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Abstract

We consider the region of small transverse momenta in the production of high-mass systems in
hadronic collisions. By using the current knowledge on the infrared behaviour of tree-level and one-
loop QCD amplitudes atO(α2

S), we analytically compute the general form of the logarithmically-
enhanced contributions up to next-to-next-to-leading logarithmic accuracy. By comparing the results
with qT -resummation formulae we extract the coefficients that control the resummation of the
large logarithmic contributions for both quark and gluon channels. Our results show that within the
conventional resummation formalism the Sudakov form factor is actually process-dependent. 2001
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1. Introduction

The transverse-momentum distribution of systems with high invariant mass produced in
high-energy hadron collisions is important for QCD studies and for physics studies beyond
the Standard Model (see, e.g., Refs. [1–4]).

We consider the inclusive hard-scattering process

(1)h1(p1)+ h2(p2) → F
(
Q2, q2

T ;φ) + X,
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where the final-state systemF is produced by the collision of the two hadronsh1 andh2

with momentap1 andp2, respectively. The final stateF is a generic system of nonstrongly
interacting particles, such asoneor morevector bosons(γ ∗,W,Z, . . .), Higgs particles
(H ) and so forth. We denote by

√
s the center-of-mass energy of the colliding hadrons

(s = (p1 + p2)
2 � 2p1p2), and byQ2 and q2

T the invariant mass and total transverse
momentum of the systemF , respectively. The additional variableφ in (1) denotes the
possible dependence on the kinematics of the final state particles inF (such as rapidities,
individual transverse momenta and so forth).

We assume that at the parton level the systemF is produced with vanishingqT (i.e., with
no accompanying final-state radiation) in the leading-order (LO) approximation. SinceF

is colourless, the LO partonic subprocess is eitherqf q̄f ′ annihilation, as in the case ofγ ∗,
W andZ production, orgg fusion, as in the case of the production of a Higgs bosonH .

When the transverse momentum of the produced systemq2
T is of the order of its

invariant massQ2 the fixed order calculation is reliable.3 In the regionq2
T 
 Q2

large logarithmic corrections of the formαn
S/q

2
T log2n−1Q2/q2

T appear, which spoil the
convergence of fixed-order perturbative calculations. The logarithmically-enhanced terms
have to be evaluated at higher perturbative orders, and possibly resummed to all orders
in the QCD coupling constantαS. The all-order resummation formalism was developed
in the eighties [5–14]. The structure of the resummed distribution is given in terms of a
transverse-momentum form factor and of process-dependent contributions.

The coefficients that control the resummation of the large logarithmic contributions for
a given process in (1) can be computed at a given order if an analytic calculation at large
qT at the same order exists. At first order inαS the structure of the large logarithmic
contributions is known to be universal and depends only on the channel in which the system
is produced in the LO approximation. At second relative order inαS, only a few analytical
calculations are available, like the pioneering one for lepton-pair Drell–Yan production,
performed by Ellis, Martinelli and Petronzio in Ref. [15]. Using the results of Ref. [15]
Davies and Stirling [14] (see also [16]) were able to obtain the complete structure of the
O(α2

S) logarithmic corrections for that process.
The analysis performed by Davies and Stirling is by far nontrivial because it requires the

integration of the analyticqT distribution in the smallqT limit. Moreover, the calculation
cannot tell anything about the dependence of these coefficients on the particular process
in (1) and should in principle be repeated for each process.

In this paper we address this problem with a completely independent and general
method. Our basic observation is that the large logarithmic corrections are of infrared (soft
and collinear) nature, and thus their form can be predicted once and for all in a general
(process independent) manner.

The structure of the logarithmically-enhanced contributions atO(αn
S) is controlled by

the infrared limit of the relevant QCD amplitudes at the same order. The infrared behaviour
of QCD amplitudes atO(αS) is known since long time [17]. Recently, soft and collinear
singularities arising in tree-level [18,19] and one-loop [20–23] QCD amplitudes atO(α2

S)

3 It is assumed that all other dimensionful invariants are of the same orderQ2.
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have been extensively studied and the corresponding kernels have been computed [18–25].
By using this knowledge, and exploiting the relatively simple kinematics of the process (1),
we will construct general approximations of the relevant QCD matrix elements that are able
to control all singular regions corresponding toqT → 0 avoiding double counting. By using
these approximations we will compute the general structure of theO(α2

S)-logarithmically-
enhanced contributions both forqq̄- and forgg-initiated processes.

The results provide an important check of the validity of the resummation formalism
and allow to extract the general form of the resummation coefficients. In particular, in the
quark channel we can confirm the results of Ref. [14] in the case of Drell–Yan and in the
gluon channel we can give the coefficients in the important case of Higgs boson production
through gluon–gluon fusion.

The universality of our method relies on the fact that the infrared factorization formulae
we use depend only on the channel (qq̄ or gg) in which the systemF is produced at LO
and not on the details ofF .

Our main results were anticipated in a short letter [26]. This paper is organized as
follows. In Section 2 we review the framework of the resummation formalism and present
the strategy for the calculation. In Section 3 we perform the calculation explicitly for the
O(αS) corrections and extract the first order coefficients. Sections 3 and 4 are devoted to
the calculation atO(α2

S) for the quark and the gluon channel and constitute the main part
of this work. Finally in Section 6 we present our final results and discussion.

2. Resummation formula

The transverse momentum distribution for the process in Eq. (1) can be written as:

(2)
dσF

dQ2dq2
T dφ

=
[

dσF

dQ2dq2
T dφ

]
res.

+
[

dσF

dQ2 dq2
T dφ

]
fin.

.

Both terms on the right-hand side are obtained as convolutions of partonic cross sections
and the parton distributionsfa/h(x,Q2) (a = qf , q̄f , g is the parton label) of the colliding
hadrons.4

The partonic cross section that enters in the resummed part (the first term on the right-
hand side) contains all the logarithmically-enhanced contributionsαn

S/q
2
T logmQ2/q2

T .
Thus, this part has to be evaluated by resumming the logarithmic terms to all orders in
perturbation theory. On the contrary, the partonic cross section in the second term on the
right-hand side is finite (or at least integrable) order-by-order in perturbation theory when
qT → 0. It can thus be computed by truncating the perturbative expansion at a given fixed
order inαS.

4 Throughout the paper we always use parton densities as defined in theMS factorization scheme andαS(q
2)

is the QCD running coupling in theMS renormalization scheme.
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Since in the following we are interested in the small-qT limit we will be concerned only
with the first term in Eq. (2). The resummed component is5[

Q2 dσF

dQ2 dq2
T dφ

]
res.

=
∑
a,b

1∫
0

dx1

1∫
0

dx2

∞∫
0

db
b

2
J0(bqT )fa/h1

(
x1, b

2
0/b

2)fb/h2

(
x2, b

2
0/b

2)
(3)× sWF

ab(x1x2s;Q,b,φ).

The Bessel functionJ0(bqT ) and the coefficientb0 = 2e−γE (γE = 0.5772. . . is the Euler
number) have a kinematical origin. To correctly take into account the kinematics constraint
of transverse-momentum conservation, the resummation procedure has to be carried out in
the impact-parameterb-space. The resummed coefficientWF

ab is

WF
ab(s;Q,b,φ)

=
∑
c

1∫
0

dz1

1∫
0

dz2C
F
ca

(
αS

(
b2

0/b
2), z1

)
CF

c̄b

(
αS

(
b2

0/b
2), z2

)
δ
(
Q2 − z1z2s

)

(4)× dσ
(LO)F
cc̄

dφ
SF
c (Q,b),

wheredσ
(LO)
cc̄ /dφ corresponds to the leading order cross section for the production of

the large invariant mass systemF in the cc̄ channel, withc representing either a quark
q or a gluong. The resummation of the large logarithmic corrections is achieved by
exponentiation, that is by showing that the Sudakov form factor can be expressed as

(5)Sc(Q,b) = exp

{
−

Q2∫
b2

0/b
2

dq2

q2

[
Ac

(
αS

(
q2)) log

Q2

q2
+ Bc

(
αS

(
q2))]}

.

The functionsAc(αS),Bc(αS), as well as the coefficient functionsCab(αS, z) in Eqs. (4),
(5) are free of large logarithmic corrections and have perturbative expansions inαS as

(6)Ac(αS) =
∞∑
n=1

(
αS

2π

)n

A(n)
c ,

(7)Bc(αS) =
∞∑
n=1

(
αS

2π

)n

B(n)
c ,

(8)Cab(αS, z) = δabδ(1− z)+
∞∑
n=1

(
αS

2π

)n

C
(n)
ab (z).

5 This expression can be generalized to include the dependence on the renormalization and factorization scales
µR andµF , respectively (see, e.g., Ref. [27]).
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The coefficients of the perturbative expansionsA
(n)
c , B(n)

c andC
(n)
ab (z) are the key of

the resummation procedure since their knowledge allows to perform the resummation
to a givenLogarithmic order: A(1) leads to the resummation of leading logarithmic
(LL) contributions,{A(2),B(1),C(1)} give the next-to-leading logarithmic (NLL) terms,
{A(3),B(2),C(2)} give the next-to-next-to-leading logarithmic (NNLL) terms, and so
forth.6 The coefficient functionsC(n)

ab (z) depend on the process, as it has been confirmed

by calculations ofC(1)
ab (z) for several processes. The Sudakov form factorSc(Q,b) that

enters Eq. (4) is oftensupposedto be universal. However, as we will show, this is not the
case, and anticipating our results we label all process-dependent coefficients by the upper
indexF . The coefficientsA(1), B(1), A(2) are universal and are known both for the quark
[10] and for the gluon [13] form factors

A(1)
q = 2CF , A(1)

g = 2CA,

B(1)
q = −3CF , B(1)

g = −2β0,

(9)A(2)
q = 2CFK, A(2)

g = 2CAK,

where

(10)β0 = 11

6
CA − 2

3
nf TR

and

(11)K =
(

67

18
− π2

6

)
CA − 10

9
nf TR.

The NNLL coefficientB(2) was computed by Davies and Stirling [14] for the case of
Drell–Yan (DY):

B(2)DY
q = C2

F

(
π2 − 3

4 − 12ζ(3)
) + CFCA

(11
9 π2 − 193

12 + 6ζ(3)
)

(12)+ CFnf TR

(17
3 − 4

9π
2),

whereζ(n) is the Riemannζ -function (ζ(3) = 1.202. . .). It is also worth noticing that,
even though there is no analytical result available for it, the coefficientA

(3)
q,g has been

extracted numerically with a very good precision in Ref. [29].
As anticipated in the introduction, a direct way to obtain the coefficients in Eqs. (6), (7)

at a given order involves the computation of the differential cross sectiondσ/dq2
T dQ2dφ

at small qT at the same order. A comparison with the power expansion inαS of the
resummed result in Eq. (3) allows to extract the coefficients that control the resummation
of the large logarithmic terms. However, it has been shown by Davies and Stirling that is it
more convenient to takez = Q2/s moments7 of the differential cross section defining the
dimensionless quantity

(13)Σ(N) =
1−2qT /Q∫

0

dz zN
Q2q2

T

dσ0/dφ

dσ

dq2
T dQ2dφ

.

