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Abstract

We consider the region of small transverse momenta in the production of high-mass systems in
hadronic collisions. By using the current knowledge on the infrared behaviour of tree-level and one-
loop QCD amplitudes 6[0(0{%), we analytically compute the general form of the logarithmically-
enhanced contributions up to next-to-next-to-leading logarithmic accuracy. By comparing the results
with gr-resummation formulae we extract the coefficients that control the resummation of the
large logarithmic contributions for both quark and gluon channels. Our results show that within the
conventional resummation formalism the Sudakov form factor is actually process-depengeat
Published by Elsevier Science B.V.
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1. Introduction

The transverse-momentum distribution of systems with high invariant mass produced in
high-energy hadron collisions is important for QCD studies and for physics studies beyond
the Standard Model (see, e.g., Refs. [1-4]).

We consider the inclusive hard-scattering process

h1(py) + ha(p2) — F(0% ¢%: ¢) + X, (1)
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where the final-state systemis produced by the collision of the two hadrainsandh
with momentgp; andp», respectively. The final stat€ is a generic system of nonstrongly
interacting particles, such aseor morevector bosongy*, W, Z, ...), Higgs particles
(H) and so forth. We denote by’s the center-of-mass energy of the colliding hadrons
(s = (p1 + p2)? = 2p1p2), and by 02 and ¢2 the invariant mass and total transverse
momentum of the systeri, respectively. The additional variabde in (1) denotes the
possible dependence on the kinematics of the final state particlegsnch as rapidities,
individual transverse momenta and so forth).

We assume that at the parton level the systeimproduced with vanishingy (i.e., with
no accompanying final-state radiation) in the leading-order (LO) approximation. 8ince
is colourless, the LO partonic subprocess is eithey annihilation, as in the case of*,

W and Z production, orgg fusion as in the case of the production of a Higgs bosbn

When the transverse momentum of the produced systénis of the order of its
invariant massQ? the fixed order calculation is reliabfe.In the regiong2 « Q2
large logarithmic corrections of the foret/q2 log? =1 02/42 appear, which spoil the
convergence of fixed-order perturbative calculations. The logarithmically-enhanced terms
have to be evaluated at higher perturbative orders, and possibly resummed to all orders
in the QCD coupling constants. The all-order resummation formalism was developed
in the eighties [5—14]. The structure of the resummed distribution is given in terms of a
transverse-momentum form factor and of process-dependent contributions.

The coefficients that control the resummation of the large logarithmic contributions for
a given process in (1) can be computed at a given order if an analytic calculation at large
gr at the same order exists. At first orderdr the structure of the large logarithmic
contributions is known to be universal and depends only on the channel in which the system
is produced in the LO approximation. At second relative ordessironly a few analytical
calculations are available, like the pioneering one for lepton-pair Drell-Yan production,
performed by Ellis, Martinelli and Petronzio in Ref. [15]. Using the results of Ref. [15]
Davies and Stirling [14] (see also [16]) were able to obtain the complete structure of the
O(ag) logarithmic corrections for that process.

The analysis performed by Davies and Stirling is by far nontrivial because it requires the
integration of the analytigy distribution in the small7 limit. Moreover, the calculation
cannot tell anything about the dependence of these coefficients on the particular process
in (1) and should in principle be repeated for each process.

In this paper we address this problem with a completely independent and general
method. Our basic observation is that the large logarithmic corrections are of infrared (soft
and collinear) nature, and thus their form can be predicted once and for all in a general
(process independent) manner.

The structure of the logarithmically-enhanced contribution®atg) is controlled by
the infrared limit of the relevant QCD amplitudes at the same order. The infrared behaviour
of QCD amplitudes a®(«s) is known since long time [17]. Recently, soft and collinear
singularities arising in tree-level [18,19] and one-loop [20-23] QCD amplitud@i{a@)

3t is assumed that all other dimensionful invariants are of the same oréler
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have been extensively studied and the corresponding kernels have been computed [18-25].
By using this knowledge, and exploiting the relatively simple kinematics of the process (1),
we will construct general approximations of the relevant QCD matrix elements that are able
to control all singular regions correspondingto— 0 avoiding double counting. By using
these approximations we will compute the general structure df)(bé)-logarithmically-
enhanced contributions both fg§- and forgg-initiated processes.

The results provide an important check of the validity of the resummation formalism
and allow to extract the general form of the resummation coefficients. In particular, in the
guark channel we can confirm the results of Ref. [14] in the case of Drell-Yan and in the
gluon channel we can give the coefficients in the important case of Higgs boson production
through gluon—gluon fusion.

The universality of our method relies on the fact that the infrared factorization formulae
we use depend only on the channgf (or gg) in which the systen¥ is produced at LO
and not on the details af.

Our main results were anticipated in a short letter [26]. This paper is organized as
follows. In Section 2 we review the framework of the resummation formalism and present
the strategy for the calculation. In Section 3 we perform the calculation explicitly for the
O(as) corrections and extract the first order coefficients. Sections 3 and 4 are devoted to
the calculation aO(ag) for the quark and the gluon channel and constitute the main part
of this work. Finally in Section 6 we present our final results and discussion.

2. Resummation formula

The transverse momentum distribution for the process in Eqg. (1) can be written as:

dGF dO’F dUF
= +| = - (2)
dQ?dqf d¢ [dQqu%dzb]res [dQqu%w]ﬁn.

Both terms on the right-hand side are obtained as convolutions of partonic cross sections
and the parton distributions, ; (x, 0% (a= qf.qy, g is the parton label) of the colliding
hadrons?

The partonic cross section that enters in the resummed part (the first term on the right-
hand side) contains all the logarithmically-enhanced contributiigj’sﬁ log™ Qz/q%
Thus, this part has to be evaluated by resumming the logarithmic terms to all orders in
perturbation theory. On the contrary, the partonic cross section in the second term on the
right-hand side is finite (or at least integrable) order-by-order in perturbation theory when
qr — 0. It can thus be computed by truncating the perturbative expansion at a given fixed
order inas.

4 Throughout the paper we always use parton densities as definedMBtfactorization scheme armcg(qz)
is the QCD running coupling in the1S renormalization scheme.
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Since in the following we are interested in the smgalllimit we will be concerned only
with the first term in Eq. (2). The resummed componeft is

i)
szdQ% do lres
1

1 [e'9)
b
=Z/dx1/dxzfdb EJo(bqr)fa/hl(xl,bg/bz)fb/hz(xz,bg/bz)
o 0

a,b 0

x sWE (x1x25; 0, b, $). (3)

The Bessel functiodp(bgr) and the coefficientg = 2¢ £ (yg = 0.5772... is the Euler
number) have a kinematical origin. To correctly take into account the kinematics constraint
of transverse-momentum conservation, the resummation procedure has to be carried out in
the impact-parametérspace. The resummed coefﬁcieﬁﬁ is

Wr(s; Q. b, ¢)

1 1
=" [ dan [ azaClfas(bhis?). ) Chas(67/). 2)3(02 — acas)
0 0

c
(LO)F
x 2% gF (0, b), 4
dp e (Q.b) (4)
wheredac(c-,w)/dqﬁ corresponds to the leading order cross section for the production of
the large invariant mass systemin the cc channel, withc representing either a quark
g or a gluong. The resummation of the large logarithmic corrections is achieved by
exponentiation, that is by showing that the Sudakov form factor can be expressed as

Qo 2 2
SC(Q,b)zexp{— / dqiz[AC(aS(qZ))log%+Bc(as(q2))”. (%)
b3/b?

The functionsA. (as), B.(as), as well as the coefficient functions; (as, z) in Egs. (4),
(5) are free of large logarithmic corrections and have perturbative expansiegam

oo as n

Ac(as) = Z(—) AW, (6)
= 2
oo as n

B.(as) = (—) B, 7
; 27

Cap(as, z)=3ab3(1—z)+n§1<g—j> (). (8

5 This expression can be generalized to include the dependence on the renormalization and factorization scales
g andu g, respectively (see, e.g., Ref. [27]).
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The coefficients of the perturbative expansioff¥’, B andC")(z) are the key of
the resummation procedure since their knowledge allows to perform the resummation
to a given Logarithmic order: AD leads to the resummation of leading logarithmic
(LL) contributions,{A®, BD c®} give the next-to-leading logarithmic (NLL) terms,
{A® B@ @} give the next-to-next-to-leading logarithmic (NNLL) terms, and so
forth.® The coefficient function€f,’})) (z) depend on the process, as it has been confirmed
by calculations ofCﬁ)(z) for several processes. The Sudakov form fadidiQ, b) that
enters Eq. (4) is ofteaupposedo be universal. However, as we will show, this is not the
case, and anticipating our results we label all process-dependent coefficients by the upper
index F. The coefficientsA®, BD | AP are universal and are known both for the quark
[10] and for the gluon [13] form factors

Af}) =2Cp, A;}) = 2C4,
B =-3Cr, B =—2po,
AP =2crk, AP =2C4K, 9)
where
11 2
/30 = ECA - §nfTR (10)
and
67 w2 10
K=——")Cx—n,Tk. 11
(18 6>A g /IR (1)

The NNLL coefficientB® was computed by Davies and Stirling [14] for the case of
Drell-Yan (DY):
BPPY = CE(n% - § —120(3)) + CrCa(gn’ — 2 +6:(3)

+CanTR(%7— én’z), (12)
where¢ (n) is the Riemanrt -function (¢(3) = 1.202. . ). It is also worth noticing that,
even though there is no analytical result available for it, the coeffioéxé,ﬁl has been
extracted numerically with a very good precision in Ref. [29].

As anticipated in the introduction, a direct way to obtain the coefficients in Eqgs. (6), (7)

at a given order involves the computation of the differential cross sed&qdq% dQ?d¢
at smallgr at the same order. A comparison with the power expansioasimof the
resummed result in Eq. (3) allows to extract the coefficients that control the resummation
of the large logarithmic terms. However, it has been shown by Davies and Stirling that is it

more convenient to take= 02/s momentg of the differential cross section defining the
dimensionless quantity

1-297/0
X(N)= / dzz
0

y Q%5  do
doo/d$ dqi d Q?d’

(13)

6|n a different classification the coefficieatD enters only at NNLL [28].
7 Here we follow Ref. [14] in the unconventional definition of the momelfitay) = fol dzz2V 1 (2).



