial coefficient interaction
arameter violates the quadratic composition dependence of the
econd virial coefficient, since it takes unrealistic values (see the
ables in the supplementary material). In addition, in very few
ases (hydrogen + n-hexadecane at 461.65 K, helium + toluene
t 545.60 K, nitrogen + methanol at 308.15 and 318.15 K, and
itrogen + dimethyl ether at 288.15 K), the other OF also gener-
ted unrealistic values for this parameter. An explanation to this
act is that the second virial coefficient interaction parameter
s used with the purpose of compensating the initial difference
etween the excess Helmholtz free energy at infinite pressure
alculated using an EOS and the excess Gibbs free energy at
ow pressure calculated from activity coefficient model. Addi-
ionally, in highly asymmetric systems, its value is strongly
ependent on the composition. This dependence becomes larger
s the asymmetry increases. Therefore, a constant value of kij

ver the entire composition range will not be enough to repro-
uce the GE activity model from an equation of state. These
llogical values lead to the violation of the quadratic composi-
ion dependence of the second virial coefficient [34]. Therefore,
or highly nonideal mixtures, it is necessary to find the virial
oefficient binary interaction parameter as a function of the
omposition. On the other hand, in one case (carbon diox-
de + decanal at 288.20 K), the OF f1 did not show convergence

n a real range of initial values. Additionally, in many systems
helium + toluene at 464.40 K, propylene + benzene at 543.15 K,
-pentane + toluene at 303.15 K, carbon dioxide + ethyl laurate
t 308.15 and 318.15 K, carbon dioxide + linalool at 323.20 K,

p
a
s
o

ig. 11. Deviations between experimental points and calculated values of y and P fo
, OF 2; �, OF 3; �, OF 4; ©, OF 5.

ig. 12. Deviations between experimental points and calculated values of y and P fo
; �, OF 3; �, OF 4; ©, OF 5.
4 7.1928 0.0143 12.3279 0.0072

5 1.5833 0.0152 3.3485 0.0092

arbon dioxide + decanal at 288.20, 303.20 and 313.20 K and
thane + 2-propanol at 313.15 K), the minimization using this
bjective function presented satisfactory convergence, but when
he deviations were calculated with the corresponding opti-

al parameters, illogical values were obtained, which were not
eported here. This is because, OF f1 does not involve proce-
ures for bubble point pressure calculation, which are necessary
o calculate those deviations. When OF f1 fails, the other OFs
atisfactory converge (see Tables 1 and 2 in the supplemen-
ary material). This error is directly due to the OF geometric
orm and not to the application of the Peng–Robinson equation
f state coupled with the Wong–Sandler mixing rules.

With the purpose of comparing the accuracy of each OF for

redicting the phase equilibrium of both gas + non-polar solute
nd gas + polar solute asymmetric binary mixtures at high pres-
ures, Table 3 shows the average deviations of these predictions
btained from each OF. Also, for two of the studied asymmet-

r carbon dioxide + n-pentane at 363.15 K. Parameters obtained from: �, OF 1;

r propane + n-decanol at 448.15 K. Parameters obtained from: �, OF 1; +, OF
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J.A. López et al. / Fluid Phas

ic systems, the residuals were calculated with the purpose of
aking more informative the quality of the obtained parame-

ers. These residuals are the difference between the experimental
oint and the calculated value. Their statistical analysis can indi-
ate how well the thermodynamic model represents the data and
ow precise the data are [38]. The residuals plots for carbon diox-
de + n-pentane at 363.15 K and propane + n-decanol at 448.15 K
re shown in Figs. 11 and 12, respectively. In general terms, the
ptimal parameters obtained from the different explicit models
OFs f3–f5) are similar, but not identical. On the other hand, the
ptimal parameters obtained using implicit models (OFs f1 and

2) are very different. In terms of accuracy for representing the
hase equilibria, all the OF gave good predictions for the vapor
hase composition, but OF f4 showed best results than the others
n both gas + non-polar and gas + polar binary systems. The OF
epresented the bubble point pressure in a best way were f2, f3
nd f5.

. Conclusions

In this work, five different OF were analyzed regarding its
apability to represent the phase equilibrium in highly asym-
etric binary mixtures at elevated temperatures and pressures.
dditionally, the ability of Peng–Robinson EOS coupled with

he Wong–Sandler mixing rules and the NRTL model for repre-
enting fluid phase equilibrium of these nonideal mixtures was
emonstrated. All the OF gave good predictions for the vapor
hase behavior. Only OF f2 (based on coefficient distribution cal-
ulations), f3 (based on bubble point pressure calculations) and
5 (based on bubble point pressure and vapor phase composition
alculations) represented the bubble point pressure satisfactory.
urthermore, it was found that OF f2 has some advantages over

he other analyzed OFs. Firstly, this OF does not involve addi-
ional iterative calculations as the bubble point or isothermal
ash for each data point, resulting in a great reduction in the com-
uting time requirements. Secondly, the optimal second virial
oefficient interaction parameter showed to be concordant with
he statistical thermodynamic postulates, since its value does
ot violate the quadratic composition dependence of the sec-
nd virial coefficient. Finally, VLE predictions with the optimal
arameters obtained using this OF showed very good predic-
ions for both vapor phase and pressure. Therefore, objective
unction f2 presents attractive features for parameter estimation
f EOS and activity coefficient models from experimental data
or appropriately representing the VLE.

ist of symbols
, b equation of state parameters

-
E excess Helmholtz free energy

b − a/RT)ij cross second virial coefficient
constant defined by Eq. (10)
objective function (Eqs. (1) and (2))

1–f5 objective functions denoted by Eqs. (16)–(20), respec-

tively

ij parameter defined by Eq. (15)

-
E excess Gibbs free energy

ij second virial coefficient interaction parameter

A

i
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ij distribution coefficient
c number of components
m number of measured variables
p number of experimental data points

pressure
gas constant
temperature
volume in molar units

-
E excess volume

ij dependent variables in Eq. (1)
ij measured variables in Eq. (2)

liquid molar fraction
vapor molar fraction
molar fraction

reek letters
(Tr) temperature-dependent alpha function
ij NRTL model parameter

activity coefficient
deviation
Peng–Robinson alpha function parameter
statistical variance in Eq. (2)

12, τ21 NRTL model binary interaction parameter
fugacity coefficient
acentric factor

ubscripts
critical point
mixture
reduced conditions
infinite condition

uperscripts
excess property

xp experimental
al calculated

cronyms
OS equation of state
RTL non-random two liquid
F objective function
R Peng–Robinson
dW van der Waals
LE vapor–liquid equilibrium
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