6 In a different classification the coefficientC(1) enters only at NNLL [28].
7 Here we follow Ref. [14] in the unconventional definition of the moments:f (N) = ∫ 1

0 dz zNf (z).
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Notice that in the definition ofΣ the cross section has been normalized with respect
to the lowest order partonic contributiondσ0/dφ and multiplied byq2

T to cancel its
1/q2

T singular behaviour in the limitqT → 0. The upper limit of integrationz = 1 −
2qT /Q(

√
1+ q2

T /Q
2 − qT /Q) ∼ 1 − 2qT /Q has been approximated to a first order

expansion inqT /Q and corresponds to the kinematics for the emission of soft particles
(i.e, when the center of mass energys is just enough to produce the system with
invariant massQ and transverse momentumqT ). Working with moments allows to avoid
complicated convolution integrals implicit in (3) and makes possible to factorize the parton
densities from the partonic contribution to the cross section. In this way, the corresponding
expression from the resummed formula (3) reads

(14)Σ(N) =
∑
i,j

fi/h1

(
N,µ2

F

)
fj/h2

(
N,µ2

F

)
Σij (N),

where

Σij (N) =
∑
a,b

∞∫
0

b db
q2
T

2
J0(bqT )C

F
ca

(
N,αS

(
b2

0/b
2))CF

c̄b

(
N,αS

(
b2

0/b
2))

(15)

×exp

{
−

Q2∫
b2

0/b
2

dq2

q2

[
Ac

(
αS

(
q2)) log

Q2

q2
+ BF

c

(
αS

(
q2))]

−
µ2
F∫

b2
0/b

2

dq2

q2
(γai + γbj )

(
N,αS

(
q2))}

and an ordered exponential is understood. Notice that the appearance of an extra term
involving the anomalous dimensionsγab in the exponential in (15) is due to the evolution
of the parton densities from the original scaleb2

0/b
2 in (3) to the arbitrary factorization

scaleµF at which they are now evaluated.
In order to extract the resummation coefficients, we can directly study the partonic

contributionΣij . Furthermore, since we want to perform a calculation ofΣij to O(α2
S)

and our main interest is the second order coefficientB(2), it is clear that only the diagonal
contribution Σcc̄ can give the desired information. Each possible “flavour changing”
contribution in Eq. (15) would add at least one extra power ofαS in the perturbative
expansion. ‘Nondiagonal’ contributions toΣij , which can be evaluated in a simpler way,
might be used to check the structure and consistency of the resummation framework at a
given perturbative order but do not provide any additional information on the coefficients.

In order to have transverse momentumqT �= 0 at least one gluon has to be emitted and,
therefore, the perturbative expansion ofΣcc̄ begins atO(αS)

(16)Σcc̄(N) = αS

2π
Σ

(1)
cc̄ (N) +

(
αS

2π

)2

Σ
(2)
cc̄ (N)+ · · · .
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From the expansion of the resummed formula (15) it is possible to obtain the expression
for the first two coefficients in (16) as8

(17)Σ
(1)
cc̄ (N) = A(1)

c log
Q2

q2
T

+ B(1)
c + 2γ (1)

cc (N)

and

Σ
(2)
cc̄ (N) = log3 Q2

q2
T

[
−1

2

(
A(1)

c

)2
]
+ log2 Q2

q2
T

[
−3

2

(
B(1)
c + 2γ (1)

cc (N)
)
A(1)

c + β0A
(1)
c

]
+ log

Q2

q2
T

[
A(2)

c + β0
(
B(1)
c + 2γ (1)

cc (N)
) − (

B(1)
c + 2γ (1)

cc (N)
)2

+ 2A(1)
c C(1)F

cc (N) − 2
∑
j �=c

γ
(1)
cj (N)γ

(1)
jc (N)

]
+ B(2)F

c + 2γ (2)
cc (N) + 2

(
B(1)
c + 2γ (1)

cc (N)
)
C(1)F

cc (N) + 2ζ(3)
(
A(1)

c

)2

(18)− 2β0C
(1)F
cc (N) + 2

∑
j �=c

[
C

(1)F
cj (N)γ

(1)
jc (N)

]
.

The computation ofΣ(1)
cc̄ (N) can provide information on the first order coefficientsA

(1)
c

(the logarithmic term in (17)) andB(1)
c (the constant term in (17)) as well as on the one-

loop anomalous dimensionsγ (1)
cc (N) (theN -dependent term in (17)9). In the same way,

the coefficientsA(2)
c andB(2)F

c can be extracted from the second order result (18). At this
order, also the coefficient functionsC(1)F

ij (N) contribute to the logarithmic and constant
terms and therefore should be known in order to be able to proceed with the extraction
of A

(2)
c andB

(2)F
c . Fortunately, there is another related quantity which allows to obtain

the coefficient functionsC(1)F
ij (N) from a first order calculation. This is theqT -integrated

cross section

(19)

p2
T∫

0

dq2
T

q2
T

Σic̄.

Whenp2
T 
 Q2 the perturbative expansion toO(αS) reads (neglecting again terms that

vanish whenpT → 0)

p2
T∫

0

dq2
T

q2
T

Σcc̄= αS

2π

[
−1

2
A(1)

c log2 Q2

p2
T

− (
B(1)
c + 2γ (1)

cc (N)
)
log

Q2

p2
T

+ 2C(1)F
cc (N)

]
,

(20)

p2
T∫

0

dq2
T

q2
T

Σic̄= αS

2π

[
−γ

(1)
ci (N) log

Q2

p2
T

+ C
(1)F
ci (N)

]
, i �= c.

8 For the sake of simplicity in the presentation, and unless otherwise stated, we fix the factorization and
renormalization scales toµ2

F = µ2
R = Q2.

9 Notice that all moments but one can actually be extracted. The remaining one can be obtained by imposing
quark number and momentum conservation rules.
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The integration overqT adds one power in the logarithm, with the coefficient functions
C

(1)F
ij (N) appearing now in the constant term. It is worth noticing that at variance with the

calculation ofΣ the configuration withqT = 0 now contributes to Eq. (19).
In the quark channel(c = q), for the sake of simplicity and in order to compare directly

with the calculation performed in [14], we will concentrate on thenonsingletcontribution
to the cross section defined by

(21)σNS =
∑
ff ′

(σqf q̄f ′ − σqf qf ′ ).

The second order expansion forΣNS
qq (N) in terms of the resummation coefficients reads

like the one in Eq. (18) but without the ‘singlet’ contributions involving
∑

j �=c and with
the corresponding nonsinglet anomalous dimension. In the following the label NS will be
always understood inΣqq̄ .

3. The calculation at O(αS)

The calculation atO(αS) is not difficult and the results are rather well known.
Nevertheless, we will give in this section the details on the computation as a way to present
the main ideas of the method developed to obtain the resummation coefficients.

At this order only one extra gluon of momentumk can be radiated and the kinematics
for the processcc̄ → g + F is (see Fig. 1)

(22)p1 + p2 → k + q.

We denote the corresponding matrix element byM(0)
cc̄→g F (p1,p2, k,φ) and the usual

invariants are defined as

(23)s = (p1 + p2)
2, u = (p2 − k)2, t = (p1 − k)2, z = Q2/s.

The differential cross section can be written as

dσcc̄→g F

dq2
T dQ2dφ

=
∫ ∣∣M(0)

cc̄→gF (p1,p2, k,φ)
∣∣2

8s(2π)2

(4π)εq−2ε
T

Γ (1− ε)

du

u

(24)× δ

(
1

u
(u− umax)(u− umin)

)
,

Fig. 1.O(αS) contribution to the process (1).
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where the two roots of the equation(p1 +p2 − q)2 = 0 are given by

umin = Q2
z − 1−

√
(1− z)2 − 4z q2

T /Q
2

2z
,

(25)umax= Q2
z − 1+

√
(1− z)2 − 4z q2

T /Q
2

2z
.

In order to regularize both ultraviolet and infrared divergences we work in the conventional
dimensional regularization scheme (CDR) with 4−2ε space–time dimensions, considering
two helicity states for massless quarks and 2− 2ε helicity states for gluons. The lowest-
order cross section (atqT = 0) needed to constructΣ in Eq. (13) is given by

(26)
dσ0

dφ
=

∣∣M(0)
cc̄→F (p1,p2, φ)

∣∣2
2s

,

in terms of the Born matrix element|M(0)
cc̄→F (p1,p2, φ)|2.

As has been stated, we want to obtainΣ
(1)
cc̄ by using our knowledge on the behaviour

of QCD matrix elements in the soft and collinear regions atO(αS). The starting point is
the observation that, whenq2

T is small, the additional gluon is constrained to be either
collinear to one of the incoming partons or soft. Thus there are three singular regions of
M(0)

cc̄→F (p1,p2, k,φ) in theqT → 0 limit:

• first collinear region:p1k → 0;
• second collinear region:p2k → 0;
• soft region:k → 0.

It is clear that, sinceq2
T is small but does not vanish, these regions do not produce any real

singularity, i.e., poles inε, but are responsible for the appearance of the logarithmically-
enhanced contributions. Whenp1k → 0 the matrix element squared factorizes as follows:

(27)
∣∣M(0)

cc̄→gF (p1,p2, k,φ)
∣∣2 � 4παSµ

2ε

z1p1k
P̂cc(z1, ε)

∣∣M(0)
cc̄→F (z1p1,p2, φ)

∣∣2,
where

(28)P̂qq (z, ε)= CF

[
1+ z2

1− z
− ε(1− z)

]
,

(29)P̂gg(z, ε) = 2CA

[
z

1− z
+ 1− z

z
+ z(1− z)

]
are theε-dependent real Altarelli–Parisi (AP) kernels in the CDR scheme. In the left-hand
side of Eq. (27) the matrix element squared is obtained replacing the two collinear partons
c andg by a partonc with momentumz1p1.

Notice that in the gluon channel there are additional spin-correlated contributions and
Eq. (27) is strictly valid only after azimuthal integration. Since here and in the following
we will always be interested in azimuthal integrated quantities, Eq. (27) can be safely used
also in the gluon channel.
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In the limit p2k → 0 the singular behaviour is instead

(30)
∣∣M(0)

cc̄→gF (p1,p2, k,φ)
∣∣2 � 4παSµ

2ε

z2p2k
P̂cc(z2, ε)

∣∣M(0)
cc̄→F (p1, z2p2, φ)

∣∣2.
Let us now consider the limit in which the gluon becomes soft. As it is well known soft-
factorization formulae usually involve colour correlations, that make colour and kinematics
entangled. In general colour correlations relate each pair of hard momentum partons in the
Born matrix element. In this case the hard momentum partons are only two and colour
conservation can be exploited to obtain:

(31)
∣∣M(0)

cc̄→gF (p1,p2, k,φ)
∣∣2 � 4παSµ

2εCc4S12(k)
∣∣M(0)

cc̄→F (p1,p2, φ)
∣∣2,

where

(32)S12(k) = p1p2

2p1kp2k

is the usual eikonal factor and we have defined

(33)Cq = CF , Cg = CA.

In Eq. (31) colour correlations are absent and factorization is exact. This feature will persist
also atO(α2

S).
In each of the singular regions discussed above, Eqs. (27), (30) and (31) provide an

approximation of the exact matrix element that can be used to compute the cross section
in the smallqT limit. In principle it might be possible to split the phase space integration
in regions where only soft or collinear configurations can arise, and use in each region the
corresponding approximation. Unfortunately, such method probes to be very difficult to be
extended toO(α2

S), where the pattern of singular configurations is much more complicated.
Thus our strategy is to unify the factorization formulae in order to obtain an approximation
that it is valid in the full phase space.

As can be easily checked, if we identify the momentum fractionsz1 andz2 with z, the
collinear factorization formulae in Eqs. (27), (30) contain the correct soft limit in Eq. (31).
Therefore, the unification of soft and collinear limits is rather simple: the usual collinear
factorization formula already contains both. Strictly speaking, one can use the symmetry in
the initial states in order to perform the integration in Eq. (24) only over half of the phase
space (i.e., by taking for instance onlyu = umax) and multiplying the result by two. In this
way only one possible collinear configuration can occur and Eq. (27) provides the needed
approximation for the matrix element.