252 D. de Florian, M. Grazzini / Nuclear Physics B 616 (2001) 247-285

Notice that in the definition ofY the cross section has been normalized with respect
to the lowest order partonic contributiafvg/d¢ and multiplied byq% to cancel its
1/q% singular behaviour in the limit;z — 0. The upper limit of integration = 1 —

ZqT/Q(,/1+q$/Q2 —qr/Q) ~1— 2q7r/Q has been approximated to a first order
expansion ingr/Q and corresponds to the kinematics for the emission of soft particles
(i.e, when the center of mass energyis just enough to produce the system with
invariant masg) and transverse momentuym). Working with moments allows to avoid
complicated convolution integrals implicit in (3) and makes possible to factorize the parton
densities from the partonic contribution to the cross section. In this way, the corresponding
expression from the resummed formula (3) reads

SNY =Y firna (N 1%) Firno (N 1%) Zij (N, (14)
ivj
where
® 2
TiN)y=) f bdb%TJo(qu)cfa (N, as(b3/b%))CL (N, as(bi/b?))
a,b 0
Q2 qu Q2
x exp{ - / - |:Ac(a8(q2)) log ~5 + B/ (as(qz))]
b3/b?
I
d 2
- f q_qz(yai + J/bj)(N,Ots(qz))} (15)
b3/b?

and an ordered exponential is understood. Notice that the appearance of an extra term
involving the anomalous dimensiopg, in the exponential in (15) is due to the evolution
of the parton densities from the original sca@/bz in (3) to the arbitrary factorization
scaleur at which they are now evaluated.
In order to extract the resummation coefficients, we can directly study the partonic
contribution X;;. Furthermore, since we want to perform a calculationsf to O(a3)
and our main interest is the second order coefficB#t, it is clear that only the diagonal
contribution X.; can give the desired information. Each possible “flavour changing”
contribution in Eq. (15) would add at least one extra powengfin the perturbative
expansion. ‘Nondiagonal’ contributions &;;, which can be evaluated in a simpler way,
might be used to check the structure and consistency of the resummation framework at a
given perturbative order but do not provide any additional information on the coefficients.
In order to have transverse momentyim=~ 0 at least one gluon has to be emitted and,
therefore, the perturbative expansionXf: begins atD(as)

2
s os
Z.:(N) = Zzgc@(m + (Z) SONy 4. (16)
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From the expansion of the resummed formula (15) it is possible to obtain the expression
for the first two coefficients in (16) &s

Q2
2

ar

@ 1 1 1
22Ny =APlog = + B + 2y (V) (17)

and

2
> (N) =log? Q—Z[—%(Agl)) |+ Iog2 0 [ 3(BY +2r D) AL + poa® ]
dr

+ log Qz [A@) + Bo(BP + 2)’c1)(N)) (BY +2r L))

+2A0CPF Ny -2) ycl)(N)y(l)(N)}

J#c
2
+ BT + 2y 2Ny +2(BY + 2y P (V) DT (N) + 2¢(3)(AL)
— 26PN +2) [T Ny (). (18)

j#e

The computation OE(l)(N) can provide information on the first order coefﬂueﬂﬁé)
(the logarithmic term in (17)) anBc(l) (the constant term in (17)) as well as on the one-
loop anomalous dimensionécl)(N) (the N-dependent term in (17). In the same way,
the coefficientsc&( ) andB( 'F can be extracted from the second order result (18). At this
order, also the coefficient functloms(l)F(N) contribute to the logarithmic and constant
terms and therefore should be known in order to be able to proceed with the extraction
of Aﬁ,z) and BC(Z)F . Fortunately, there is another related quantity which allows to obtain
the coefficient function€i(jl)F(N) from a first order calculation. This is thg -integrated
cross section

pT

d 2
[ 4% 5. (19)

When p% « Q2 the perturbative expansion tB(«s) reads (neglecting again terms that
vanish wherpy — 0)
2
dq? 1
/ T 5 o= —S[ AD Iog2 o — (B + 2y (V)) log = o, 2c<1>F<N)}
qT 2 2 T
2

2 2
/ dqu Sia= —S[ yP(N)log Q2 + C(l)F(N)] i#c. (20)
qar 2

8 For the sake of simplicity in the presentation, and unless otherwise stated, we fix the factorization and
renormalization scales {02 = u% = Q2.

9 Notice that all moments but one can actually be extracted. The remaining one can be obtained by imposing
quark number and momentum conservation rules.
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The integration oveyr adds one power in the logarithm, with the coefficient functions
Ci(jl)F(N) appearing now in the constant term. It is worth noticing that at variance with the
calculation ofX' the configuration witly7 = 0 now contributes to Eqg. (19).

In the quark channék = ¢), for the sake of simplicity and in order to compare directly
with the calculation performed in [14], we will concentrate on tleasingletcontribution

to the cross section defined by

UNS = Z(Gq-féf/ - O'qqu/)~ (21)
fr

The second order expansion fEig‘éS(N) in terms of the resummation coefficients reads
like the one in Eg. (18) but without the ‘singlet’ contributions involvihg; .. and with

the corresponding nonsinglet anomalous dimension. In the following the label NS will be
always understood ix;;.

3. Thecalculation at O(as)

The calculation atO(«as) is not difficult and the results are rather well known.
Nevertheless, we will give in this section the details on the computation as a way to present
the main ideas of the method developed to obtain the resummation coefficients.

At this order only one extra gluon of momentuntan be radiated and the kinematics
for the processc — g + F is (see Fig. 1)

p1+p2—k+gq. (22)

We denote the corresponding matrix elemenvnggF

invariants are defined as

s=(p1+p2% u=(p2—-k?%  t=(p1-k%  z=0%s. (23)
The differential cross section can be written as

(p1, p2, k, ¢) and the usual

0 2
dq2dQ2d¢ 8s(2m)2 I'l—e) u

1
X 5(;(“ — Umax) (U — Mmin)>, (24)

Fig. 1. O(ag) contribution to the process (1).
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where the two roots of the equatiopy + p2 — ¢)? = 0 are given by

=1 \/A-22—4zq} /02
2z ’
2= 1+\/(1—z)2—4zq%/Q2
27 ’

In order to regularize both ultraviolet and infrared divergences we work in the conventional
dimensional regularization scheme (CDR) with 2¢ space—time dimensions, considering
two helicity states for massless quarks and 2¢ helicity states for gluons. The lowest-
order cross section (g = 0) needed to construct in Eq. (13) is given by

Umin = Q

(25)

Umax= 0

0 2

s 5 (26)

in terms of the Born matrix elemenMigLF(pl, P2, ®)2.

As has been stated, we want to obtﬂfé) by using our knowledge on the behaviour
of QCD matrix elements in the soft and collinear region®a&ks). The starting point is
the observation that, wheg? is small, the additional gluon is constrained to be either
collinear to one of the incoming partons or soft. Thus there are three singular regions of
MO (p1, p2. k. ¢) in thegr — O limit:

o first collinear regionp1k — O;

e second collinear regionizk — 0;

e soft regionik — 0.

Itis clear that, sincq% is small but does not vanish, these regions do not produce any real
singularity, i.e., poles ir, but are responsible for the appearance of the logarithmically-
enhanced contributions. Whenk — 0 the matrix element squared factorizes as follows:

> Amasp® ~ 2
where
~ 1472
Pyy(z,€)=CF - —e(1l-2)|, (28)
~ z 1—z
Peg(z,€) =2C4| 77—+ ——+z(1~2) (29)

are thec-dependent real Altarelli—Parisi (AP) kernels in the CDR scheme. In the left-hand
side of Eq. (27) the matrix element squared is obtained replacing the two collinear partons
¢ andg by a partonc with momentunty ps.

Notice that in the gluon channel there are additional spin-correlated contributions and
Eq. (27) is strictly valid only after azimuthal integration. Since here and in the following
we will always be interested in azimuthal integrated quantities, Eq. (27) can be safely used
also in the gluon channel.
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In the limit pok — 0 the singular behaviour is instead

A g’

pak
Let us now consider the limit in which the gluon becomes soft. As it is well known soft-
factorization formulae usually involve colour correlations, that make colour and kinematics
entangled. In general colour correlations relate each pair of hard momentum partons in the
Born matrix element. In this case the hard momentum partons are only two and colour
conservation can be exploited to obtain:

2 I~ 2
IMQ. p(pr. p2. k. 9)]* ~ Pec(z2, )| M, p(p1.22p2.9)[°. (30)

2 2
M, 1 (p1, p2. k. §)[° = dmas® CcaS12(0) | ML, 1 (p1. p2. )|, (31)
where
pip2
S1o(k) = ————— 32
12(k) Porkpak (32)
is the usual eikonal factor and we have defined
C;=CF, C,=Ca. (33)

In EqQ. (31) colour correlations are absent and factorization is exact. This feature will persist
also atO(a3).

In each of the singular regions discussed above, Eqgs. (27), (30) and (31) provide an
approximation of the exact matrix element that can be used to compute the cross section
in the smallg7 limit. In principle it might be possible to split the phase space integration
in regions where only soft or collinear configurations can arise, and use in each region the
corresponding approximation. Unfortunately, such method probes to be very difficult to be
extended tc@(ag), where the pattern of singular configurations is much more complicated.
Thus our strategy is to unify the factorization formulae in order to obtain an approximation
that it is valid in the full phase space.

As can be easily checked, if we identify the momentum fractiansndz, with z, the
collinear factorization formulae in Egs. (27), (30) contain the correct soft limit in Eq. (31).
Therefore, the unification of soft and collinear limits is rather simple: the usual collinear
factorization formula already contains both. Strictly speaking, one can use the symmetry in
the initial states in order to perform the integration in Eq. (24) only over half of the phase
space (i.e., by taking for instance omly= umax) and multiplying the result by two. In this
way only one possible collinear configuration can occur and Eq. (27) provides the needed
approximation for the matrix element.