At this order it is even possible to write down a general factorization formula for the three
configurations that shows explicitly the 1/q2

T singularity of the matrix element squared as

(34)
∣∣M(0)

cc̄→gF (p1,p2, k,φ)
∣∣2 → 4πµ2εαS

q2
T

2(1− z)

z
P̂cc(z, ε)

∣∣M(0)
cc̄→F (φ)

∣∣2,
where we have used Lorentz invariance in order to write|M(0)

cc̄→F (φ)|2 only as a function
of the final state kinematics. We can now use this formula to compute the smallqT

behaviour ofΣcc̄(N) in a completely process independent manner. In fact the process
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dependence, given by the Born matrix element, is completely factored out and cancels
in Σ . By replacing Eq. (34) in Eq. (24) and using the definition ofΣ we obtain, keeping
for future use itsε dependence:

Σ
(1)
cc̄ (N, ε) = 1

Γ (1− ε)

(
4πµ2

q2
T

)ε
1−2qT /Q∫

0

dz zN
2(1− z)P̂cc(z, ε)√
(1− z)2 − 4z q2

T /Q
2

(35)≡ 1

Γ (1− ε)

(
4πµ2

q2
T

)ε

CcFcc̄(N, ε).

Explicitly, settingε to 0, we have

Σ
(1)
qq̄ (N) = 2CF log

Q2

q2
T

− 3CF + 2γ (1)
qq (N),

(36)Σ(1)
gg (N) = 2CA log

Q2

q2
T

− 2β0 + 2γ (1)
gg (N),

for the quark and gluon channels. Comparing to Eq. (17) we see thatA
(1)
c = 2Cc is the

coefficient of the leading 1/(1−z) singularity in the AP splitting functions whereasB
(1)
c =

−2γ (1)
c is given by the coefficient of the delta function in the regularized AP kernels

(37)γ (1)
q = 3

2
CF , γ (1)

g = β0.

Finally, in order to obtain the coefficientC(1)
ab , we have to evaluate the integrals in

Eq. (19) and compare to the results from Eq. (20). As far as the diagonal contribution is
concerned, one has to take into account also the one-loop correction to the lowest order
cross section, a contribution formally proportional toδ(q2

T ). The interference between
the one-loop renormalized amplitude with the lowest order one depends of course on the
process. Nevertheless, its singular structure is universal and allows to write in general [30]

M(0)†
cc̄→FM

(1)
cc̄→F + c.c.

(38)= αS

2π

(
4πµ2

Q2

)ε
Γ (1− ε)

Γ (1− 2ε)

(
−2Cc

ε2 − 2γc
ε

+AF
c (φ)

)∣∣M(0)
cc̄→F

∣∣2.
The finite partAF

c depends (in general) on the kinematics of the final state noncoloured
particles and on the particular process in the class (1) we want to consider. In the case of
Drell–Yan we have [31]:

(39)ADY
q = CF

(−8+ 2
3π

2),
whereas for Higgs production in themtop → ∞ limit the finite contribution is [32]:

(40)AH
g = 5CA + 2

3
CAπ

2 − 3CF ≡ 11+ 2π2.

The diagonal term in Eq. (19) can be evaluated integrating Eq. (35), from 0 top2
T , keeping

into account the contribution in Eq. (38) and subtracting the following factorization
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counterterm in theMS scheme:

(41)R
(FCT)
cc̄ (N) = −2

ε

Γ (1− ε)

Γ (1− 2ε)

(
4πµ2

µ2
F

)ε

γ (1)
cc (N).

As for the nondiagonal contribution, one needsΣic̄(N), that can be computed, analogously
to Eq. (35) as

Σic̄(N) = 1

Γ (1− ε)

(
4πµ2

q2
T

)ε
1−2qT /Q∫

0

dz zN
(1− z)P̂ci (z, ε)√

(1− z)2 − 4z q2
T /Q

2

(42)→ 1

Γ (1− ε)

(
4πµ2

q2
T

)ε
1∫

0

dz zN P̂ci (z, ε),

where the functionŝPci(z, ε) are the nondiagonal AP splitting kernels

(43)P̂gq(z, ε) = CF

[
1+ (1− z)2

z
− εz

]
,

(44)P̂qg(z, ε) = TR

[
1− 2z(1− z)

1− ε

]
,

and the absence of singularities asz → 1 has been exploited to setqT → 0 in the integral.
The factorization counterterm to be subtracted in this case is

(45)R
(FCT)
ic̄ (N) = −1

ε

Γ (1− ε)

Γ (1− 2ε)

(
4πµ2

µ2
F

)ε

γ
(1)
ci (N).

Comparing the total results to Eq. (20) we obtain forC
(1)
ab :

(46)C
(1)F
ab (z) = −P̂ ε

ab(z)+ δabδ(1− z)

(
Ca

π2

6
+ 1

2
AF

a (φ)

)
,

whereP̂ ε
ab(z) represent theO(ε) term in the APP̂ab(z, ε) splitting kernels in Eqs. (28),

(29), (43), (44) and are given by:

P̂ ε
qq (z) = −CF (1− z), P̂ ε

gq(z) = −CF z,

(47)P̂ ε
qg(z) = −2TRz(1− z), P̂ ε

gg(z) = 0.

As can be observed, the coefficient function contains both ahard process dependent
contribution (proportional toAF

a (φ)) originated in the one-loop correction as well as a
‘residual’ collinear contribution proportional theε part of the splitting functions which
has origin in the particularities of theMS scheme (see Eq. (41)), where only theε = 0 (and
not the full) component of the splitting functions is factorized. The general expression
in Eq. (46) reproduces correctly the coefficientC

(1)
ab computed for Drell–Yan [14], Higgs

production in themtop → ∞ limit [33,34], γ γ [35] andZZ [36] production.

Summarizing theO(αS) results, the coefficientsA(1)
c andB

(1)
c are fully determined by

theuniversalproperties of soft and collinear emission. The functionC
(1)
ab depends instead

on the process through the one-loop corrections to the LO matrix element.
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4. The calculation at O(α2
S): the quark channel

At O(α2
S) Σqq̄(N) receives two contributions:

• Real emission of two partons recoiling against the final state systemF(Q2, q2
T ,φ);

• Virtual corrections to single-gluon emission.

In the following we compute these contributions in turn.

4.1. Real corrections

The computation of the double real corrections toΣqq̄(N) represents the most involved
part of the complete calculation. The difficulties arise both from the fact that the additional
parton in the final state implies three more phase space integrals, and from the appearence
of many more singular configurations that contribute to the limitqT → 0.

The kinematics for the double real emission processcc̄ → i + j + F is (see Fig. 2)

(48)p1 + p2 → k1 + k2 + q,

and the corresponding matrix element is denoted byM(0)
cc̄→ij F (p1,p2, k1, k2, φ). The

usual invariants are defined as

(49)s = (p1 + p2)
2, t = (p1 − q)2, u = (p2 − q)2, s2 = (k1 + k2)

2,

and fulfill the following relations

(50)s + t + u = Q2 + s2, q2
T = ut − s2Q

2

s
.

In terms of these invariants, the real contribution to the cross section at fixedq2
T is given

by

(51)

dσcc̄→ij F

dq2
T dQ2dφ

=
∫ ∣∣M(0)

cc̄→ij F (p1,p2, k1, k2, φ)
∣∣2

2s

(s2q
2
T )

−ε

(4π)4−2εΓ (1− 2ε)

du

Q2 − u

dΩ

2π
,

wheredΩ is

(52)dΩ = sinθ−2ε
2 dθ2 sinθ1−2ε

1 dθ1,

Fig. 2.O(α2
S) contribution from double real emission.



260 D. de Florian, M. Grazzini / Nuclear Physics B 616 (2001) 247–285

with the angles defined in the frame where the partons corresponding to momentumk1 and
k2 are back-to-back [15].

We see from Eq. (51) that the first step of the calculation involves the integration over
the two angles. The integrals needed here are typical of heavy quark production at NLO
and most of them can be found in Refs. [37,38]. The results of the angular integrals contain
poles up to 1/ε while terms that develop an extra additional singularity ass2 → 0 have to
be computed up toO(ε).

The second step is the integration overu (or s2). The integration limits are given by the
two rootsumax andumin in Eq. (25). At this point, it is convenient to define the ‘symmetric’
value for whichu = t

(53)u0 = Q2 −
√
s
(
q2
T + Q2

)
.

This value ofu corresponds also to the maximum ofs2

(54)smax
2 ≡ A = Q2

1+ z − 2
√

1+ q2
T /Q

2 √
z

z

and, in the CM frame ofp1 andp2, to the configuration whereqz = 0. The singularity in
s2 is made manifest by use of the identity

(55)

s−1−ε
2 = −1

ε
δ(s2)

(
1− ε logA + 1

2
ε2 log2A

)
+ 1

(s2)A+
− ε

(
logs2

s2

)
A+

+O
(
ε2),

with the distributions defined as:

(56)

A∫
0

ds2
f (s2)

(s2)A+
=

A∫
0

ds2

s2

(
f (s2)− f (0)

)
,

(57)

A∫
0

ds2f (s2)

(
logs2

s2

)
A+

=
A∫

0

ds2
logs2

s2

(
f (s2)− f (0)

)
.

In order to obtainΣ(N) one finally has to integrate overz, keeping only the terms
that do not vanish in the small-qT limit. At the beginning we consider only theN = 0
moment.10 We will later show how to perform the calculation for generalN , once one
moment is known, in a simpler way. Notice that after implementing the regularization of
the s2 = 0 singularities using Eq. (55), the last two integrals can be performed directly
in four dimensions, since the small transverse momentumqT acts as a regulator of other
possible singularities.

10 Notice that the calculation of a single moment is enough to obtain the resummation coefficientsA(2)

andB(2).
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The double real contributions to (the nonsinglet part of )Σ
(2)
qq̄ (N) fall into three classes,

according to the possible different final states:

• q + q̄ → q̄ + q + F ;
• q + q → q + q + F ;
• q + q̄ → g + g + F .

Notice that theq + q → q + q + F is needed to form the nonsinglet combination.
As we did atO(αS), to study the smallqT behaviour ofΣ we will rely on the structure

of soft and collinear singularities of the corresponding QCD matrix element. In principle
there are, of course, configurations where the two final state partons are hard and emitted
back-to-back with small total transverse momentum. Nevertheless, these configurations do
not produce any singularities whenqT → 0 and thus may be neglected. Finally, notice
that we consider onlydoublesingularities, i.e., configurations where two extra partons are
either collinear or soft, without caring aboutsinglesingularities. Configurations with only
one collinear or soft parton (and the other hard) do not contribute toΣ(2) since the system
F is not emitted with smallqT in such case.

4.1.1. Contribution fromqq̄ andqq emission
For theq + q̄ → q̄ + q + F contribution we have three singular regions atO(α2

S) [19]:

• first triple-collinear region:k1p1 ∼ k2p1 ∼ k1k2 → 0;
• second triple-collinear region:k1p2 ∼ k2p2 ∼ k1k2 → 0;
• double-soft region:k1, k2 → 0.

In the first region the singularity is controlled by the following collinear factorization
formula [18,19,24]∣∣M(0)

qq̄→qq̄F (p1,p2, k1, k2, φ)
∣∣2

(58)� (8πµ2εαS)
2

u2 P̂q→q̄1q2(q3)

∣∣M(0)
qq̄→F (z3p1,p2, φ)

∣∣2,
whereP̂q→q̄1q2(q3) is the splitting function that controls the collinear decay of an initial
state quark of momentump1 into a final state quark–antiquark pairq̄1q2 of momentak1

andk2 and the ‘off-shell’ quarkq3 that participates in the hard cross section. The explicit
expression of̂Pq→q̄1q2(q3) is obtained from the one of̂Pq̄1q2q3, the splitting function for the
decay of a (‘off-shell’) quark into a final state quark–antiquark pair plus a quark, given in
Eq. (A.1), with the following definitions

s12 = s2, s13 = −2p1k1, s23 = −2p1k2,

(59)x1 = −z1/z3, x2 = −z2/z3, x3 = 1/z3,

wherez1 andz2 are the momentum fractions ofq̄1 andq2 (z3 = 1 − z1 − z2). Notice that
Eq. (59) corresponds to the following transformation:

(60)r1 → k1, r2 → k2, r3 → −p1,

applied to the expression in Eq. (A.1) to cross the ‘off-shell’ parton to the final state.
A formula similar to Eq. (58) can be written in the second collinear region.
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In the double-soft region the factorization formula is instead [19]:∣∣M(0)
qq̄→qq̄F (p1,p2, k1, k2, φ)

∣∣2
(61)� (

4πµ2εαS
)2
CFTR(I11 + I22 − 2I12)

∣∣M(0)
qq̄→F (φ)

∣∣2,
where

(62)Iij = Iij (k1, k2) = pik1pjk2 + pj k1pik2 − pipjk1k2

(k1k2)2pi(k1 + k2)pj (k1 + k2)
.