Atthis order itis even possible to write down a general factorization formulafor the three
configurations that shows explicitly the@% singularity of the matrix element squared as

2¢
M2 (pr p2 k) F 4’”; o 2(1Z Pz MO (@)
T

2

(34)

where we have used Lorentz invariance in order to wmt(eigLF(¢)|2 only as a function
of the final state kinematics. We can now use this formula to compute the gmall
behaviour of ¥.:(N) in a completely process independent manner. In fact the process
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dependence, given by the Born matrix element, is completely factored out and cancels
in X. By replacing Eq. (34) in Eq. (24) and using the definition’dfve obtain, keeping
for future use its dependence:

1-2g7 —~
1 1 47T,bL € /e 21— 2) Pec(z, €)
sV, e) = ( ) f dz
ra-o Ja-22-22¢2/02
_ 1 A7 2\ .
=m< 7 ) C.F.:(N,¢). (35)

Explicitly, settinge to 0, we have
QZ
2P (N)=2Crlog=; —3Cr + 2y P(N).
‘1T
Q2
S(N)=2Calog=5 — 2P0+ 2y P (N), (36)
qar

for the quark and gluon channels. Comparing to Eq. (17) we see4ﬁ3|)at= 2C. is the
coefficient of the leading /A1 — z) singularity in the AP splitting functions where& D
—2y(l) is given by the coefficient of the delta function in the regularized AP kernels

vy = ch, vs" = Fo. (37)
Finally, in order to obtain the coefficier(rﬁ), we have to evaluate the integrals in

Eq. (19) and compare to the results from Eqg. (20). As far as the diagonal contribution is

concerned, one has to take into account also the one-loop correction to the lowest order

cross section, a contribution formally proportional&(y%). The interference between

the one-loop renormalized amplitude with the lowest order one depends of course on the

process. Nevertheless, its singular structure is universal and allows to write in general [30]

MO MP tec

cc—F

_os 47r,u I'l—e) 2C, 2yc F ©

_2n< 02 ) I'(1—2¢) €2 +A @) )| M,
Thefinite part A" depends (in general) on the kinematics of the final state noncoloured
particles and on the particular process in the class (1) we want to consider. In the case of
Drell-Yan we have [31]:

(38)

C~>F|

AP =Cp(-8+ 377, (39)
whereas for Higgs production in theop — oo limit the finite contribution is [32]:
2
All =5C4 + écAnZ —3Cp =11+ 272 (40)

The diagonal term in Eq. (19) can be evaluated integrating Eq. (35), frormrf),tbeeping
into account the contribution in Eq. (38) and subtracting the following factorization
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counterterm in th&1S scheme:

RED () = 2,2?‘;(“”“ ) . (41)

As for the nondiagonal contribution, one negdg(N), that can be computed, analogously
to Eqg. (35) as

1 4 2\ € 1-297/0 (1 ﬁ )
Yieg(N) = 7(71_5) / dz 7V —2)Pi(z, €
F(l—f) qr \/(1 4Z(]%/Q2
1 4 2\ € 1
1 (4 NE
0

where the function®,; (z, €) are the nondiagonal AP splitting kernels

~ 1+ (1—2z)2

qu(z,€)=CF|:¥—€Z] (43)
_ 2z(1

qu<z,e>=TR[1— Zi_j)], (44)

and the absence of singularitieszas> 1 has been exploited to sgt — 0 in the integral.
The factorization counterterm to be subtracted in this case is

1I(1—e) [4rp?\°
REP ) =2 2 ) v, (45)

Comparing the total results to Eq. (20) we obtaincﬂﬂ;):
2

b4 1 -
T raA®) (46)

whereP;b(z) represent th&(e¢) term in the APEb(z, €) splitting kernels in Egs. (28),
(29), (43), (44) and are given by:

P () =—Cr(l—2),  Pg(x)=—Crz,
Pt () =—2Trz(1—2),  Pg,(2)=0. (47)

COF(2) = —P5(2) + 8upd(1—2) (ca

As can be observed, the coefficient function contains botrai@ process dependent
contribution (proportional to4X (¢)) originated in the one-loop correction as well as a
‘residual’ collinear contribution proportional the part of the splitting functions which
has origin in the particularities of tidS scheme (see Eq. (41)), where only ¢he 0 (and
not the full) component of the splitting functions is factorized. The general expression
in EqQ. (46) reproduces correctly the coeﬁiciﬂﬁ) computed for Drell-Yan [14], Higgs
production in thenip — oo limit [33,34], y y [35] andZ Z [36] production.

Summarizing the&)(as) results, the coefficientAEl) andBc(l) are fully determined by
theuniversalproperties of soft and collinear emission. The funcﬁz;(jb) depends instead
on the process through the one-loop corrections to the LO matrix element.
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4. The calculation at O(aé): the quark channel

At O(a3) Z44(N) receives two contributions:

¢ Real emission of two partons recoiling against the final state syBtedT, q%, P);
e Virtual corrections to single-gluon emission.

In the following we compute these contributions in turn.
4.1. Real corrections

The computation of the double real correctiongig; (V) represents the most involved
part of the complete calculation. The difficulties arise both from the fact that the additional
parton in the final state implies three more phase space integrals, and from the appearence
of many more singular configurations that contribute to the limit> O.

The kinematics for the double real emission proegss- i + j + F is (see Fig. 2)

p1+p2—>ki+ka+gq, (48)
and the corresponding matrix element is denotedAklﬁ@LijF(pl,pz,kl,kz,qb). The
usual invariants are defined as

s = (p1+ p2)%, t=(p1—q)% u=(p2—q)> s2= (k1 +k2)%, (49)
and fulfill the following relations

ut — szQ2

s+it+u=0%+sz 9% = B

(50)

In terms of these invariants, the real contribution to the cross section a’qﬁxiscgiven
by

0 2
doccsij F _ ‘MEE)_H'jF(pL D2, k1, k2, ¢)| (qu%)_e du dS2
dg2dQ?d¢ 2s (4m)4=2cr(1—2¢) Q2 —u 21’
(51)
whered $2 is
d$2 = sinby % db, singi =% déx, (52)

Fig. 2. O(e%) contribution from double real emission.
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with the angles defined in the frame where the partons corresponding to momardanoh
ko are back-to-back [15].

We see from Eq. (51) that the first step of the calculation involves the integration over
the two angles. The integrals needed here are typical of heavy quark production at NLO
and most of them can be found in Refs. [37,38]. The results of the angular integrals contain
poles up to Xe while terms that develop an extra additional singularityzas> 0 have to
be computed up t@(¢).

The second step is the integration ougor s2). The integration limits are given by the
two rootsumax andumin in EQ. (25). At this point, it is convenient to define the ‘symmetric’
value for whichu = ¢

uo= 0% —\/s(¢% + 02?). (53)

This value ofu corresponds also to the maximumsef

_ o/ 2702
sg’aXEAzQzl_'—z 2,/1+q5/0%z

Z

(54)

and, in the CM frame op; and p», to the configuration wherg, = 0. The singularity in
s2 is made manifest by use of the identity

1 1 1 |
sgl’f = —;8(sz)<l— elogA + éezlong) + — e( 09s2>A + (9(62),
+

(s2) A+ 52
(55)
with the distributions defined as:

A A d
[ae Z2 = [ 22160 - s (56)
, (s2) A+ 52

; [ ; |
/ dso f<s2>( 09“‘2) - / ds2 ~22(f(s2) - £(0)). (57)
0 52 A+ 0 §2

In order to obtainX’(N) one finally has to integrate over keeping only the terms
that do not vanish in the smajlr limit. At the beginning we consider only th& =0
moment1® We will later show how to perform the calculation for genehgl once one
moment is known, in a simpler way. Notice that after implementing the regularization of
the s = 0 singularities using Eq. (55), the last two integrals can be performed directly
in four dimensions, since the small transverse momenggracts as a regulator of other
possible singularities.

10Notice that the calculation of a single moment is enough to obtain the resummation coeffitféhts
andB@,
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The double real contributions to (the nonsinglet partb‘f]? (N) fall into three classes,
according to the possible different final states:

*q+qg—>qt+q+F;

®*q+q—>q+q+F;

e gt+qg—>g+g+F.
Notice thatthe; + ¢ — ¢ + g + F is needed to form the nonsinglet combination.

As we did atO(as), to study the smaly; behaviour of> we will rely on the structure
of soft and collinear singularities of the corresponding QCD matrix element. In principle
there are, of course, configurations where the two final state partons are hard and emitted
back-to-back with small total transverse momentum. Nevertheless, these configurations do
not produce any singularities whe — 0 and thus may be neglected. Finally, notice
that we consider onlgoublesingularities, i.e., configurations where two extra partons are
either collinear or soft, without caring abaihglesingularities. Configurations with only
one collinear or soft parton (and the other hard) do not contribui$dsince the system
F is not emitted with smaly7 in such case.

4.1.1. Contribution frongg andgg emission
For theq + g — g + ¢ + F contribution we have three singular regionﬁ(txg) [19]:

o first triple-collinear regionky p1 ~ k2p1 ~ k1ko — 0;
e second triple-collinear regioty p2 ~ kop2 ~ k1kz — O;
e double-soft regionky, ko — 0.

In the first region the singularity is controlled by the following collinear factorization
formula [18,19,24]

2
(M o r(p1. pa. ke k2. )|

(87m “as)?

2 Pq—>qlqz(43) |M (58)

u
where Eiﬁém(%) is the splitting function that controls the collinear decay of an initial
state quark of momentumy into a final state quark—antiquark p@ifg> of momentak;
andk; and the ‘off-shell’ quarlys that participates in the hard cross section. The explicit
expression oP(ﬁqm(qa) is obtained from the one cﬁqlqzqy the splitting function for the
decay of a (‘off-shell’) quark into a final state quark—antiquark pair plus a quark, given in
Eq. (A.1), with the following definitions

§12 =52, s13= —2p1ki, 523 = —2p1ka,
X1 =—21/73, X2 = —22/73, x3=1/z3, (59)

wherez; andzz are the momentum fractions f andgz (z3 =1 — z1 — z2). Notice that
Eq. (59) corresponds to the following transformation:

r1 — ki1, ro — ko, r3— —pi, (60)

applied to the expression in Eq. (A.1) to cross the ‘off-shell’ parton to the final state.
A formula similar to Eq. (58) can be written in the second collinear region.
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In the double-soft region the factorization formula is instead [19]:

|M((,(();)ﬁqu(Pla p2, k1, k2, ) |2
~ (47 1% as)’CpTr(Tus + T2 — 2112 | M2 @)%, (61)
where
pikipjks + pjkipika — pipjkika
(k1k2)? pi (k1 + ko) p (k1 + k2)

The reader can easily check that by defining the momentum fractions in Eq. (89) as

(62)

Zij =1;j(ka, ko) =

Zl=@, Z2=k2£. (63)
pip2 pip2
Eq. (58) correctly keeps into account also the double-soft limit in Eq. (61). Thus, at least
outside the second collinear region, the factorization formula (58) with the definitions (63)
correctly gives the full singular behaviour in this channel.

The strategy to perform the calculation is the following. We use Eq. (58) to approximate
the matrix element in its region of validity and compute its contributiomﬁR(O) by
integrating only in half of the phase space, that is frago umax. The remaining region,
which is obtained by exchanging<« ¢, will give, due to the symmetry of the initial state,
exactly the same contribution and it is taken into account by multiplying the computed
result by 2. As it happens at leading order, the information on the process, embodied in the
Born matrix element is completely factored out in the calculation and disappe&rsiim
fact the Born matrix element can be fully written in terms of the (fixed) kinematics of the
final state particlesM;c();)%F(zgpl, P2, )2 = |M;%LF(¢)|2.

For theq + ¢ — g + g + F contribution, needed to form the nonsinglet contribution in
Eq. (21), there are only two singular configurations:

o first triple-collinear regionky p1 ~ k2p1 ~ k1ko — 0;
e second triple-collinear regioty p2 ~ kop2 ~ k1ika — 0.