The reader can easily check that by defining the momentum fractions in Eq. (59) as11

(63)z1 = k1p2

p1p2
, z2 = k2p2

p1p2
.

Eq. (58) correctly keeps into account also the double-soft limit in Eq. (61). Thus, at least
outside the second collinear region, the factorization formula (58) with the definitions (63)
correctly gives the full singular behaviour in this channel.

The strategy to perform the calculation is the following. We use Eq. (58) to approximate
the matrix element in its region of validity and compute its contribution toΣ

(2)R
qq̄ (0) by

integrating only in half of the phase space, that is fromu0 to umax. The remaining region,
which is obtained by exchangingu ↔ t , will give, due to the symmetry of the initial state,
exactly the same contribution and it is taken into account by multiplying the computed
result by 2. As it happens at leading order, the information on the process, embodied in the
Born matrix element is completely factored out in the calculation and disappears inΣ . In
fact the Born matrix element can be fully written in terms of the (fixed) kinematics of the
final state particles|M(0)

qq̄→F (z3p1,p2, φ)|2 ≡ |M(0)
qq̄→F (φ)|2.

For theq + q → q + q + F contribution, needed to form the nonsinglet contribution in
Eq. (21), there are only two singular configurations:

• first triple-collinear region:k1p1 ∼ k2p1 ∼ k1k2 → 0;
• second triple-collinear region:k1p2 ∼ k2p2 ∼ k1k2 → 0.

For the first collinear region we can write:∣∣M(0)
qq→qqF (p1,p2, k1, k2, φ)

∣∣2
(64)� (8πµ2εαS)

2

u2 P̂q→q1q2(q̄3)

∣∣M(0)
qq̄→F (p1, z3p2, φ)

∣∣2.
Here P̂q→q1q2(q̄3) is now the splitting function which controls the collinear decay of an
initial state quark into a final stateqq pair. The explicit expression for̂Pq→q1q2(q̄3) can be
obtained from the expression of̂Pq̄1q2q3 in Eq. (A.1) with the following definitions

s12 = −2p1k2, s13 = −2p1k1, S23 = s2,

(65)x1 = 1/z3, x2 = −z2/z3, x3 = −z1/z3,

11 To parameterize the triple-collinear limit it is necessary to introduce an additional light-cone vectorn. This
definition corresponds to the choicen = p2. Notice that a similar definition can be adopted also atO(αS) to
reobtain Eq. (34) in the smallqT limit.
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i.e., corresponding to the crossing transformation:

(66)r1 → −p1, r2 → k2, r3 → k1,

and similarly for the second collinear configuration (withp1 ↔ p2). There is a partial
cancellation between theCFTR contribution toΣ(2)

qq̄ from Eqs. (58) and (64), due to the
nonsinglet combination. Once this cancellation is carried out, the part corresponding to
the production of ‘nonidentical’ partons in theqq̄ channel gives the followingCFTR

contribution toΣ(2)
qq̄ :

(67)

Σ
(2)R
qq̄(nid)(0) = CFnf TRK

[
−2

3

1

ε
Fqq̄ (0, ε)− 4

3
log2 Q2

q2
T

− 2

9
log

Q2

q2
T

+ 1+ 2

9
π2

]
,

where

(68)K = 1

Γ (1− 2ε)

(
4πµ2

q2
T

)ε(4πµ2

Q2

)ε

,

and the explicit expression of functionFqq̄ (0, ε), defined in Eq. (35) is

(69)Fqq̄ (0, ε) = 2 log
Q2

q2
T

− 3− ε.

At the beginning of Eq. (67) we have isolated a divergent term which will be cancelled by
a similar one appearing in the virtual contribution.

The part corresponding to the production of ‘identical’ partons in theqq̄ channel
gives also aCF (CF − CA/2) contribution, which does not contain any logQ2/q2

T term.
Therefore, there is a great simplification in the calculation sinceqT can be set to zero just
after performing the angular integrations. We find:

(70)Σ
(2)R
qq̄(id)(0)= CF

(
CF − 1

2CA

)(−6+ 2π2 − 16ζ(3)
)
.

The calculation of theqq contribution can be performed with exactly the same strategy as
for theqq̄ channel.12 After theCFTR contribution has been cancelled with a similar one
in theqq̄ channel only a contribution proportional toCF (CF − CA/2) remains13

(71)Σ
(2)R
qq̄(qq)(0) = −CF

(
CF − 1

2CA

)( 13
2 − π2 + 4ζ(3)

)
.

4.1.2. Contribution fromgg emission
The calculation of the double-gluon emission correction toΣ

(2)
R is more difficult,

because it is not possible to keep into account all possible singular configurations by using
only the triple-collinear splitting functions. We will divide the calculation in two parts,
according to the corresponding colour factors. First we will consider the non-Abelian,
CFCA term, which turns out to be simpler, and finally the Abelian,C2

F part.

12 A factor 1/2 has been included to account for the two identical particles in the final state.
13 The overall minus sign here is due to the fact that this quantity must be subtracted in order to construct the

nonsinglet combination.



264 D. de Florian, M. Grazzini / Nuclear Physics B 616 (2001) 247–285

CFCA contribution
For this colour structure there are three singular regions to be considered [19]:

• first triple-collinear region:k1p1 ∼ k2p1 ∼ k1k2 → 0;
• second triple-collinear region:k1p2 ∼ k2p2 ∼ k1k2 → 0;
• double-soft region:k1, k2 → 0.

We point out that, as discussed in Ref. [19], thanks to the coherence properties of soft-
gluon radiation, the soft-collinear region does not give any contribution proportional to
CFCA (see later).

In the first collinear region the singularity is controlled by the following factorization
formula:∣∣M(0)

qq̄→gg F (p1,p2, k1, k2, φ)
∣∣2
nab

(72)� (8πµ2εαS)
2

u2 CFCAP̂
(nab)
q→g1g2(q3)

∣∣M(0)
qq̄→F (z3p1,p2, φ)

∣∣2,
where P̂

(nab)
q→g1g2(q3)

is the non-Abelian part of the splitting function that controls the
collinear decay of an initial state quark into a final state gluon pair. This function can
be obtained from Eq. (A.7) with the replacement in Eq. (59).

A similar formula to Eq. (72) can be written in the second collinear region (byp1 ↔ p2

exchange).
In the double-soft region the factorization formula is instead (see Eq. (A.3) of Ref. [19]):∣∣M(0)

qq̄→ggF (p1,p2, k1, k2, φ)
∣∣2
nab

(73)

� (
4πµ2εαS

)2
CFCA

(
2S12(k1, k2)− S11(k1, k2)− S22(k1, k2)

)∣∣Mqq̄→F (φ)
∣∣2,

where the non-Abelian double-soft function reads

Sij (k1, k2) = (1− ε)

(k1k2)2

pik1pjk2 + pik2pj k1

pi(k1 + k2)pj (k1 + k2)

− (pipj )
2

2pik1pj k2pik2pj k1

[
2− pik1pjk2 + pik2pj k1

pi(k1 + k2)pj (k1 + k2)

]
+ pipj

2k1k2

[
2

pik1pjk2
+ 2

pj k1pik2

(74)− 1

pi(k1 + k2)pj (k1 + k2)

(
4+ (pik1pjk2 +pik2pj k1)

2

pik1pj k2pik2pjk1

)]
.

As it happens in theqq̄ andqq channels, it turns out that by defining the momentum
fractions of the gluons as in Eq. (63), the factorization formula in Eq. (72) correctly
accounts also for the double-soft configuration. Furthermore, we have verified that Eq. (72)
does not introduce any additional spurious singularities in the other infrared configurations.
Thus for this colour structure the situation is similar to the one in theqq̄ andqq channels
and we can follow the same strategy. We approximate the non-Abelian part of the matrix
element in the region fromu0 to umax using Eq. (72). We first perform the angular integrals
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and then, exploiting thep1 ↔ p2 symmetry, do the remainingu andz integrations only
over half of the phase space, i.e., withu from u0 to umax.

In order to perform the last two steps, that are considerably more complicated than in the
case ofqq̄ emission, we developed MATHEMATICA [39] programs that are able to handle
the cumbersome intermediate expressions in the smallqT limit.

The result is14

Σ
(2)R
qq̄(ggnab)(0)= CFCAK

[(
1

ε2 + 1

ε

(
11

6
+ log

Q2

q2
T

))
Fqq̄ (0, ε)+ log3 Q2

q2
T

(75)

+ 13

6
log2 Q2

q2
T

+
(

35

18
− 2

3
π2

)
log

Q2

q2
T

+ 4ζ(3)− 2+ 7

18
π2

]
,

in agreement with Ref. [40]. The first line of Eq. (75) comes from the singularδ(s2) terms
and will be exactly cancelled by a contribution appearing in the virtual correction.

C2
F contribution

For this colour structure there are six singular regions (plus the ones generated from
permutations likek1 ↔ k2) to be considered [18,19]:

• first triple-collinear region:k1p1 ∼ k2p1 ∼ k1k2 → 0;
• second triple-collinear region:k1p2 ∼ k2p2 ∼ k1k2 → 0;
• double-soft region:k1, k2 → 0;
• first soft-collinear region:k1 → 0, k2p1 → 0;
• second soft-collinear region:k1 → 0, k2p2 → 0;
• double-collinear region:k1p1 → 0, k2p2 → 0.

In the first region the singularity is controlled by the collinear factorization formula:∣∣Mqq̄→gg F (p1,p2, k1, k2, φ)
∣∣2
ab

(76)� (8πµ2εαS)
2

u2 C2
F P̂

(ab)
q→g1g2(q3)

∣∣M(0)
qq̄→F (z3p1,p2, φ)

∣∣2,
whereP̂ (ab)

q→g1g2(q3)
is the Abelian part of the splitting function that controls the collinear

decay of an initial state quark into a final state gluon pair. This function can be obtained
from Eq. (A.6) with the replacement in Eq. (59).

In the double-soft region the factorization formula is obtained by factorizing the two
eikonal factors for independent gluon emissions (see Eq. (A.3) of Ref. [19]):∣∣M(0)

qq̄→ggF (p1,p2, k1, k2, φ)
∣∣2
ab

(77)� (
4πµ2εαS

)2
16C2

FS12(k1)S12(k2)
∣∣M(0)

qq̄→F (φ)
∣∣2,

with S12(k) defined in Eq. (32).

14 A factor 1/2 has been included to account for the two identical particles in the final state.
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In the soft-collinear region, say whenk2 → 0 and k1p1 → 0 we have instead (see
Eq. (A.5) of [19]):∣∣M(0)

qq̄→ggF (p1,p2, k1, k2, φ)
∣∣2

� (
4πµ2εαS

)2 2CF

(1− z1)p1k1

(p1 − k1)p2

(p1 − k1)k2p2k2
P̂qq (1− z1, ε)

(78)× ∣∣M(0)
qq̄→F

(
(1− z1)p1,p2, φ

)∣∣2,
wherez1 is the momentum fraction of the collinear gluon of momentumk1 and can be
identified with the one parametrizing the triple collinear splitting in Eq. (76). Notice that,
since the soft gluon of momentumk2 does not resolve the pair of collinear partons, there
is no non-Abelian contribution in Eq. (78).

In the double-collinear region we have, when, e.g.,k1p1 → 0 andk2p2 → 0:∣∣M(0)
qq̄→ggF (p1,p2, k1, k2, φ)

∣∣2
� (4πµ2εαS)

2

(1− z1)p1k1(1− z̄2)p2k2
P̂qq(1− z1, ε)P̂qq(1− z̄2, ε)

(79)× ∣∣M(0)
qq̄→F

(
(1− z1)p1, (1− z̄2)p2, φ

)∣∣2,
wherez1 and z̄2 here represent the momentum fractions (see below) involved in the two
collinear splittings.

As it happens for theCFCA contribution, Eq. (76) supplemented with the definitions
(63) is able to approximate correctly also the double-soft and soft-collinear regions in half
of the phase space. But, at variance with theCFCA case, the same formula cannot describe
correctly the double-collinear region, since that one corresponds to the emission of gluons
from different legs, i.e., with a kinematical configuration completely different from the
triple-collinear case. Therefore, the strategy followed for the other colour factors does not
work in this case.

In order to overcome this problem there are in principle two strategies. The first one
is to split the phase space in order to isolate the double-collinear region and perform the
calculation separately for its contribution using the expression in Eq. (79). The second is
to modify Eq. (76) in order to enforce the correct singular behaviour in all possible limits.
We decided to follow the second strategy and for that we have first studied Eq. (76) with
the definitions (63) and isolated the terms that do, incorrectly, contribute (terms withx2 in
the denominator) when the collinear gluons are emitted from the different legs. In this way,
we were able to find a slight modification of̂P (ab)

g1g2q3 in Eq. (A.6) that allows to take into
account the double-collinear region without spoiling the behaviour in the other regions as

D̂(ab)
g1g2q3

=
{

s2
123

2s13s23
x3

[(
1+ x2

3

x1x2
− ε

x2
1 + x2

2

x1x2

)
fq(z̄1)fq(z̄2)− ε(1+ ε)

]
+ s123

s13

[(
x3(1− x1)+ (1− x2)

3

x1x2
− ε

(
x2

1 + x1x2 + x2
2

)1− x2

x1x2

)
× fq(z̄2) + ε2(1+ x3)

]
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(80)+ (1− ε)

[
ε − (1− ε)

s23

s13

]}
+ (1 ↔ 2).

With respect to the expression of̂P (ab)
g1g2q3 of Eq. (A.6), the only difference is due to the

introduction of the extra factorsfq(z). The functionfa(z), anticipating that a similar
approach will be followed in the gluonic channel, is defined by

(81)fa(z) = z

2Ca(1− z)
P̂aa(1− z, ε), a = q,g,

whereP̂aa are the collinear splitting kernels in Eqs. (28), (29).
The functionD̂(ab)

g1g2q3 depends on the new momentum fractionsz̄1 andz̄2 of the gluons
with respect to the incoming antiquark of momentump2. These momentum fractions
should be the ones relevant for the double-collinear limit. Our improved factorization
formula is, outside the second triple-collinear region given by∣∣M(0)

qq̄→gg F (p1,p2, k1, k2, φ)
∣∣2
ab

(82)� (8πµ2εαS)
2

u2
C2

F D̂
(ab)
q→g1g2(q3)

∣∣M(0)
qq̄→F (z3p1,p2, φ)

∣∣2,
whereD̂(ab)

q→g1g2(q3)
is obtained fromD̂(ab)

g1g2q3 in Eq. (80) with the definitions in Eqs. (59),
(63) and by setting

(83)z̄1 = p1k1

p1p2
, z̄2 = p1k2

p1p2
.

With Eq. (82) we can consistently approximate the relevant matrix element in the region
from u0 to umax as we did in the other channels, keeping into account all the singular
regions. In fact in the triple-collinear regionz̄1, z̄2 → 0 andfq(z̄1), fq(z̄2) → 1. Therefore,
in this limit Eq. (82) reduces to Eq. (76). The factorsfq(z) become relevant in the double-
collinear region, since they ensure that the correct limit is recovered whenp1k1 → 0 and
p2k2 → 0 (and the same fork1 ↔ k2).

Notice that the modification of the triple-collinear formula does not spoil the process
independence of our calculation: it just allows to write an ‘improved’ formula that correctly
interpolates all possible (double-) collinear and soft singularities in the region of phase
space where we have to integrate it. Therefore, with this approach we can avoid to split the
phase space in regions where different approximations should be applied.

It is worth noticing that the modification in Eq. (80) makes the calculation more involved
already at the level of the angular integrals, mostly due to the introduction of the ‘new’
momentum fractions̄z1 andz̄2.

For this colour structure we have to subtract the contribution from the factorization
counterterm, which can be written as

dσFCT

dq2
T dQ2dφ

= αS

2π

∫
dx

x
R

(
x,µ2

F

)(dσ(p1,p2, φ, k)

dq2
T dQ2 dφ

)
p1→xp1

(84)+ αS

2π

∫
dx

x
R

(
x,µ2

F

)(dσ(p1,p2, φ, k)

dq2
T dQ2 dφ

)
p2→xp2

,
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wheredσ(p1,p2, φ, k) corresponds to the cross section for the production ofF and only
one extra gluon (see Eq. (24)) and

(85)R
(
x,µ2

F

) = −1

ε
PAP
qq (x)

Γ (1− ε)

Γ (1− 2ε)

(
4πµ2

µ2
F

)ε

,

with PAP
qq (z) = (P̂qq(z,0))+ = CF

( 1+z2

1−z

)
+ the regularized AP splitting function andµF

the factorization scale. In the limit of smallqT and after taking moments with respect toz,
the contribution from the counterterm factorizes as

(86)Σ
(2)
qq̄(FCT)(N) = 2CFFqq̄ (N, ε)

[
−1

ε
K

(
Q2

µ2
F

)ε

γ (1)
qq (N)

]
,

whereFqq̄ (N, ε) and K are defined in Eqs. (35) and (68), respectively. Therefore, in
the qT → 0 limit also the contribution of the factorization counterterm becomes process
independent.

Our final result for theN = 0 moment of the factorized contributioñΣ(2)R
qq̄(ggab)(0) ≡

Σ
(2)R
qq̄(ggab)(0)− Σ

(2)
qq̄(FCT)(0) is:

Σ̃
(2)R
qq̄(ggab)(0)= CFK

[(
2

ε2 + 3

ε

)
CFFqq̄(0, ε)+ 2

ε

1∫
0

2P̂qq(z, ε) logz

]

(87)

+ C2
F

[
−2 log3 Q2

q2
T

+ 9 log2 Q2

q2
T

−
(

2+ 2

3
π2

)
log

Q2

q2
T

+ 16ζ(3)− π2 − 43

4

]
,

in agreement with the result of Ref. [40] for Drell–Yan. Notice that sinceγ
(1)
qq (0) = 0 there

is no contribution from the factorization counterterm tôΣ
(2)R
qq̄(ggab)(0). As we did for the

other colour factors, we have isolated in the first line of Eq. (87) the part that will be
cancelled by a similar term in the virtual contribution.

A comment to the results obtained so far is in order. The formulae in Eqs. (67), (70),
(71), (75), (87) show that the contribution toΣqq̄(0) from double real emission are actually
independent on the specific process in (1). This feature of the double real emission, which
is due to the universality of soft and collinear radiation, will persist also in the gluon
channel. The explicit results obtained so far all agree with the ones obtained for Drell–
Yan in Ref. [40].

4.2. Virtual corrections

The second part on the calculation ofΣqq̄(N) involves the (one-loop) virtual corrections
to single-gluon emission. The corresponding soft and collinear limits have been recently
studied in Refs. [21–23]. The kinematics is the same as atO(αS) and the singularities
originated by the same configurations discussed above Eq. (27). In the first collinear region
the interference between the tree-level and one-loop contributions to single gluon emission
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behaves as [21,22]

M(0)†
qq̄→g F (p1,p2, k,φ)M(1)u

qq̄→g F (p1,p2, k,φ)+ c.c.

(88)

� 4παSµ
2ε

z1p1k

[
P̂qq (z1, ε)

(
M(0)†

qq̄→F (z1p1,p2, φ)M(1)
qq̄→F (z1p1,p2, φ)+ c.c.

)
+ 2g2

S

(
4πµ2

2p1k

)ε

P̂
(1)
q→(q)g(z1, ε)

∣∣M(0)
qq̄→F (z1p1,p2, φ)

∣∣2].
In Eq. (88) there are two terms. In the first one the tree-level splitting kernelP̂qq(z1, ε) is

factorized with respect to the interference of therenormalizedone-loop amplitudeM(1)
qq̄→F

and the tree level oneM(0)
qq̄→F .

The second term contains instead theunrenormalizedone-loop correction to the splitting
kernelP̂ (1)

q→(q)g(z1, ε) times the Born matrix element squared. The functionP̂
(1)
q→(q)g(z1, ε)

controls the one-loop collinear splitting of an initial state quark into a final state quark with
momentum fractionz1, in the CDR scheme. Its explicit expression can be derived from the
results of Refs. [21,22] and is up toO(ε0):

P̂
(1)
q→(q)g(x, ε)

= (1− x)−ε CΓ

(4π)2

(89)

×
[
CAP̂qq(x, ε)

(
− 1

ε2 + 1

2
log2(1− x)+ Li2

1

1− x
− Li2(1− x)

)
+ CF P̂qq(x, ε)

(
−2

ε
log(x)− 2 log(x) log(1− x)+ 2 Li2(1− x)

)
+ CF (CF − CA)x

]
,

where

(90)CΓ = Γ (1+ ε)Γ 2(1− ε)

Γ (1− 2ε)
.

A factorization formula similar to Eq. (88) holds when the gluon is radiated by the initial
state antiquark.

Let us now consider the soft region. At one-loop order, for a general amplitude withn

hard partons, soft factorization formulae involve colour correlations between two and three
hard momentum partons in the matrix element squared [23]. Nevertheless, in the case of
only two hard partons the soft singularity is controlled by a simpler factorization formula
(see Eq. (57) of Ref. [23])

M(0)†
qq̄→g F (p1,p2, k,φ)M(1)u

qq̄→g F (p1,p2, k,φ)+ c.c.

� 16παSµ
2εCF

(91)×
(
S12(k)

(
M(0)†

qq̄→F (φ)M(1)
qq̄→F (φ) + c.c.

) + S(1)
12 (k)

∣∣M(0)
qq̄→F (φ)

∣∣2),
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where

(92)S(1)
12 (k) = − αS

2π
CAS12(k)

1

ε2

Γ 4(1− ε)Γ 3(1+ ε)

Γ 2(1− 2ε)Γ (1+ 2ε)

[
4πµ2S12(k)

]ε
is the unrenormalizedone-loop correction to the tree-level eikonal factor. Likewise at
O(αS) (see Eq. (31)), in Eq. (91) colour correlations are absent, and the factorization
formula is similar in structure to the collinear one in Eq. (88).

One can verify that, as it happens at leading order, the factorization formula Eq. (88)
with z1 = z = Q2/s correctly reproduces also the behaviour in the soft-region, given by
Eq. (91).

Furthermore, by expressingkp1 in terms ofqT and using Lorentz invariance as we did
at leading order, a single factorization formula in the smallqT limit is obtained:

M(0)†
qq̄→g F (p1,p2, k,φ)M(1)u

qq̄→g F (p1,p2, k,φ)+ c.c.

(93)

� 4παSµ
2ε

q2
T

2(1− z)

z

[
P̂qq (z, ε)

(
M(0)†

qq̄→F (φ)M
(1)
qq̄→F (φ)+ c.c.

)
+ 2g2

S

(
4πµ2

q2
T

)ε

(1− z)εP̂
(1)
q→(q)g(z, ε)

∣∣M(0)
qq̄→F (φ)

∣∣2],
and this formula can be used to approximate the virtual contribution in the full phase space.
The same formula can be obtained by defining the collinear momentum fraction in Eq. (88)
as:

(94)z1 = 1− kp2

p1p2
,

and similarly whenp1 ↔ p2. It is important to point out that, at variance with what happens
in the double real emission contribution, here a process-dependent information appears,
i.e., the one-loop matrix elementM(1)

qq̄→F (φ). The most general structure of the product

M(0)†
qq̄→FM

(1)
qq̄→F + c.c. is, according to Eq. (38):

M(0)†
qq̄→FM

(1)
qq̄→F + c.c.