For the first collinear region we can write:

MO e(p1. 2.k k2 9]

q9—>qqF
(8 pu*as)? ~ © X
= qu%qmz(éa) |ngap(171, 3p2, ¢)| . (64)

Here i)\(ﬁqm@) is now the splitting function which controls the collinear decay of an
initial state quark into a final statg; pair. The explicit expression fa?,_. 4, 4,55 can be
obtained from the expression 8, .4, in Eq. (A.1) with the following definitions

s12 = —2pika, 513 = —2p1ki1, S23 = s2,
x1=1/z3, X2 =—22/73, X3 =—21/23, (65)
1110 parameterize the triple-collinear limit it is necessary to introduce an additional light-cone we@lois

definition corresponds to the choiee= po. Notice that a similar definition can be adopted als@sdirs) to
reobtain Eq. (34) in the smajly limit.
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i.e., corresponding to the crossing transformation:
rL— —p1, ra — ko, r3— ki, (66)

and similarly for the second collinear configuration (wjth <> p2). There is a partial
cancellation between thér Tk contribution toEq(? from Egs. (58) and (64), due to the
nonsinglet combination. Once this cancellation is carried out, the part corresponding to
the production of ‘nonidentical’ partons in thg; channel gives the following rTx
contribution toEq(?:

21 Q Q?
@R
0)=CrnsTRK| — 0, = = Io = +1
q(nud)() FnflR |: 3c Fqq(0,€) — 3 q% ) gq2+ +g”j|
(67)
where
1 A7 12\ [ A\ €
K= , 68
F(1—26)< a7 ) ( 02 ) ©9)
and the explicit expression of functidfy,; (0, €), defined in Eq. (35) is
02
F43(0.€)=2log=; —3—e. (69)
dr

At the beginning of Eq. (67) we have isolated a divergent term which will be cancelled by
a similar one appearing in the virtual contribution.

The part corresponding to the production of ‘identical’ partons in ggechannel
gives also aCr(Cr — C4/2) contribution, which does not contain any IQﬁ/q% term.
Therefore, there is a great simplification in the calculation siicean be set to zero just
after performing the angular integrations. We find:

Zy5ey O = Cr(Cr = 3Ca)(~6+ 27" ~1&(3)) (70)

The calculation of theg contribution can be performed with exactly the same strategy as
for the¢g channell? After the C- T contribution has been cancelled with a similar one
in thegg channel only a contribution proportional €& (Cr — C4/2) remaing
2R (0 =—Cr(Cr—3Ca)(¥ - 7% +43). (71)

4.1.2. Contribution frongg emission

The calculation of the double-gluon emission correctionﬂ{gz) is more difficult,
because it is not possible to keep into account all possible singular configurations by using
only the triple-collinear splitting functions. We will divide the calculation in two parts,
according to the corresponding colour factors. First we will consider the non-Abelian,
CpCy4 term, which turns out to be simpler, and finally the Abeliéﬁ, part.

12 A factor 1/2 has been included to account for the two identical particles in the final state.
13The overall minus sign here is due to the fact that this quantity must be subtracted in order to construct the
nonsinglet combination.
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CrC 4 contribution
For this colour structure there are three singular regions to be considered [19]:

o first triple-collinear regionky p1 ~ k2p1 ~ k1ko — 0;
e second triple-collinear regioty p2 ~ kop2 ~ k1iko — 0;
e double-soft regionks, ko — 0.

We point out that, as discussed in Ref. [19], thanks to the coherence properties of soft-
gluon radiation, the soft-collinear region does not give any contribution proportional to
CrC4 (see later).

In the first collinear region the singularity is controlled by the following factorization
formula:

()] 2
(M7 oo £ (PL P2, K1 K2, D)0

(8 HZEO(S)Z =(nab (0) 2
= TCFCA Py= 162000 [Magrz3P1. P2, )", (72)
where Ii(iazgz(%) is the non-Abelian part of the splitting function that controls the

collinear decay of an initial state quark into a final state gluon pair. This function can
be obtained from Eq. (A.7) with the replacement in Eq. (59).

A similar formula to Eq. (72) can be written in the second collinear regionpgby p2
exchange).

In the double-soft region the factorization formulais instead (see Eq. (A.3) of Ref. [19]):

(©) 2
(M7 o r (PLs P2, k1 k2, D)o

x~ (47TM260‘S)2CFCA (2812(k1, k2) — S11(k1, k2) — S22(k1, k2)) | Mgg— F ()
(73)

2

where the non-Abelian double-soft function reads
(1—e€) pikipjk2+ pikapjki
(k1k2)? pi(k1+k2)pj(k1+ ko)
3 (pip)? [2 _ pikipjka+ pika2pjki ]

2pikipjkopikop k1 pi(ki+k2)pj(k1+ k2)
piDj [ 2 n 2
2kiko | pikipjko ~ pjkipiko

1 kip ik kapik1)?
B <4+(P, 1pjk2 + pikap k1) )] (74)
pitki+k2)pjky+k2) pikipjkapikap ki

As it happens in thgg andgg channels, it turns out that by defining the momentum
fractions of the gluons as in Eq. (63), the factorization formula in Eq. (72) correctly
accounts also for the double-soft configuration. Furthermore, we have verified that Eq. (72)
does not introduce any additional spurious singularities in the other infrared configurations.
Thus for this colour structure the situation is similar to the one ijhendgg channels
and we can follow the same strategy. We approximate the non-Abelian part of the matrix
elementin the region fromg to umax Using Eq. (72). We first perform the angular integrals

Sij k1, k2) =
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and then, exploiting the1 <> p2 symmetry, do the remaining and z integrations only
over half of the phase space, i.e., witfirom ug t0 umax.
In order to perform the last two steps, that are considerably more complicated than in the
case ofyg emission, we developed MHEMATICA [39] programs that are able to handle
the cumbersome intermediate expressions in the gmpdiinit.
The result ig#

QR 1 1 02 02
qu)(ggnab(o) = CFCAK[(:z T ( 6 " log— 72 Faq(0.€) +log® = pr
—log® =5 + (= — 577 4 24+ L

ey +<18 3 ) 09z THO 2t ggm ]

(75)
in agreement with Ref. [40]. The first line of Eq. (75) comes from the sindglay terms
and will be exactly cancelled by a contribution appearing in the virtual correction.

C2 contribution
For this colour structure there are six singular regions (plus the ones generated from
permutations likek1 <> k) to be considered [18,19]:

first triple-collinear regionk1 p1 ~ kop1 ~ k1ko — 0O;
second triple-collinear regioty po ~ kopa ~ k1ko — 0O;
double-soft regionky, ko — O;

first soft-collinear regionk; — 0, ko2 p1 — O;

second soft-collinear regiok; — 0, kop2 — 0;
double-collinear regiorki p1 — 0, kap2 — 0.

In the first region the singularity is controlled by the collinear factorization formula:

2
|Mq(}%gg F(p1, p2, k1, ko, ¢)‘ab

(87TM O‘S) 2 A(ab)
Cr q—>g1g2(qa)|M q»F(Z?:Pl P2, (76)
where P 3 is the Abelian part of the splitting function that controls the collinear

q—>8182(q3)
decay of an initial state quark into a final state gluon pair. This function can be obtained

from Eq. (A.6) with the replacementin Eq. (59).
In the double-soft region the factorization formula is obtained by factorizing the two
eikonal factors for independent gluon emissions (see Eq. (A.3) of Ref. [19]):

2
(MY r(P1. p2. k1 k2. 9)| 5
~ (4 OlS)216C12:312(k1)312(k2)|M;%)_> F(¢>)|2, (77)
with S12(k) defined in Eq. (32).

14 A factor 1/2 has been included to account for the two identical particles in the final state.
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In the soft-collinear region, say whep — 0 andki1p1 — O we have instead (see
Eq. (A.5) of [19]):

|/\/l(0) (p1, p2, k1, k2, ¢)|2

qq9—>88F
2Cp (p1—k1)p2

2
(1—z1) prka (p1 — k1)kapokz
2

Pyy(1—z1,€)

~ (471,u2€a3)

x [MD_ (L= z21)p1, 2. ¢) (78)

wherez; is the momentum fraction of the collinear gluon of momentkinand can be
identified with the one parametrizing the triple collinear splitting in Eq. (76). Notice that,
since the soft gluon of momentuka does not resolve the pair of collinear partons, there
is no non-Abelian contribution in Eq. (78).

In the double-collinear region we have, when, egp1 — 0 andkps — O:

M o r (1. p2. k1 k2 )
_ (4 n%*ag)?

~ (1—2z1)p1ki(1—Z2) poko

x |IMQ (A= z0p1 A~ Z2)p2. )| (79)

wherez1 andzz here represent the momentum fractions (see below) involved in the two
collinear splittings.

As it happens for the&rC4 contribution, Eq. (76) supplemented with the definitions
(63) is able to approximate correctly also the double-soft and soft-collinear regions in half
of the phase space. But, at variance with€heC 4 case, the same formula cannot describe
correctly the double-collinear region, since that one corresponds to the emission of gluons
from different legs, i.e., with a kinematical configuration completely different from the
triple-collinear case. Therefore, the strategy followed for the other colour factors does not
work in this case.

In order to overcome this problem there are in principle two strategies. The first one
is to split the phase space in order to isolate the double-collinear region and perform the
calculation separately for its contribution using the expression in Eq. (79). The second is
to modify Eq. (76) in order to enforce the correct singular behaviour in all possible limits.
We decided to follow the second strategy and for that we have first studied Eqg. (76) with
the definitions (63) and isolated the terms that do, incorrectly, contribute (termsith
the denominator) when the collinear gluons are emitted from the different legs. In this way,
we were able to find a slight modification F3 in Eqg. (A.6) that allows to take into

18293
account the double-collinear region without spoiling the behaviour in the other regions as

2 2 2 2

= s 1+x x5+ x
D(>at3) = 123 3 _ L 2 Z 722) —e(l+e¢
818243 2513523 3 X1 X1xo fq(z1) f4(z2) ( )

512 x3(1—x1) + l—x23 1—xo
+l—3|:< 3( D+ ( ) —e(xf—l—xlxz—l—x%) )
513 X1X2 X1X2

Pyy(1—z1,€)Pyy(1—Z22,€)

X fy(Z2) + e2<1+x3>]
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+(1—e)|:e—(1—e)::2—2i|}+(1<—>2). (80)

With respect to the expression Bglgm of Eq. (A.6), the only difference is due to the
introduction of the extra factorg, (z). The function f,(z), anticipating that a similar
approach will be followed in the gluonic channel, is defined by

Z ~
fa(Z)—mPaa(l—Z,E)7 a=dq,8, (81)

whereP,, are the collinear splitting kernels in Eqgs. (28), (29).

The funct|oanfl‘g)2q3 depends on the new momentum fractigngndz of the gluons
with respect to the incoming antiquark of momentwsm These momentum fractions
should be the ones relevant for the double-collinear limit. Our improved factorization
formula is, outside the second triple-collinear region given by

©) 2
|quﬁggF(P1 p2. k1. k2, )|

(877 1% as)?

(@b
o CE D g Mg 3P P2, )], (82)

whereD ;ib)glgz(%) is obtained frornl)(é,i‘?zq3 in Eqg. (80) with the definitions in Egs. (59),

(63) and by setting
. pika - pika
1=—, 2=—.
pip2 pip2
With Eq. (82) we can consistently approximate the relevant matrix element in the region
from up t0 umax @s we did in the other channels, keeping into account all the singular
regions. In fact in the triple-collinear regian, z> — 0 andf; (z1), f;(z2) — 1. Therefore,
in this limit Eq. (82) reduces to Eq. (76). The factgi{gz) become relevant in the double-
collinear region, since they ensure that the correct limit is recovered whian— 0 and
p2k2 — 0 (and the same fdn < k2).

Notice that the modification of the triple-collinear formula does not spoil the process
independence of our calculation: it just allows to write an ‘improved’ formula that correctly
interpolates all possible (double-) collinear and soft singularities in the region of phase
space where we have to integrate it. Therefore, with this approach we can avoid to split the
phase space in regions where different approximations should be applied.

Itis worth noticing that the modification in Eq. (80) makes the calculation more involved
already at the level of the angular integrals, mostly due to the introduction of the ‘new’
momentum fractiong; andzs.

For this colour structure we have to subtract the contribution from the factorization
counterterm, which can be written as

dO'FCT dx e 2 dU(pl, P2, d)v k)
dq2d02d 2 (i =z aora
q7dQcd¢ T x q7dQ%d¢ /) pxp,

dx do(p1, p2, ¢, k)
+50 [ TRG Mfﬁ(ﬁ) ’ (84)
g dq7dQ%d¢ /) pysxp,

(83)
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wheredo (p1, p2, ¢, k) corresponds to the cross section for the productiof ahd only
one extra gluon (see Eq. (24)) and

I'l—e) [(dru?\°©
F<1—26>< e ) ’

1
— =P () (85)

R(x. uf) =

with P(fqp(z) = (ﬁ;q(z, 0)y = C,p(lltzzz)+ the regularized AP splitting function andr
the factorization scale. In the limit of smalf and after taking moments with respectto
the contribution from the counterterm factorizes as

2 1 Q2 €
22 en(N) =2CrFgq(N, e)|:—EIC P i (N |, (86)
where 7,5 (N, ¢) and K are defined in Eqgs. (35) and (68), respectively. Therefore, in
thegr — 0O limit also the contribution of the factorization counterterm becomes process
independent.

Our final result for theN = 0 moment of the factorized contributiaf ‘2 0) =

@k 2) qq(ggab
qul(ggab) Ok chi(FCT) 0) is:

1
~ 2 3 2 ~
@R
ch})(ggab) (O) = CFK[(G—Z + g)CF]:q(;(O, E) + g / 2qu(z, 6) |ng}
0

0? 0? 2 0?
+C12:|:—2log3—2+9|092—2— 2+§T[2 IOg—2
qar dar dr

+16¢(3) — % — 473], (87)

in agreement with the result of Ref. [40] for Drell-Yan. Notice that siﬂl@(O) = 0 there

is no contribution from the factorization countertermfé?(’;gao (0). As we did for the
other colour factors, we have isolated in the first line of Eq. (87) the part that will be
cancelled by a similar term in the virtual contribution.

A comment to the results obtained so far is in order. The formulae in Egs. (67), (70),
(71), (75), (87) show that the contribution ,; (0) from double real emission are actually
independent on the specific process in (1). This feature of the double real emission, which
is due to the universality of soft and collinear radiation, will persist also in the gluon
channel. The explicit results obtained so far all agree with the ones obtained for Drell-
Yan in Ref. [40].

4.2. Virtual corrections

The second part on the calculationX3f; (N) involves the (one-loop) virtual corrections
to single-gluon emission. The corresponding soft and collinear limits have been recently
studied in Refs. [21-23]. The kinematics is the same a9(@is) and the singularities
originated by the same configurations discussed above Eq. (27). In the first collinear region
the interference between the tree-level and one-loop contributions to single gluon emission
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behaves as [21,22]

M‘(]%)Lgp(prka HM - (p1. pa. k. §) +C.C.

A o€

) Ot @)
~ W |:qu (z1, 6)(/\/{ _, p(zap1, p2, )M qHF(lel» P2, ®) + C-C-)

A
2 pD
+2gs<2p1k> P e Ol MY p(2ap1. p2. 9)] ] (88)
In Eq. (88) there are two terms. In the first one the tree-level splitting kéﬁpﬂkl, €)is
factorized with respect to the interference of theormalizecbne-loop amplltude\A(qﬁF

and the tree level onM;%LF.

The second term contains instead timeenormalizedne-loop correction to the splitting
kerneIPq(ﬂ(q)g(zl, €) times the Born matrix element squared. The func@ﬂ(q)g(zl, €)
controls the one-loop collinear splitting of an initial state quark into a final state quark with
momentum fraction, in the CDR scheme. Its explicit expression can be derived from the
results of Refs. [21,22] and is up @(c°):

5@
Pq%(q)g(x’ €)

(o)LL

(4r)?

—~ 1 1 .
X |:CAqu(x, e)(—e—2 + > |ng(1—x) + Lio 1

! — Liz(l—x))
—Xx
+ CFEM (x,€) <_§ log(x) — 2log(x) log(l — x) + 2 Lia(1 — x))

+CF(CF—CA)X:|7 (89)

where

FrA+eril-e
Cr= 120 . (90)
A factorization formula similar to Eq. (88) holds when the gluon is radiated by the initial
state antiquark.

Let us now consider the soft region. At one-loop order, for a general amplitude:with
hard partons, soft factorization formulae involve colour correlations between two and three
hard momentum partons in the matrix element squared [23]. Nevertheless, in the case of
only two hard partons the soft singularity is controlled by a simpler factorization formula
(see Eq. (57) of Ref. [23])

MO (1. 2 k. M, o (p1. p2.k.§) +C.C.
~ 167 asu®Cr
x (S120 (ML @M @) +ce) +SF0IMD_ @), (0D

99— 99— 99—
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where

1 r*A—-er3l+e
€2I2(1—2e)"(1+ 2¢)

is the unrenormalizedone-loop correction to the tree-level eikonal factor. Likewise at
O(as) (see Eg. (31)), in Eg. (91) colour correlations are absent, and the factorization
formula is similar in structure to the collinear one in Eq. (88).

One can verify that, as it happens at leading order, the factorization formula Eq. (88)
with z1 = z = Q?/s correctly reproduces also the behaviour in the soft-region, given by
Eq. (91).

Furthermore, by expressirg; in terms ofgy and using Lorentz invariance as we did
at leading order, a single factorization formula in the smallimit is obtained:

813 () = —52 CaSuah) (47 128120 | (92)

M;%)LgF(pl’ P2k, ¢’)M£,?igp(P1, p2.k,$)+c.c.
_dmasu® 2(1-2)

¢

[f’;q @M LMD (@) +cc)

47TM2 € . )
2 (Y] ©
+2g5<?) (1—Z)SPq_)(q)g(Z,€)|Mqé*>,;(¢)| ,
(93)
and this formula can be used to approximate the virtual contribution in the full phase space.

The same formula can be obtained by defining the collinear momentum fraction in Eq. (88)
as:

z21=1———, (94)

and similarly wherpy <> p». Itis important to point out that, at variance with what happens
in the double real emission contribution, here a process-dependent information appears,
i.e., the one-loop matrix eIememt/lglq_)_)F(@. The most general structure of the product

Ot (€] i i -
qu»FMqé%F + c.c. is, according to Eq. (38):
0t 1
ML M+ e
as (AruP\¢ I'(l—¢€) [ 2Cr 3Cp F o |2
— 25 — — _ ) 95
2n< 02 ) rd-2e\ 2 e T @ Mag-r| (95)

In Eqg. (95) the structure of the poles énis universal and fixed by the flavour of the
incoming partons, whereas, as discussed in Section 3 the finite part is parameterized by a
scalar functionAj(qb) depending on the kinematics of the final state particles.

The contribution from the UV counterterm in thS scheme is:

@ _ _ 0\( 1
Zvet(N) = CrFqq(N, €)K 2) e Bo. (96)

By approximating our matrix element with Eq. (93), the calculation can now be performed
quite easily as in Eq. (35). Using Eqg. (95), and adding the contribution of the UV
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counterterm in Eq. (96) we find:
@V
g O
1 1 02
=CrpK _6_2(2CF+CA)_E CA|09—2+3CF+,3() qu(O,e)
qar

1

2 —~
_ g/ZP(M(z,e)Iogz
0

0L o L gL L1 )
+CA< log qT Iog ) 3 Iog q2 2 > 8z(3)
Q2
2 2 2
<2IogQ_—3) F($) + folog Q2 (3 2|ogQ2)} (97)

Where,ufe is the renormalization scale at whialg is now evaluated. The terms involving
F4q(0, €) andﬁw (z,€) in Eq. (97) are the ones that cancel against the corresponding terms
in Egs. (67), (75) and (87). In the case of Drell-Yan, by using Eq. (39), our result agrees
with the one of Ref. [40].

4.3. Total result for theyg channel

After adding the real and virtual contributions in
@ ) = @R @R >R QR
qu' 0= q(nld)(o) +2 q4(id) O+ q(qq)(o) + E G(ggnab ©
SR @V
+ 2 2 0ean @ + X5 (0 (98)

all divergentterms ir cancel out and we find:

3 0° [ 2C,%]+|ogZQ [
T T

0? F
+log = 2 CF 37 1) T2CrA (@)

vorca (2 il v Crn Tl =2
F=a\187 3 FRIER\ "9

15
+ [C% (‘Z - 44(3)) —3Cr Ay (9)

2
»2(0)=log 9C2 +2Cr o]

1 ,

13 2
+CFCA<_Z_1_8 +6§'(3)>+CpnfTR<l+97T >:|, (99)

where we have set agairf. = u2 = Q2. It is worth noticing that the process dependence
in Eq. (99) is fully contained in the functicmg(cp).
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Once one moment (th& = 0 in this case) has been computed, it is quite simple to
extend the calculation to a general value\oby studying the combination [14]

q% Q2 do
doo/d¢ dg2dQ?de
Here, the facto(z" — 1) eliminates singularities in the integrand when> 1 and allows
to setgr = 0 once the integral over the variabldhas been done (in most of the cases it is

possible to sefr = 0 even before integrating ove). In that sense the complexity of the
calculation is considerably reduced and the result can be expressed as

3(N) - X(0) = / dz (N —1) (100)

22N = Iog [ C]+|og [9CF+2CFﬂ0—6CFy(1)(N)]

(2, 35 nx?
+|Og 2 CF - — +CFCA 1—8—?