(95)= αS

2π

(
4πµ2

Q2

)ε
Γ (1− ε)

Γ (1− 2ε)

(
−2CF

ε2 − 3CF

ε
+AF

q (φ)

)∣∣M(0)
qq̄→F

∣∣2.
In Eq. (95) the structure of the poles inε is universal and fixed by the flavour of the
incoming partons, whereas, as discussed in Section 3 the finite part is parameterized by a
scalar functionAF

q (φ) depending on the kinematics of the final state particles.

The contribution from the UV counterterm in theMS scheme is:

(96)Σ
(2)
UVCT(N) = CFFqq̄ (N, ε)K

(
Q2

µ2

)ε(
−1

ε

)
β0.

By approximating our matrix element with Eq. (93), the calculation can now be performed
quite easily as in Eq. (35). Using Eq. (95), and adding the contribution of the UV
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counterterm in Eq. (96) we find:

Σ
(2)V
qq̄ (0)

(97)

= CFK
{[

− 1

ε2 (2CF + CA)− 1

ε

(
CA log

Q2

q2
T

+ 3CF + β0

)]
Fqq̄ (0, ε)

− 2

ε

1∫
0

2P̂qq(z, ε) logz

+ CA

(
− log3 Q2

q2
T

+ 3

2
log2 Q2

q2
T

+ π2

3
log

Q2

q2
T

+ π2

2
− 15

2
− 8ζ(3)

)
+ CF

((
−5+ 4

3
π2

)
log

Q2

q2
T

+ 39

2
− 2π2

)

+
(

2 log
Q2

q2
T

− 3

)
AF

q (φ)+ β0 log
Q2

µ2
R

(
3− 2 log

Q2

q2
T

)}
,

whereµ2
R is the renormalization scale at whichαS is now evaluated. The terms involving

Fqq̄ (0, ε) andP̂qq (z, ε) in Eq. (97) are the ones that cancel against the corresponding terms
in Eqs. (67), (75) and (87). In the case of Drell–Yan, by using Eq. (39), our result agrees
with the one of Ref. [40].

4.3. Total result for theqq̄ channel

After adding the real and virtual contributions in

Σ
(2)
qq̄ (0)= Σ

(2)R
qq̄(nid)(0)+ Σ

(2)R
qq̄(id)(0)+ Σ

(2)R
qq̄(qq)(0)+ Σ

(2)R
qq̄(ggnab)(0)

(98)+ Σ̃
(2)R
qq̄(ggab)(0)+ Σ

(2)V
qq̄ (0)

all divergent terms inε cancel out and we find:

Σ
(2)
qq̄ (0)= log3 Q2

q2
T

[−2C2
F

] + log2 Q2

q2
T

[
9C2

F + 2CFβ0
]

+ log
Q2

q2
T

[
C2

F

(
2

3
π2 − 7

)
+ 2CFAF

q (φ)

+ CFCA

(
35

18
− π2

3

)
+ CFnf TR

(
−2

9

)]

(99)

+
[
C2

F

(
−15

4
− 4ζ(3)

)
− 3CFAF

q (φ)

+ CFCA

(
−13

4
− 11

18
π2 + 6ζ(3)

)
+ CFnf TR

(
1+ 2

9
π2

)]
,

where we have set againµ2
F = µ2

R = Q2. It is worth noticing that the process dependence
in Eq. (99) is fully contained in the functionAF

q (φ).
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Once one moment (theN = 0 in this case) has been computed, it is quite simple to
extend the calculation to a general value ofN by studying the combination [14]

(100)Σ(N) − Σ(0) =
∫

dz
(
zN − 1

) q2
T Q

2

dσ0/dφ

dσ

dq2
T dQ2dφ

.

Here, the factor(zN − 1) eliminates singularities in the integrand whenz → 1 and allows
to setqT = 0 once the integral over the variableu has been done (in most of the cases it is
possible to setqT = 0 even before integrating overu). In that sense the complexity of the
calculation is considerably reduced and the result can be expressed as

Σ
(2)
qq̄ (N) = log3 Q2

q2
T

[−2C2
F

] + log2 Q2

q2
T

[
9C2

F + 2CFβ0 − 6CFγ
(1)
qq (N)

]
+ log

Q2

q2
T

[
C2

F

(
2

3
π2 − 7

)
+ CFCA

(
35

18
− π2

3

)
− 2

9
CFnf TR + 2CFAF

q (φ)+ (2β0 + 12CF )γ
(1)
qq (N)

− 4
(
γ (1)
qq (N)

)2 + 4C2
F

(
1

(N + 1)(N + 2)
− 1

2

)]

(101)

+
[
C2

F

(
−15

4
− 4ζ(3)

)
+ CFCA

(
−13

4
− 11

18
π2 + 6ζ(3)

)
− 3CFAF

q (φ)+ CF nf TR

(
1+ 2

9
π2

)
+ 2γ (2)

(−)(N)

+ 2CFγ
(1)
qq (N)

(
π2

3
+ 2

1

(N + 1)(N + 2)

)
+ 2γ (1)

qq (N)AF
q (φ)

− 2CF (β0 + 3CF )

(
1

(N + 1)(N + 2)
− 1

2

)]
,

where γ
(2)
(−)(N) is the nonsinglet space-like two-loop anomalous dimension [41]. The

extraction of the resummation coefficients for theqq̄ channel from Eq. (101) will be
performed, along with the corresponding one for thegg channel, in Section 6.

5. The calculation at O(α2
S): the gluon channel

The strategy for the computation of theO(α2
S) contributions in the gluon channel is the

same as the one developed for theqq̄ case. In a similar way, we first consider the double
real emission contribution and then the virtual correction.

Let us first discuss the contribution coming from the factorization counterterm, that will
be subtracted from the real corrections in the next subsection. By following the same steps
that lead to Eq. (86) we obtain

Σ
(2)
gg(FCT)(N) = 2CAFgg(N, ε)

[
−1

ε
K

(
Q2

µ2
F

)ε

γ (1)
gg (N)

]
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(102)+ 2CFFgq(N, ε)

[
−1

ε
K

(
Q2

µ2
F

)ε

γ (1)
qg (N)

]
.

Eq. (102) contains two terms. The first one, due to the subtraction of one collinear gluon,
is analogous to the one in Eq. (86) and contributes to bothC2

A andCATR colour factors.
The second term is due to the subtraction of a quark (antiquark) collinear to the initial state
gluons, and contributes to theCFTR part. The functionFgq in Eq. (102) is defined as in
Eq. (35) by

(103)CFFgq(N, ε) ≡
1−2qT /Q∫

0

dz zN
2(1− z)P̂gq(z, ε)√
(1− z)2 − 4z q2

T /Q
2
.

TheqT → 0 limit can be safely taken andFgq(N, ε) gives

(104)Fgq(N, ε) → 2

1∫
0

dz zN
(
(1+ (1− z)2

z
− εz

)
= 2γ (1)

gq (N) − 2ε
1

N + 2
.

5.1. Real corrections

The contributions toΣ(2)
gg from double real emission fall in two classes:

• g + g → q + q̄ + F ;
• g + g → g + g + F .

The kinematics is the same as discussed at the beginning of Section 4.1. As we did
for the quark channel, we will first perform the calculation for a fixed moment and then
extend it for generalN . Since theN = 0 moment is divergent for the gluon channel (see,
e.g., Eq. (104)), we start fromN = 1. Furthermore, as it happens at LO, spin-correlations
appear in the collinear decay of a gluon. Nevertheless, since the correlations cancel out after
integration, we will use in the collinear factorization formulae directly the spin-averaged
splitting functions.

5.1.1. Contribution fromqq̄ emission
For this contribution the strategy followed for theCFTR andCFCA terms in the quark

channel applies. The singular regions are:

• first triple-collinear region:k1p1 ∼ k2p1 ∼ k1k2 → 0;
• second triple-collinear region:k1p2 ∼ k2p2 ∼ k1k2 → 0;
• double-soft region:k1, k2 → 0.

In the first triple-collinear region the factorization formula reads∣∣M(0)
gg→qq̄ F (p1,p2, k1, k2, φ)

∣∣2
(105)� (8πµ2εαS)

2

u2
P̂g→q̄1q2(g3)

∣∣M(0)
gg→F (z3p1,p2, φ)

∣∣2,
whereP̂g→q̄1q2(g3) is the splitting function that controls the decay of an initial state gluon
into a final state quark–antiquark pair and a gluon. It can be obtained from the expression
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of P̂q̄1q2g3 that describes the decay of an (off shell) gluon into a final state quark–antiquark
pair plus a gluon, given in Eq. (A.8), with the crossing transformation (59). In the double-
soft region the factorization formula is the same as in Eq. (61) withCF → CA and, likewise
in the quark channel, the soft behaviour is correctly taken into account by Eq. (105) with
the definitions (63). Therefore, we can follow the strategy successfully applied in the quark
channel to obtain

(106)Σ̃
(2)R
gg(qq̄ab)(1) = CFnf TR K

(
− 8

27
− 16

9
log

Q2

q2
T

+ 16

9
log

Q2

µ2
F

)
and

Σ̃
(2)R
gg(qq̄nab)(1) = CAnf TRK

(
−2

ε
Fgg(1, ε)+ 25

27
− 2π2

9
+ 2

9
log

Q2

q2
T

− 4

3
log2 Q2

q2
T

(107)− 4

3
log

Q2

µ2
F

(
−11

3
+ 2 log

Q2

q2
T

))
.

In Eqs. (106), (107) we have already subtracted theCFTR and CATR terms from the
factorization counterterm (withN = 1) in Eq. (102). Furthermore, in Eq. (107) we have
isolated a divergent term that will be cancelled by a similar term in the virtual contribution.
The explicit expression of the functionFgg(1, ε), defined in Eq. (35), reads

(108)Fgg(1, ε)= −11

3
+ 2 log

Q2

q2
T

.

5.1.2. Contribution fromgg emission
The calculation of thegg C2

A contribution toΣ(2)
gg parallels the one for theC2

F part
in the quark channel since the singular configurations have the same complicated pattern
as described above Eq. (76). The triple-collinear region is controlled by the factorization
formula∣∣M(0)

gg→ggF (p1,p2, k1, k2, φ)
∣∣2

(109)� (8πµ2εαS)
2

u2 P̂g→g1g2(g3)

∣∣M(0)
gg→F (z3p1,p2, φ)

∣∣2,
where the function̂Pg→g1g2(g3) is now obtained by applying the crossing transformation
(59) to the splitting function̂Pg1g2g3 that controls the collinear decay of a gluon into three
final state gluons, given in Eq. (A.11).

The factorization formulae in the soft-collinear and double-collinear regions are
analogous to Eqs. (78), (79), and can be obtained from them by conveniently changing the
colour factors (CF → CA) and splitting functions (̂Pqq → P̂gg). The factorization formula
in the double-soft region receives two contributions analogous to the ones in Eqs. (73), (77).

Likewise in the quark channel, Eq. (109) with the momentum fractions defined as in
Eq. (63) approximates correctly, again in half of the phase space, all possible infrared
configurations but the double-collinear one.

In order to proceed further, we use the technique developed for the quark channel. As
before, we first study the behaviour of Eq. (109) with the definitions (63) in the double
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collinear limit and identify the terms that do (incorrectly) contribute in that limit. Those
terms have to be modified in order to enforce the correct double-collinear limit without
affecting the singular behaviour in the other regions. The modified splitting function we
obtain is:

D̂g1g2g3 = P̂
non-sing
g1g2g3 +

{[
P̂

sing-1
g1g2g3 + (

P̂
sing-1
g1g3g2 + P̂

sing-1
g3g1g2

)
fg(z̄2)

(110)+ (
P̂

sing-2
g1g2g3 + P̂

sing-2
g1g3g2

)
fg(z̄2)+ P̂

sing-2
g3g2g1fg(z̄1)fg(z̄2)

] + (1↔ 2)
}
.