— 5CrnsTr +2CFAJ (§) + (2P0 + 12CF)y 4 (N)

1 1
-~ 00 4 H(Grgors )|

15 13 11
+[c;(7_4;<3>>+m(____ 2+6¢<3>)

O©IN
w

2

+2Cry P (N) (— +2 ) + 2y D(N) AL (¢)

(N+D(N+2)

1 1
-2C +3CpH)|——n——— — =) |, 101
60 +30 oy s~ 3)] (101)
where y((f))(N) is the nonsinglet space-like two-loop anomalous dimension [41]. The
extraction of the resummation coefficients for thg channel from Eq. (101) will be
performed, along with the corresponding one for glgechannel, in Section 6.

5. Thecalculation at O(aé): the gluon channel

The strategy for the computation of tmz(ag) contributions in the gluon channel is the
same as the one developed for higcase. In a similar way, we first consider the double
real emission contribution and then the virtual correction.

Let us first discuss the contribution coming from the factorization counterterm, that will
be subtracted from the real corrections in the next subsection. By following the same steps
that lead to Eq. (86) we obtain

2
2 Fen (V) = 2C4 Fyg (N, e)[—%%(f—z) <1><N)]
F
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1(22Y
+2CrFgq(N,€) |:——IC<—2> Yaz (N)]. (102)
€ HE
Eq. (102) contains two terms. The first one, due to the subtraction of one collinear gluon,
is analogous to the one in Eq. (86) and contributes to bljthandCA Tr colour factors.
The second term is due to the subtraction of a quark (antiquark) collinear to the initial state
gluons, and contributes to th&rTx part. The functionF,, in Eq. (102) is defined as in
Eq. (35) by

1-297/Q ~
CrFeq(N, €)= / dz N 2D @) (103)
: Ja-22-4242/02
Thegr — 0 limit can be safely taken anfl,, (N, €) gives
i (1+(1-2)?
fgq(N,e)—>2/dzzN<%—ez>=27;;)(N)_2€N+2' (104)

5.1. Real corrections

The contributions to‘:é? from double real emission fall in two classes:

* gt+g—q+q+F,

e gt+tg—>g+g+F.

The kinematics is the same as discussed at the beginning of Section 4.1. As we did
for the quark channel, we will first perform the calculation for a fixed moment and then
extend it for generalN. Since theV = 0 moment is divergent for the gluon channel (see,
e.g., Eq. (104)), we start frolW = 1. Furthermore, as it happens at LO, spin-correlations
appear in the collinear decay of a gluon. Nevertheless, since the correlations cancel out after
integration, we will use in the collinear factorization formulae directly the spin-averaged
splitting functions.

5.1.1. Contribution fronyg emission

For this contribution the strategy followed for tkig: T andCrC4 terms in the quark
channel applies. The singular regions are:

o first triple-collinear regionky p1 ~ k2p1 ~ k1ko — 0;

e second triple-collinear regioty p2 ~ kop2 ~ k1kz — O;

e double-soft regionk1, ko — 0.

In the first triple-collinear region the factorization formula reads

MO o (P, p2.ka k2. )]

g—>qq F
(8 pu*as)? ~ 0 )
= 2 Pg_)‘?qu(gG)) |Mz(gg)_>F(Z3plv D2, ¢) ) (105)

u

wherei)\(ﬁélqz(gs) is the splitting function that controls the decay of an initial state gluon
into a final state quark—antiquark pair and a gluon. It can be obtained from the expression
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of P;,4,¢5 that describes the decay of an (off shell) gluon into a final state quark—antiquark
pair plus a gluon, given in Eq. (A.8), with the crossing transformation (59). In the double-

soft region the factorization formulais the same as in Eq. (61) @jth—~ C,4 and, likewise

in the quark channel, the soft behaviour is correctly taken into account by Eq. (105) with
the definitions (63). Therefore, we can follow the strategy successfully applied in the quark
channel to obtain

SR _ 8 16 0% 16, (2
Zgs(gaan D = CrnsTR K<—2—7 -5 'og 2t log p (106)
and
25 272 2 Q% 4 02
SR 5
2 geganan D = CA"fTRK<__]:gg(1 €)+ >3 5779 + 5 |Ogg —3 log —%
4 2/ 11 2
—IogQ—2< — +2log Qz )) (107)
3 Hp 3 qar

In Egs. (106), (107) we have already subtracted @i and C4Tg terms from the
factorization counterterm (wittv = 1) in Eqg. (102). Furthermore, in Eq. (107) we have
isolated a divergent term that will be cancelled by a similar term in the virtual contribution.
The explicit expression of the functidf,, (1, ), defined in Eqg. (35), reads
2
]—‘gg(l,e)z—%l+2IogQ—2. (108)
qar

5.1.2. Contribution frongg emission

The calculation of thegg C3 contribution tozjf,g parallels the one for the€'2 part
in the quark channel since the singular configurations have the same complicated pattern
as described above Eq. (76). The triple-collinear region is controlled by the factorization
formula

2
(MO p(pL P2 ke k2. 9)|

(87m “as)?

2 Pg—>g1gz(g3) |M (209)

u

where the functiorﬁ,_)glgz(gg) is now obtained by applying the crossing transformation
(59) to the splitting function‘/’;,lgzg3 that controls the collinear decay of a gluon into three
final state gluons, given in Eq. (A.11).

The factorization formulae in the soft-collinear and double-collinear regions are
analogousto Egs. (78), (79), and can be obtained from them by conveniently changing the
colour factors Cr — C4) and splitting functionsi’qq — fi,g). The factorization formula
in the double-softregion receives two contributions analogous to the ones in Egs. (73), (77).

Likewise in the quark channel, Eqg. (109) with the momentum fractions defined as in
Eq. (63) approximates correctly, again in half of the phase space, all possible infrared
configurations but the double-collinear one.

In order to proceed further, we use the technique developed for the quark channel. As
before, we first study the behaviour of Eq. (109) with the definitions (63) in the double
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collinear limit and identify the terms that do (incorrectly) contribute in that limit. Those
terms have to be modified in order to enforce the correct double-collinear limit without
affecting the singular behaviour in the other regions. The modified splitting function we
obtain is:

= Zhorrsing sing-1 smg—l smg—l -
Dglgzgs = Pyigogs T {[Pglgzgs + ( 18382 T gaglgz)fg (z2)
2 2
+ (Pgsllggga + gsllsr’]ei’z)fg(ZZ) + Pgagzglfg(zl)fg(ZZ)] +(1e 2)} (110)

The first term

Z-nonrsing 2 1-¢) 2 s123[ ,x1x2—1 3 5
Pe1gag3 =CA{ a2, 23+ 5 (1— €)+ 512 [41_7x3+5+5xs
$%23 [mg @2 14 2ud+a ] }
512513 2 2(1—x2)(1 —x3)
+ (5 permutations (111)

contains the part o?glgzg3 in Eq. (A.11) that does not contribute to the double-collinear
limit. Therefore, this part of the splitting function does not need any modifications. The
variablert;; « is defined in Eq. (A.4).

The second part is instead modified with the introduction of the fungfiér), defined

in Eq. (81). The function® % and PS792 are

_ -2 (1—x3(1—x3)?
P sing-1 C2 §123 <x1x2 112
#8283 7 74 510 X3 x3x1(1 — x1) (112)
2
P s 1- 1—2x 1—2x1(1—
Pgilgg’i C2 123 <x1x2( x2)( 3) 1( xl)>. (113)
§12513 x3(1 — x3) 2xox3
Our improved factorization formula is, therefore,
MO (P12, k1 k2. )]
gg_)ggF p17p27 1, K2,
(87TM “ag)?
A Dy g12060 | M 1 (z3p1. p2. 9| (114)

As for the quark channel, the expressio@Lglgz(g3) is obtained from the one db,, .,
in Eq. (110) by using Egs. (59), (63) and definlagandzz through Eq. (83).

In the triple-collinear limitf, (z1), f,(z2) — 1 and the various contributions in Eq. (110)
reconstruct the triple-collinear splitting functidf, ,.,. The role of the functiong, is
again to enforce the correct behaviour in the double-collinear region. It is worth stressing
that there are in principle many ways to conveniently modify the splitting function and that
we have tried to find the simplest one that fulfills all the requirements and can be integrated
afterwards.

The functionlf’;,lgzg3 in EQ. (A.11) has by itself the most complicated expression among
the variousP,,.,q, because one has to sum over six permutations. Besides that, the
modification in (110) makes the angular integration very involved. Since many of the
ensuing terms have an additional singularitysas> 0 some of the angular integrals in
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Ref. [37] have to be evaluated one order highek.irOnce the angular integrals have
been performed, one has to face an additional complication: ‘spuriqﬂq% and ]/q#
singularities appear in the intermediate steps, which of course cancel in the final result, but
create additional problems to take e — 0 limit. The final (factorized) result is

SR
Egg(gg)(l)

1

3 311 1, ©Q° 2 —~

=CAK|:<€—2+g€+glogg)c/4fgg(l, €)+2/22ng(2,6)|ogzi|
0

QZ

77 2 82 4x? 2
+Cf\[—log3—2 +— Iong—2 - (— + L) IogQ—2
¢2 6 g2 9 3 2
533 1172
gt | 11
S g H10G)], (115)

where we have isolated in the first line the terms that will be cancelled by analogous virtual
contributions. Notice that, sinqegfél,)(l) = —%nf Tg, there is no contribution to Eq. (115)
from the factorization counterterm in Eq. (102).

5.2. Virtual corrections

We finally compute the smally behaviour of the virtual contribution tag?. The
calculation parallels the one for the quark in Section 4.2, and the singular configurations
are the same as at leading order. For the collinear limit, say when> 0, we can write a
formula similar to Eq. (88)

MO (P12 k. YMG 1 (p1. p2.k.§) +CC.
N A o€

5 ot 1
— [ng (1. (MO, 1 (z1p1, p2. YMS) ((z1p1. p2.$) +C.C)

+28(T) B8 s MO Pl @
8 2p1k g—(9)g\¥1 € gg—F Z1p1, P2, ¢ ,

where 13;>g(z1, €) is the tree-level splitting kernel in Eq. (29) arﬁgfﬂ(g)g(zl,e) is the
unrenormalizesne-loop correction to the AP kernel for the collinear splitting of an initial
state gluon into a final state gluon with momentum fractignin the CDR scheme. Its
explicit expression can be derived from the results of Ref. [21] and is @J¢8):

Pg(B(g)g(x’ €)
CrCa
(47)2

- 1 2 2
[ng(x, €)<_e_2 - log(x) — 2log(1 — x) log(x) + —)

=1-x"° 3

- %(CA - 2nfTR)x]. (117)

A similar formula holds when the gluon is radiated by the initial state antiquark. In the
soft region, the factorization formula is the same as in Eq. (91) @ith—~ C4 and one
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can verify that, as it happens in the quark channel, Eq. (116)withz = Q?/s correctly
reproduces also the behaviour in the soft-region [21,23]. In the same way as for the quark
channel we can write down a single factorization formula in the sgalimit:

M(gﬁgF(pl, P2, ke, )M p(p1, pa k. ¢) +c.c
47rots,u2€ 21-2)

-T2 B [ Peg(z, € )(Mgi)p(@ g_>p(¢)+CC)
T

A7\ €
+2g§< ;‘ ) (1—z)ePg(_z(g)g(z,e)|M?Z,)%F(¢)|2}.
(118)

According to Eq. (38) theenormalized amplltudeM(geF can be written, up t@(e%)
as:

Of @
Mo pMyg p +CC

as (A pl\€ I'(1—e) 2C4 2/30 F ©
=— — -— 119
( 02 ) Fa—20\ & AT )Ml 19
In the case of Higgs production, in they < myop limit and including also the finite
renormalization to the effectivgg H vertex, the functionélf (¢) is given in Eq. (40).
The contribution from the UV counterterm (in thdS scheme) needed to renormalize

the splitting kerneP ™ | is: 15
0* 1
2@ er(N) = CaFgg(N, e)lC(M ) (—g>,80. (120)

By approximating our matrix element with Eqg. (118), using Eg. (119), and adding the
contribution from Eq. (120) we find

3 3, 1 2
22}?"(1) = CAIC{ [——ZCA ——Po——-Cylog Q—21|~7:gg(1’ €)
€ € € qr
1
2 ~
_ z/2z1r>gg(z,e)logz

0
02 ) Q2 65 572 02
+Ca ( log® = + = Iog + = )log=
g2 6 qT 18 3 42
1172 389 4
6 + == >7 —-8:(3) )+ nf TR
11 02 02/ 11 02
F
+Ag(¢)<—§+2Iogg> Bolog = 2 <—§+2Iog >

(121)

15The total UV counterterm in the case of Higgs production would be three times this one, but we have included
part of it in the renormalized amplitude (119).
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The terms involvingFy, (1, €) and Py, (z,€) in Eq. (121) cancel the corresponding
divergent contributions in Egs. (107) and (115).

5.3. Total result for the gluon channel

After adding all the contributions in

@ (1) = SR SR SR v
Zge D= 2geqaan D + Zgg(qanan (D + Fgg(ee) D + X (D), (122)

all divergent terms cancel out and we obtain

2 (1) =log? Q—j[—zcﬁ] + log? 5—22[8@/30 +4Cn s TR]
T T
- IogQ—;[Cﬁ (—@+ n—z) - gCAnfTR
72 18 3)79
— %Scm FTR+2C4Af (¢)}
+ [cf, (2;(3) - 1—36 - i—;n2> - %CanTR
weans T 5 - 572) - Feari @], (123)

where we have set agaitt. = 12 = Q2.
The contribution for genera¥ can be computed as explained in the previous section for
the quark channel. The total result is:

0? 0?
=@ (N) =log® g[—zcﬁ] +log? g[scA/so —6Cay P (V)]

0’ ,(67 =%\ 20 r
log=|C5| —+— | — —CuanT 2C
+ gq%[A 9+3 g Cany R +2CaA; (9)

+2B0(y (V) — Bo) — 4y P (N) — po)?

—dnyy DNy <N)]

16 8
+ |:C/24 <_§ +2§(3)> +2CrnysTR + éCAnfTR

2
- 2ﬂ0<AgF )+ m%) +2y2(N)

2

4 1
+ 2y (N) <A§(¢) + Ca ?) +4Crnsy P (N)

(N+2

]. (124)

Hereyg(?(N) is the singlet space-like (gluon—gluon) two-loop anomalous dimension [42]

whereas the coefficieny vV + 2) has origin on théV moments of- f’gq (z), see Eq. (104).
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6. Final resultsand discussion

We can now compare the results obtained in the previous sections with the second order
expansion of the resummation formula in Eq. (18). As for shelependent contributions
in Egs. (101), (124), they fully agree with the ones in Eq. (38Yhis agreement can be
considered as a nontrivial check of the validity of the resummation formalism, because the
expressionsin Egs. (101), (124) are completely general and the process dependence is fully
embodied in the functionﬁf(@. As an alternative, given the resummation formalism for
granted, the result in Egs. (101), (124) can be considered as an independent re-evaluation
of the two-loop anomalous dimensions.

As far as theN-independent part is concerned, it can be used to fix the coefficdéfits
and B, By comparing the single-logarithmic contributions in Egs. (101), (124) with the
one in Eqg. (18) we obtain for the coefficieAfzz):

AP =kAD a=q,g, (125)

whereK is given in Eg. (11), thus confirming the results first obtained in Ref. [10,13]. By
comparing the nonlogarithmic terms we find that the coefficRt can be expressed as
well by a single formula for both channels:

BPF = -2y 4 po(5Can®+ AL (¢)), a=q.g. (126)

wherey(z) are the coefficients of th&(1l — z) term in the two-loop splitting functions
P2 (2) [41,42), given by

3 n? 17 11x2
(2) Cp(é_?‘l‘ef(:g))+CFCA<24+W_3§(3)>
Conre( L+ 2
rnfTr| g+ =5 )
8 4
(2)—CA<§+3C(3))—CanTR—gcAnfTR. (127)

From Eq. (126) we see th& @, besides the-2 ycfz) term which matches the expectation
from the O(as) result, receives arocess-dependenbntribution controlled by the one-
loop correction to the LO amplitude (see Eq. (38)). Thus, as anticipated at the beginning,
although the Sudakov form factor in Eq. (5) is usually considered universal we find that it
is actually process-dependent beyond next-to-leading logarithmic accuracy.

However, by using the general expression in Eq. (126) it is possible to oBf&iror
a given process just by computing the one-loop correction to the LO amplitude for that
process. For the Drell-Yan case, by using Eqg. (39), our resuEﬁr(N) agrees with the

one of Ref. [14], confirming the coefficierBt;Z)DY in Eq. (12).

16 We have checked that the results in the quarigletchannel are also in agreement with Eq. (18).
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In the interesting case of Higgs production in thgy, — oo limit, by using Eqg. (40) we
find: 17

BPH = C3(% + %n® —60(3)) +4Crn T — CanygTr(5+ 37%) — Y CrCa.

(128)
In particular, this result allows to improve the present accuracy of the matching between
resummed predictions [44] and fixed order calculations [45].

Notice that in this case, the coeﬁicieﬁf)H turns out to be numerically large. Actually,
for n; =5 we haveB®"/B{Y ~ —14, whereas for Drell-Yan the same ratio leads to
BSZ)DY/BQD ~ —1.9, i.e., about 7 times smaller than for Higgs production. Both the
appearance of 6% term (compared taC,% in the quark case) and the size of the one-
loop corrections to Higgs production are the reasons for the large coefficient. Clearly, the
use ofBé(,z)H in the implementation of the resummation formula will have an important
phenomenological impact [46]. Actually, one can expect that the inclusiﬁézblf, which
will tend to reduce the resummed cross section, will partially compensate the increase in
the normalization produced by the (also) large coeﬁic@&{H [33,34].

The fact that the Sudakov form factor is process-dependentis certainly unpleasant. Usu-
allyitis called the quark or gluon form factor, since it should be determined by the universal
properties of soft and collinear emission. With the result in Eq. (126), instead we find, for
example, that the form factor fory production is different from the one for Drell-Yan.
Moreover, since the hard functio!” depends in general on the details of the kinematics
of F (in case ofyy production it would depend, e.g., on the rapidities of the photons), the
same happens to the coefficie#® and thus to the Sudakov form factor in Eq. (5).

However, the results in Egs. (46) and (126) suggest a simple interpretation [27]. We can
see in Eq. (46) that the process-dependent coefficients functrlﬁfs(z) have two contri-
butions. The first has eollinear origin and is driven by th€(¢) part of theP, (z, €) ker-
nel (see Eq. (47)). The second has instehdra origin, and contains the finite part of the
one-loop correction to the leading order subprocess. As a consequence, the scale at which
as should be evaluated is different for these two terms. In the collinear contribmgon
should be evaluated at same scale as the parton distributions ab%/bé. By contrast, the
correct scale at whichs should be evaluated in the hard contribution is the hard s@ale

As discussed in Ref. [27] this mismatch, that affects the resummation formula in its
usual form Eg. (4), can be solved by introducing a new process-dependent hard function
HCF(aS(QZ)). The ensuing resummation formula is [27]

wh (s; 0,b,9)

1 1
=y / dz1 / dzp Cea(as(b3/D?), 21) Can (as(b3/b?), 22)8(0Q? — z1225)
0 0

c

17Actual|y, using the results of Ref. [43] for the two-logg — H amplitude, one can also obtaBéz)H for
arbitrary miop.
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5 dof(0% as(0?), ¢)

7% S.(Q, b), (129)
where
dof(0% as(0%).¢)  dofVT Q%) p o,
0 = 7 H (as(0%), ¢). (130)

As discussed in Ref. [27], this modification is sufficient to make the Sudakov form factor
Sc(Q. b) and the coefficient functions,,(as(b3/b?), z) process-independent, with,;,
andH[ being dependent on the introduced ‘resummation-scheme’. We point out that this
modification is not only a formal improvement, since, once a resummation scheme is fixed,
the resummation coefficients in Eq. (129) are now universal and it is enough to compute
the functionH " at the desired order for the process under consideration.

Summarizing, in this paper we have exploited the current knowledge on the in-
frared behaviour of tree-level and one-loop QCD amplitudeé)aig) to compute the
logarithmically-enhanced contributions up to next-to-next-to-leading logarithmic accuracy,
in an general way, for both quark and gluon channels. Comparing our results with the
gr-resummation formula we have extracted the coefficients that control the resummation
of the large logarithmic contributions. We have presented a result that allows to compute
the resummation coefficie®@* for any process, by simply knowing the one-loop (vir-
tual) corrections to the lowest order result. In particular, we have obtained the result for the
case of Higgs production in the largeop approximation, which turns out to be numeri-
cally relevant for phenomenological analyses.