The first term

P̂
non-sing
g1g2g3 = C2

A

{
(1− ε)

4s2
12

t212,3 + 3

4
(1− ε)+ s123

s12

[
4
x1x2 − 1

1− x3
+ 3

2
+ 5

2
x3

]
+ s2

123

s12s13

[
x2x3 − 2+ x1(1+ 2x1)

2
+ 1+ 2x1(1+ x1)

2(1− x2)(1− x3)

]}
(111)+ (5 permutations),

contains the part of̂Pg1g2g3 in Eq. (A.11) that does not contribute to the double-collinear
limit. Therefore, this part of the splitting function does not need any modifications. The
variabletij,k is defined in Eq. (A.4).

The second part is instead modified with the introduction of the functionfg(z), defined

in Eq. (81). The functionŝP sing-1
g1g2g3 andP̂ sing-2

g1g2g3 are

(112)P̂
sing-1
g1g2g3 = C2

A

s123

s12

(
x1x2 − 2

x3
+ (1− x3(1− x3))

2

x3x1(1− x1)

)
,

(113)P̂
sing-2
g1g2g3 = C2

A

s2
123

s12s13

(
x1x2(1− x2)(1− 2x3)

x3(1− x3)
+ 1− 2x1(1− x1)

2x2x3

)
.

Our improved factorization formula is, therefore,∣∣M(0)
gg→ggF (p1,p2, k1, k2, φ)

∣∣2
(114)� (8πµ2εαS)

2

u2 D̂g→g1g2(g3)

∣∣M(0)
gg→F (z3p1,p2, φ)

∣∣2.
As for the quark channel, the expression ofD̂g→g1g2(g3) is obtained from the one of̂Dg1g2g3

in Eq. (110) by using Eqs. (59), (63) and definingz̄1 andz̄2 through Eq. (83).
In the triple-collinear limitfg(z̄1), fg(z̄2) → 1 and the various contributions in Eq. (110)

reconstruct the triple-collinear splitting function̂Pg1g2g3. The role of the functionsfg is
again to enforce the correct behaviour in the double-collinear region. It is worth stressing
that there are in principle many ways to conveniently modify the splitting function and that
we have tried to find the simplest one that fulfills all the requirements and can be integrated
afterwards.

The functionP̂g1g2g3 in Eq. (A.11) has by itself the most complicated expression among
the variousP̂a1a2a3 because one has to sum over six permutations. Besides that, the
modification in (110) makes the angular integration very involved. Since many of the
ensuing terms have an additional singularity ass2 → 0 some of the angular integrals in
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Ref. [37] have to be evaluated one order higher inε. Once the angular integrals have
been performed, one has to face an additional complication: ‘spurious’ 1/q2

T and 1/q4
T

singularities appear in the intermediate steps, which of course cancel in the final result, but
create additional problems to take theqT → 0 limit. The final (factorized) result is

Σ̃
(2)R
gg(gg)(1)

= CAK
[(

3

ε2 + 3

ε

11

6
+ 1

ε
log

Q2

q2
T

)
CAFgg(1, ε)+ 2

ε

1∫
0

2zP̂gg(z, ε) logz

]

(115)

+C2
A

[
−log3 Q2

q2
T

+ 77

6
log2 Q2

q2
T

−
(

82

9
+ 4π2

3

)
log

Q2

q2
T

− 533

27
+ 11π2

9
+ 10ζ(3)

]
,

where we have isolated in the first line the terms that will be cancelled by analogous virtual
contributions. Notice that, sinceγ (1)

gg (1) = −2
3nf TR , there is no contribution to Eq. (115)

from the factorization counterterm in Eq. (102).

5.2. Virtual corrections

We finally compute the small-qT behaviour of the virtual contribution toΣ(2)
gg . The

calculation parallels the one for the quark in Section 4.2, and the singular configurations
are the same as at leading order. For the collinear limit, say whenkp1 → 0, we can write a
formula similar to Eq. (88)

M(0)†
gg→gF (p1,p2, k,φ)M(1)u

gg→gF (p1,p2, k,φ)+ c.c.

(116)

� 4παSµ
2ε

z1p1k

[
P̂gg(z1, ε)

(
M(0)†

gg→F (z1p1,p2, φ)M(1)
gg→F (z1p1,p2, φ)+ c.c.

)
+ 2g2

S

(
4πµ2

2p1k

)ε

P̂
(1)
g→(g)g(z1, ε)

∣∣M(0)
gg→F (z1p1,p2, φ)

∣∣2],
where P̂gg(z1, ε) is the tree-level splitting kernel in Eq. (29) and̂P (1)

g→(g)g(z1, ε) is the
unrenormalizedone-loop correction to the AP kernel for the collinear splitting of an initial
state gluon into a final state gluon with momentum fractionz1, in the CDR scheme. Its
explicit expression can be derived from the results of Ref. [21] and is up toO(ε0):

P̂
(1)
g→(g)g(x, ε)

(117)

= (1− x)−ε CΓ CA

(4π)2

[
P̂gg(x, ε)

(
− 1

ε2
− 2

ε
log(x)− 2 log(1− x) log(x)+ π2

3

)
− 1

3
(CA − 2nf TR)x

]
.

A similar formula holds when the gluon is radiated by the initial state antiquark. In the
soft region, the factorization formula is the same as in Eq. (91) withCF → CA and one
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can verify that, as it happens in the quark channel, Eq. (116) withz1 = z = Q2/s correctly
reproduces also the behaviour in the soft-region [21,23]. In the same way as for the quark
channel we can write down a single factorization formula in the smallqT limit:

M(0)†
gg→gF (p1,p2, k,φ)M(1)u

gg→gF (p1,p2, k,φ)+ c.c.

(118)

� 4παSµ
2ε

q2
T

2(1− z)

z

[
P̂gg(z, ε)

(
M(0)†

gg→F (φ)M
(1)
gg→F (φ)+ c.c.

)
+ 2g2

S

(
4πµ2

q2
T

)ε

(1− z)εP̂
(1)
g→(g)g(z, ε)

∣∣M(0)
gg→F (φ)

∣∣2].
According to Eq. (38) therenormalized amplitudeM(1)

gg→F can be written, up toO(ε0)

as:

M(0)†
gg→FM

(1)
gg→F + c.c.

(119)= αS

2π

(
4πµ2

Q2

)ε
Γ (1− ε)

Γ (1− 2ε)

(
−2CA

ε2 − 2β0

ε
+AF

g (φ)

)∣∣M(0)
gg→F

∣∣2.
In the case of Higgs production, in themH 
 mtop limit and including also the finite
renormalization to the effectiveggH vertex, the functionAH

g (φ) is given in Eq. (40).

The contribution from the UV counterterm (in theMS scheme) needed to renormalize
the splitting kernel̂P (1)

g→(g)g is: 15

(120)Σ
(2)
ggUVCT(N) = CAFgg(N, ε)K

(
Q2

µ2

)ε(
−1

ε

)
β0.

By approximating our matrix element with Eq. (118), using Eq. (119), and adding the
contribution from Eq. (120) we find

Σ(2)V
gg (1)= CAK

{[
− 3

ε2CA − 3

ε
β0 − 1

ε
CA log

Q2

q2
T

]
Fgg(1, ε)

− 2

ε

1∫
0

2zP̂gg(z, ε) logz

+ CA

(
−log3 Q2

q2
T

+ 11

6
log2 Q2

q2
T

+
(

−65

18
+ 5π2

3

)
log

Q2

q2
T

− 11π2

6
+ 389

27
− 8ζ(3)

)
+ 4

9
nf TR

(121)

+AF
g (φ)

(
−11

3
+ 2 log

Q2

q2
T

)
− β0 log

Q2

µ2
R

(
−11

3
+ 2 log

Q2

q2
T

)}
.

15 The total UV counterterm in the case of Higgs production would be three times this one, but we have included
part of it in the renormalized amplitude (119).
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The terms involvingFgg(1, ε) and P̂gg(z, ε) in Eq. (121) cancel the corresponding
divergent contributions in Eqs. (107) and (115).

5.3. Total result for the gluon channel

After adding all the contributions in

(122)Σ(2)
gg (1)= Σ̃

(2)R
gg(qq̄ab)(1)+ Σ̃

(2)R
gg(qq̄nab)(1)+ Σ̃

(2)R
gg(gg)(1)+ Σ(2)V

gg (1),

all divergent terms cancel out and we obtain

Σ(2)
gg (1)= log3 Q2

q2
T

[−2C2
A

] + log2 Q2

q2
T

[8CAβ0 + 4CAnf TR]

+ log
Q2

q2
T

[
C2

A

(
−229

18
+ π2

3

)
+ 2

9
CAnf TR

− 16

9
CFnf TR + 2CAAF

g (φ)

]

(123)

+
[
C2

A

(
2ζ(3)− 16

3
− 11

18
π2

)
− 8

27
CFnf TR

+ CAnf TR

(
37

27
− 2

9
π2

)
− 11

3
CAAF

g (φ)

]
,

where we have set againµ2
F = µ2

R = Q2.
The contribution for generalN can be computed as explained in the previous section for

the quark channel. The total result is:

Σ(2)
gg (N) = log3 Q2

q2
T

[−2C2
A

] + log2 Q2

q2
T

[
8CAβ0 − 6CAγ

(1)
gg (N)

]
+ log

Q2

q2
T

[
C2

A

(
67

9
+ π2

3

)
− 20

9
CAnf TR + 2CAAF

g (φ)

+ 2β0
(
γ (1)
gg (N) − β0

) − 4
(
γ (1)
gg (N)− β0

)2

− 4nf γ
(1)
gq (N)γ (1)

qg (N)

]

(124)

+
[
C2

A

(
−16

3
+ 2ζ(3)

)
+ 2CFnf TR + 8

3
CAnf TR

− 2β0

(
AF

g (φ)+ CA
π2

6

)
+ 2γ (2)

gg (N)

+ 2γ (1)
gg (N)

(
AF

g (φ)+ CA
π2

3

)
+ 4CFnf γ

(1)
qg (N)

1

(N + 2)

]
.

Hereγ (2)
gg (N) is the singlet space-like (gluon–gluon) two-loop anomalous dimension [42]

whereas the coefficient 1/(N +2) has origin on theN moments of−P̂ ε
gq(z), see Eq. (104).
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6. Final results and discussion

We can now compare the results obtained in the previous sections with the second order
expansion of the resummation formula in Eq. (18). As for theN -dependent contributions
in Eqs. (101), (124), they fully agree with the ones in Eq. (18).16 This agreement can be
considered as a nontrivial check of the validity of the resummation formalism, because the
expressions in Eqs. (101), (124) are completely general and the process dependence is fully
embodied in the functionsAF

c (φ). As an alternative, given the resummation formalism for
granted, the result in Eqs. (101), (124) can be considered as an independent re-evaluation
of the two-loop anomalous dimensions.

As far as theN -independent part is concerned, it can be used to fix the coefficientsA(2)

andB(2). By comparing the single-logarithmic contributions in Eqs. (101), (124) with the
one in Eq. (18) we obtain for the coefficientA

(2)
a :

(125)A(2)
a = KA(1)

a , a = q,g,

whereK is given in Eq. (11), thus confirming the results first obtained in Ref. [10,13]. By
comparing the nonlogarithmic terms we find that the coefficientB(2) can be expressed as
well by a single formula for both channels:

(126)B(2)F
a = −2γ (2)

a + β0
(2

3Caπ
2 +AF

a (φ)
)
, a = q,g,

whereγ
(2)
a are the coefficients of theδ(1 − z) term in the two-loop splitting functions

P
(2)
aa (z) [41,42], given by

γ (2)
q = C2

F

(
3

8
− π2

2
+ 6ζ(3)

)
+ CFCA

(
17

24
+ 11π2

18
− 3ζ(3)

)
− CFnf TR

(
1

6
+ 2π2

9

)
,

(127)γ (2)
g = C2

A

(
8

3
+ 3ζ(3)

)
− CFnf TR − 4

3
CAnf TR.

From Eq. (126) we see thatB(2), besides the−2γ
(2)
a term which matches the expectation

from theO(αS) result, receives aprocess-dependentcontribution controlled by the one-
loop correction to the LO amplitude (see Eq. (38)). Thus, as anticipated at the beginning,
although the Sudakov form factor in Eq. (5) is usually considered universal we find that it
is actually process-dependent beyond next-to-leading logarithmic accuracy.