The results of our calculation clearly show that the Sudakov form factor is actually
process dependent within the conventional resummation approach. An improved version
of the resummation formula where this problem is absent has been presented in Ref. [27].
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Appendix A. Triple-collinear splitting functions

In this appendix we collect the various expressions of the triple-collinear splitting
functions. Denoting by, r» andrz the momenta of the final state partons that become
collinear, the triple-collinear splitting functions depend on the invarignts: (r; + rj)z,

5123 = $12 + 513 + s23 that parameterize how the collinear limit is approached, and on
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the momentum fractions; (i = 1, 2, 3) involved in the collinear splitting. The splitting
function for the collinear decay of a quagkin ¢4 pair plus a quark is

~ e ~(id)
quzqa = [Pé’lqéq:; +2<« 3)] + Pthqzqg’ (Al)
where
= 1 5123
Faiasas = 3Cr TR
2 2
t 4 _
5 [_ i23 X3+ (x1 — x2) +(1_26)<x1+x2_ SlZ)jI’ (A2)
5125123 X1+ x2 $123

= (id) 1 2523
Pémzqa =Cr (CF - ECA) {(1 —€) (S—lz - 6)

s123[ 1+ xf 2x2 a- xg)z 2xo
219 _ _ 1 _
+s12|:1—x2 1—x3 ¢ 1—xo tl+x 1—x3
—e?(1- xs)}
2 2
5703 x1|: 1+xf < 1—x2) 2]}
— —= —e(1+2 —€ + (2« 3),
512513 2 [ (1 —x2)(1—x3) 1—x3
(A.3)
and the variable; , is defined as
tij,k = ZXiSik — Xjdik A Sij- (A.4)

Xi+Xxj Xi+Xxj
The splitting function for thg — ggg decay can be decomposed according to the different
colour coefficients:

P. —c2p@b p (nab
Po1g2g3 = CF Py1grgy 7 CFCAPg g0gs (A.5)

and the Abelian and non-Abelian contributions are

2 2 2 2
~ K 1+x x5+ x
p @b —{ 123 x3|: S _ L 2—6(1+€)i|

818293 2513523 X1X2 X1X2
1- 1-x2)3
n S1_23[x3( WA= 211 )
513 X1X2
1—x N
—e(x%—i—xlxz—i—x%) 21|+(1—6)|:6—(1—6)£i|}
X1X2 513
+ (1< 2), (A.6)
B (nab t1223 1 e
Pe12a3 :{(1— €)<K%2 + a4 E)

stz [(1—X3)2(1—6)+ZX3+X§(1—€)+2(1—x2)]

2512513 x2 1—x3
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2 21
5123 x3[(1 x3)°(1 6)+2x3+e(1—e)]

 4s13503 X1X2
5123 [(1 ~ G)xl(Z — 2x1 4 x2) — x2(6 — 6x2 + x3)
2512 x2(1—x3)
4o x3(x1 — 2x2) — xz}
x2(1—x3)
1— 3 2
4 %[(1_6)( x2)° + x5 —x2
2513 x2(1— x3)
<2<1 — x2)(x2 — x3) ) x3(1—x1) + (1 —x2)3
—€ —Xx1+x2)—
x2(1—x3) X1Xx2
2 2
+
+€(1—x2)<xl 2 —e>i|}+(1<—>2). (A7)
X1X2

When a gluon decays collinearly, spin-correlations are present. Here we are concerned only

with spin-averaged splitting functions. When the gluon decaysq4g pair plus a gluon
the splitting function is

~

o~ b o~
Pasgats = CrTrPyiylg, + CaTrPy g, (A8)
where
2
5 (@b 1.1 5123 2 X1+ 2xpx3
PA _ o 1- 4+ =) 42 1+x2—
814243 ( 6)SZ?’<S12 * S13> * S12S13< 1 l1-e
B E NP W ekl N E P M i) |
512 1—¢ 513 1-¢
(A.9)
and
2
pnab _ I3 n 5253 . (1—x1)°% -3 _ 2x3(1— x3 — 2x1x2)
814243 452, 2513523 x1(1—x1) (1—e)x1(1—x1)
s 1 2x2(1—x
+1—23(1—xz)[1+ - 2ed-xr) }
2513 x1(l—x1) (Q—-e)xa(l—x1)
%[ 1+xf x1(x3 — x2)% — ZxZX3(1+x1)i|
2523 [ x1(1—x1) (1-e)x1(1—x1)
1 € s%23 5 X1+ 2x2x3
——+-—-——=|1 - 2< 3). A.10
472 T 2o \C T T T +Ee3) (A.10)
In the case of a gluon decaying into three collinear gluons we have:
Pgigogs =Ca { 46—%2’123 + Z(l —€)

n 5123 4x1x2 -1 n X1x2 — 2 n g: E) 1—x3(1— x3))2
512 1—x3 X3 2 2 x3x1(1—x1)
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L Stz [xlxz(l —x)-2y) L, Rl 2
512513 x3(1— x3) 2
14+ 2x1(14+x1) 1—2x1(1—x1)]}
2(1—x2)(1—x3) 2x2x3
+ (5 permutations (A.11)

References

[1] S. Catani et al., hep-ph/0005025, in: G. Altarelli, M.L. Mangano (Eds.), Proceedings of the
CERN Workshop on Standard Model Physics (and more) at the LHC, CERN 2000-04, Geneva,
2000, p. 1.

[2] S. Catani et al., hep-ph/0005114, to be published in: P. Aurenche et al. (Eds.), Proceedings of
the Les Houches Workshop on Physics at TeV Colliders.

[3] S. Haywood et al., hep-ph/0003275, in: G. Altarelli, M.L. Mangano (Eds.), Proceedings of the
CERN Workshop on Standard Model Physics (and more) at the LHC, CERN 2000-04, Geneva,
2000, p. 117.

[4] U. Baur et al., hep-ph/0005226, to appear in: Proceedings of the Fermilab Workshop on QCD
and Weak Boson Physics at Run 1.

[5] Y.L. Dokshitzer, D. Diakonov, S.I. Troian, Phys. Rep. 58 (1980) 269.

[6] G. Parisi, R. Petronzio, Nucl. Phys. B 154 (1979) 427.

[7] G. Curci, M. Greco, Y. Srivastava, Nucl. Phys. B 159 (1979) 451.

[8] A. Bassetto, M. Ciafaloni, G. Marchesini, Nucl. Phys. B 163 (1980) 477.

[9] J.C. Collins, D.E. Soper, Nucl. Phys. B 193 (1981) 381;

J.C. Collins, D.E. Soper, Nucl. Phys. B 213 (1981) 545, Erratum;
J.C. Collins, D.E. Soper, Nucl. Phys. B 197 (1982) 446.
[10] J. Kodaira, L. Trentadue, Phys. Lett. B 112 (1982) 66, SLAC-PUB-2934 (1982), unpublished.
[11] J.C. Collins, D.E. Soper, G. Sterman, Nucl. Phys. B 250 (1985) 199.
[12] G. Altarelli, R.K. Ellis, M. Greco, G. Martinelli, Nucl. Phys. B 246 (1984) 12.
[13] S. Catani, E. D’'Emilio, L. Trentadue, Phys. Lett. B 211 (1988) 335.
[14] C.T. Davies, W.J. Stirling, Nucl. Phys. B 244 (1984) 337.
[15] R.K. Ellis, G. Martinelli, R. Petronzio, Nucl. Phys. B 211 (1983) 106.
[16] C.T. Davies, B.R. Webber, W.J. Stirling, Nucl. Phys. B 256 (1985) 413.
[17] A. Bassetto, M. Ciafaloni, G. Marchesini, Phys. Rep. 100 (1983) 201, and references therein.
[18] J.M. Campbell, E.W. Glover, Nucl. Phys. B 527 (1998) 264.
[19] S. Catani, M. Grazzini, Nucl. Phys. B 570 (2000) 287.
[20] z. Bern, L. Dixon, D.C. Dunbar, D.A. Kosower, Nucl. Phys. B 425 (1994) 217;
Z.Bern, G. Chalmers, Nucl. Phys. B 447 (1995) 465.
[21] z. Bern, V. Del Duca, C.R. Schmidt, Phys. Lett. B 445 (1998) 168;
Z.Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt, Phys. Rev. D 60 (1999) 116001.
[22] D.A. Kosower, P. Uwer, Nucl. Phys. B 563 (1999) 477.
[23] S. Catani, M. Grazzini, Nucl. Phys. B 591 (2000) 435.
[24] S. Catani, M. Grazzini, Phys. Lett. B 446 (1999) 143.
[25] V. Del Duca, A. Frizzo, F. Maltoni, Nucl. Phys. B 568 (2000) 211.
[26] D. de Florian, M. Grazzini, Phys. Rev. Lett. 85 (2000) 4678.
[27] S. Catani, D. de Florian, M. Grazzini, Nucl. Phys. B 596 (2001) 299.
[28] See, e.g., S. Frixione, P. Nason, G. Ridolfi, Nucl. Phys. B 542 (1999) 311.
[29] A. Vogt, Phys. Lett. B 497 (2001) 228.



D. de Florian, M. Grazzini / Nuclear Physics B 616 (2001) 247-285 285

[30] W.T. Giele, E.W.N. Glover, Phys. Rev. D 46 (1992) 1980;
D.E. Soper, Z. Kunszt, Phys. Rev. D 46 (1992) 192;
Z. Kunszt, A. Signer, Z. Trécsanyi, Nucl. Phys. 420 (1994) 550.
[31] G. Altarelli, R.K. Ellis, G. Martinelli, Nucl. Phys. B 157 (1979) 461.
[32] S. Dawson, Nucl. Phys. B 359 (1991) 283;
A. Djouadi, M. Spira, P.M. Zerwas, Phys. Lett. B 264 (1991) 440.
[33] C.-P. Yuan, Phys. Lett. B 283 (1992) 395.
[34] R.P. Kauffman, Phys. Rev. D 45 (1992) 1512.
[35] C. Balazs, E.L. Berger, S. Mrenna, C.P. Yuan, Phys. Rev. D 57 (1998) 6934.
[36] C. Balazs, C.P. Yuan, Phys. Rev. D 59 (1999) 114007;
C. Balazs, C.P. Yuan, Phys. Rev. D 63 (2001) 059902, Erratum.
[37] W.L. van Neerven, Nucl. Phys. B 268 (1986) 453,;
W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, Phys. Rev. D 40 (1989) 54.
[38] I. Bojak, hep-ph/0005120.
[39] S. Wolfram, Mathematica—a System for Doing Mathematics by Computer, Addison—Wesley,
New York, 1988.
[40] C.T. Davies, Ph.D. Thesis, University of Cambridge.
[41] G. Curci, W. Furmanski, R. Petronzio, Nucl. Phys. B 175 (1980) 27.
[42] W. Furmanski, R. Petronzio, Phys. Lett. B 97 (1980) 437.
[43] M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Nucl. Phys. B 453 (1995) 17.
[44] C. Balazs, C.P. Yuan, Phys. Lett. B 478 (2000) 192.
[45] D. de Florian, M. Grazzini, Z. Kunszt, Phys. Rev. Lett. 82 (1999) 5209.
[46] C. Balazs, Talk given at the Fermilab Workshop on Monte Carlo Generator Physics for Run I
at the Tevatron, Fermilab, 18-20 April, 2001;
A. Kulesza, Presented at the Les Houches Workshop on Physics at TeV colliders, May 2001.



	The structure of large logarithmic corrections at small transverse momentum in hadronic collisions
	Introduction
	Resummation formula
	The calculation at O(S)
	The calculation at O(S2): the quark channel
	Real corrections
	Contribution from qq and qq emission
	Contribution from gg emission

	Virtual corrections
	Total result for the qq channel

	The calculation at O(2S): the gluon channel
	Real corrections
	Contribution from qq emission
	Contribution from gg emission

	Virtual corrections
	Total result for the gluon channel

	Final results and discussion
	Acknowledgements
	Triple-collinear splitting functions
	References