However, by using the general expression in Eq. (126) it is possible to obtainB(2) for
a given process just by computing the one-loop correction to the LO amplitude for that
process. For the Drell–Yan case, by using Eq. (39), our result forΣ

(2)
qq̄ (N) agrees with the

one of Ref. [14], confirming the coefficientB(2)DY
q in Eq. (12).

16 We have checked that the results in the quarksingletchannel are also in agreement with Eq. (18).



280 D. de Florian, M. Grazzini / Nuclear Physics B 616 (2001) 247–285

In the interesting case of Higgs production in themtop → ∞ limit, by using Eq. (40) we
find:17

(128)

B(2)H
g = C2

A

(23
6 + 22

9 π2 − 6ζ(3)
) + 4CFnf TR − CAnf TR

( 2
3 + 8

9π
2) − 11

2 CFCA.

In particular, this result allows to improve the present accuracy of the matching between
resummed predictions [44] and fixed order calculations [45].

Notice that in this case, the coefficientB
(2)H
g turns out to be numerically large. Actually,

for nf = 5 we haveB(2)H
g /B

(1)
g ≈ −14, whereas for Drell–Yan the same ratio leads to

B
(2)DY
q /B

(1)
q ≈ −1.9, i.e., about 7 times smaller than for Higgs production. Both the

appearance of aC2
A term (compared toC2

F in the quark case) and the size of the one-
loop corrections to Higgs production are the reasons for the large coefficient. Clearly, the
use ofB(2)H

g in the implementation of the resummation formula will have an important

phenomenological impact [46]. Actually, one can expect that the inclusion ofB
(2)H
g , which

will tend to reduce the resummed cross section, will partially compensate the increase in
the normalization produced by the (also) large coefficientC

(1)H
gg [33,34].

The fact that the Sudakov form factor is process-dependent is certainly unpleasant. Usu-
ally it is called the quark or gluon form factor, since it should be determined by the universal
properties of soft and collinear emission. With the result in Eq. (126), instead we find, for
example, that the form factor forγ γ production is different from the one for Drell–Yan.
Moreover, since the hard functionAF

c depends in general on the details of the kinematics
of F (in case ofγ γ production it would depend, e.g., on the rapidities of the photons), the
same happens to the coefficientB(2) and thus to the Sudakov form factor in Eq. (5).

However, the results in Eqs. (46) and (126) suggest a simple interpretation [27]. We can
see in Eq. (46) that the process-dependent coefficients functionsC

(1)F
ab (z) have two contri-

butions. The first has acollinearorigin and is driven by theO(ε) part of theP̂ab(z, ε) ker-
nel (see Eq. (47)). The second has instead ahard origin, and contains the finite part of the
one-loop correction to the leading order subprocess. As a consequence, the scale at which
αS should be evaluated is different for these two terms. In the collinear contributionαS

should be evaluated at same scale as the parton distributions are, i.e.,b2
0/b

2. By contrast, the
correct scale at whichαS should be evaluated in the hard contribution is the hard scaleQ2.

As discussed in Ref. [27] this mismatch, that affects the resummation formula in its
usual form Eq. (4), can be solved by introducing a new process-dependent hard function
HF

c (αS(Q
2)). The ensuing resummation formula is [27]

WF
ab(s;Q,b,φ)

=
∑
c

1∫
0

dz1

1∫
0

dz2Cca

(
αS

(
b2

0/b
2), z1

)
Cc̄b

(
αS

(
b2

0/b
2), z2

)
δ
(
Q2 − z1z2s

)

17 Actually, using the results of Ref. [43] for the two-loopgg → H amplitude, one can also obtainB(2)H
g for

arbitrarymtop.
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(129)× dσF
cc̄(Q

2, αS(Q
2),φ)

dφ
Sc(Q,b),

where

(130)
dσF

cc̄(Q
2, αS(Q

2),φ)

dφ
= dσ

(LO)F
cc̄ (Q2, φ)

dφ
HF

c

(
αS

(
Q2), φ)

.

As discussed in Ref. [27], this modification is sufficient to make the Sudakov form factor
Sc(Q,b) and the coefficient functionsCab(αS(b

2
0/b

2), z) process-independent, withCab

andHF
c being dependent on the introduced ‘resummation-scheme’. We point out that this

modification is not only a formal improvement, since, once a resummation scheme is fixed,
the resummation coefficients in Eq. (129) are now universal and it is enough to compute
the functionHF

c at the desired order for the process under consideration.
Summarizing, in this paper we have exploited the current knowledge on the in-

frared behaviour of tree-level and one-loop QCD amplitudes atO(α2
S) to compute the

logarithmically-enhancedcontributions up to next-to-next-to-leading logarithmic accuracy,
in an general way, for both quark and gluon channels. Comparing our results with the
qT -resummation formula we have extracted the coefficients that control the resummation
of the large logarithmic contributions. We have presented a result that allows to compute
the resummation coefficientB(2)F for any process, by simply knowing the one-loop (vir-
tual) corrections to the lowest order result. In particular, we have obtained the result for the
case of Higgs production in the largemtop approximation, which turns out to be numeri-
cally relevant for phenomenological analyses.

The results of our calculation clearly show that the Sudakov form factor is actually
process dependent within the conventional resummation approach. An improved version
of the resummation formula where this problem is absent has been presented in Ref. [27].
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Appendix A. Triple-collinear splitting functions

In this appendix we collect the various expressions of the triple-collinear splitting
functions. Denoting byr1, r2 andr3 the momenta of the final state partons that become
collinear, the triple-collinear splitting functions depend on the invariantssij = (ri + rj )

2,
s123 = s12 + s13 + s23 that parameterize how the collinear limit is approached, and on
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the momentum fractionsxi (i = 1,2,3) involved in the collinear splitting. The splitting
function for the collinear decay of a quarkq in qq̄ pair plus a quark is

(A.1)P̂q̄1q2q3 = [
P̂q̄ ′

1q
′
2q3

+ (2 ↔ 3)
] + P̂

(id)
q̄1q2q3

,

where

P̂q̄ ′
1q

′
2q3

= 1

2
CFTR

s123

s12

(A.2)×
[
− t212,3

s12s123
+ 4x3 + (x1 − x2)

2

x1 + x2
+ (1− 2ε)

(
x1 + x2 − s12

s123

)]
,

P̂
(id)
q̄1q2q3

= CF

(
CF − 1

2CA

){
(1− ε)

(
2s23

s12
− ε

)
+ s123

s12

[
1+ x2

1

1− x2
− 2x2

1− x3
− ε

(
(1− x3)

2

1− x2
+ 1+ x1 − 2x2

1− x3

)
− ε2(1− x3)

]

(A.3)

− s2
123

s12s13

x1

2

[
1+ x2

1

(1− x2)(1− x3)
− ε

(
1+ 2

1− x2

1− x3

)
− ε2

]}
+ (2 ↔ 3),

and the variabletij,k is defined as

(A.4)tij,k ≡ 2
xisik − xj sik

xi + xj
+ xi − xj

xi + xj
sij .

The splitting function for theq → qgg decay can be decomposed according to the different
colour coefficients:

(A.5)P̂g1g2q3 = C2
F P̂ (ab)

g1g2q3
+CFCAP̂

(nab)
g1g2q3

,

and the Abelian and non-Abelian contributions are

P̂ (ab)
g1g2q3

=
{

s2
123

2s13s23
x3

[
1+ x2

3

x1x2
− ε

x2
1 + x2

2

x1x2
− ε(1+ ε)

]
+ s123

s13

[
x3(1− x1)+ (1− x2)

3

x1x2
+ ε2(1+ x3)

− ε
(
x2

1 + x1x2 + x2
2

)1− x2

x1x2

]
+ (1− ε)

[
ε − (1− ε)

s23

s13

]}
(A.6)+ (1 ↔ 2),

P̂ (nab)
g1g2q3

=
{
(1− ε)

(
t212,3

4s2
12

+ 1

4
− ε

2

)
+ s2

123

2s12s13

[
(1− x3)

2(1− ε)+ 2x3

x2
+ x2

2(1− ε)+ 2(1− x2)

1− x3

]
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− s2
123

4s13s23
x3

[
(1− x3)

2(1− ε)+ 2x3

x1x2
+ ε(1− ε)

]
+ s123

2s12

[
(1− ε)

x1(2− 2x1 + x2
1)− x2(6− 6x2 + x2

2)

x2(1− x3)

+ 2ε
x3(x1 − 2x2)− x2

x2(1− x3)

]

(A.7)

+ s123

2s13

[
(1− ε)

(1− x2)
3 + x2

3 − x2

x2(1− x3)

− ε

(
2(1− x2)(x2 − x3)

x2(1− x3)
− x1 + x2

)
− x3(1− x1)+ (1− x2)

3

x1x2

+ ε(1− x2)

(
x2

1 + x2
2

x1x2
− ε

)]}
+ (1 ↔ 2).

When a gluon decays collinearly, spin-correlations are present. Here we are concerned only
with spin-averaged splitting functions. When the gluon decays in aqq̄ pair plus a gluon
the splitting function is

(A.8)P̂g1q2q̄3 = CFTRP̂
(ab)
g1q2q̄3

+ CATRP̂
(nab)
g1q2q̄3

,

where

P̂
(ab)
g1q2q̄3

= −2− (1− ε)s23

(
1

s12
+ 1

s13

)
+ 2

s2
123

s12s13

(
1+ x2

1 − x1 + 2x2x3

1− ε

)

(A.9)

− s123

s12

(
1+ 2x1 + ε − 2

x1 + x2

1− ε

)
− s123

s13

(
1+ 2x1 + ε − 2

x1 + x3

1− ε

)
,

and

P̂
(nab)
g1q2q̄3

=
{
− t223,1

4s2
23

+ s2
123

2s13s23
x3

[
(1− x1)

3 − x3
1

x1(1− x1)
− 2x3(1− x3 − 2x1x2)

(1− ε)x1(1− x1)

]
+ s123

2s13
(1− x2)

[
1+ 1

x1(1− x1)
− 2x2(1− x2)

(1− ε)x1(1− x1)

]
+ s123

2s23

[
1+ x3

1

x1(1− x1)
+ x1(x3 − x2)

2 − 2x2x3(1+ x1)

(1− ε)x1(1− x1)

]
(A.10)− 1

4
+ ε

2
− s2

123

2s12s13

(
1+ x2

1 − x1 + 2x2x3

1− ε

)}
+ (2 ↔ 3).

In the case of a gluon decaying into three collinear gluons we have:

P̂g1g2g3 = C2
A

{
(1− ε)

4s2
12

t212,3 + 3

4
(1− ε)

+ s123

s12

[
4
x1x2 − 1

1− x3
+ x1x2 − 2

x3
+ 3

2
+ 5

2
x3 + (1− x3(1− x3))

2

x3x1(1− x1)

]
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+ s2
123

s12s13

[
x1x2(1− x2)(1− 2x3)

x3(1− x3)
+ x2x3 − 2+ x1(1+ 2x1)

2

+ 1+ 2x1(1+ x1)

2(1− x2)(1− x3)
+ 1− 2x1(1− x1)

2x2x3

]}
(A.11)+ (5 permutations).
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