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Distribution of interspike times in noise-driven excitable systems
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Noise driven excitable systems present a dynamics which consists of a complex sequence of pulses. In this
work we analyze their interspike time distribution, and we find that the organization of the invariant manifolds
of the underlying excitable system leaves its fingerprints in it. We derive approximate analytical expressions
for the interspike time distribution.

PACS numbdps): 05.45-a, 05.40-a

[. INTRODUCTION tools are required, as well as a good understanding of the
underlying deterministic system.

A system is called excitable whenever its response to a The existence of a noise induced frequency for a noise
stimulus is qualitatively different depending on whether thedriven excitable system was first reported, to our knowledge,
stimulus is smaller or larger than a certain threshold. Excitby Sigeti in 1989[6]. He studied the Adler equatiotan
able systems then present a dynamical stationary state tifinite dissipative limit of the equations describing the be-
ward which every trajectory eventually tends to after a perhavior of pendulum with torquesubjected to noise, and re-
turbation: either through a small or large excursion of theported the existence of a characteristic time for the escapes
available phase Spa(ﬁé] The paradigmatic examp|e in na- from the rIEighborhOOd of the Stationary state. Several as-
ture displaying excitable behavior is the neuron. WhenevePects of this phenomenon have been recently described inde-
an excitable system is subjected to noise, the continuoudendently by other authofg]. In the same spirit, Stone and
kicking can eventually take the system beyond the threshold;iolmes have described the interspike time distribution of a
and a spiking will take place. The effects of the randomnoise driven system presenting a stable homoclinic connec-
excitation and the deterministic part of the evolution maytion[8] and derived an analytic expression for the probability
produce nontrivial behaviors. A natural description of thisdistribution. In this work we will study a class of excitable
problem will be in terms of the statistics of times betweensystems having both characteristics mentioned above: excit-
peaks(likewise, between escapes from the stationary state ability and an homoclinic connection for certain parameter

Stated in these terms, noise driven excitable systems caf@lues. Hence, we expect to re-encounter the previous distri-
be studied in the framework of what is known as escapdutions as parameters are changed. In a certain region of
problems from metastable states. The seminal contribution iRarameter space the two distributions will coexist, giving rise
this field has been made by Kramers over 60 years[ago 0 the two characteristic times.

Since then, the emphasis of these studies has been on the This work is organized as follows. Section Il is devoted to

computation of the rate of escapes for different potentialg fast review of the dynamics of the deterministic pendulum
(most of them dictated by the particular system under gtudy With torque. Although this system is a text example, some of
subjected to different types of noigevhite, colored, also the results will be briefly reviewed to present the notation
under different approximation8]. The underlying idea be- used throughout the rest of the work. Section IIl deals with
hind those works was that the details of the distributionshe dynamics found when a pendulum with torque presenting
were consequences of the particularities of the system, arififinite dissipation is subjected to noise. At this point, we

therefore On|y mean quantities were worth Computing_ MoreWi” review the classic results by Kramers. The case of finite
over, only averaged quantities were considered adequate €ssipation will be discussed in Sec. IV. We will study the

be compared with experimental data. emergence of another characteristic time in the interspike

Those statements are correct, but recent results havlne distribution. The discussion and the conclusions will be
shown that some features of the interspike time distributiorPresented in Sec. V.
contain information on the qualitative properties of the de-
tgrministic part of the system: more pregisely, the organiza- Il EXCITABLE SYSTEMS: THE PENDULUM
tion of the invariant manifolds of the fixed points of the WITH TORQUE
noise-free cas@nvariant manifolds are not generally defined
for noisy systems[4]. In a recent work, the bimodal nature ~ As mentioned in Sec. |, a system is called excitable if it
of the interspike time distribution for a certain class of noiseamplifies inputs whenever these are larger than a given
driven excitable systems was discussed in these tgsintn  threshold. Then, the ingredients that are necessary to as-
this work we will address this issue. We will study the de-semble an excitable system afa). a stable fixed pointb) a
tailed structure of the interspike time distribution in order tothreshold andc) a mechanism able to reinject the trajecto-
predict the appearance of the two characteristic times andes crossing the threshold into the neighborhood of the fixed
how they depend on the particular features of the system. Wpoint. A simple way to account for this reinjection is through
also want to unveil whether these characteristic times will béhe topology of the phase space. For exampleSin we
present in other excitable systems. Numerical, analyticasimply need a pair ofstable and unstabldixed points to
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In a phase space with the topology of the cylind®r
X St, excitability can also be obtained with two fixed points:
a saddle and an attractor. This is displayed in Fi@).INo-
tice that both branches of the unstable manifold of the saddle
feed the attractor, embracing the cylinder. The stable mani-
fold of the attractofcoming now from infinity, creates now
the threshold of the excitable system.

In this work, we will show that in bidimensional systems
N like this, a second characteristic time can arise in the histo-
gram of the interspike time distributions in the form of a
second peak. This pseudoperiod is also induced with noise,
and is closely linked to the existence of a stable manifold of
the saddle point, locally tangent to a linear one associated
with a finite (negative eigenvalue. For this reason this peak
cannot be found in the one dimensional system described
above, which can be thought of as the infinite dissipation
limit of the bi dimensional system.

Both scenarios can be obtained as different limits of the
pendulum with torque. Let us assume a simple pendulum of
massm, lengthl, in a gravitational fieldy, under the action of
a torque 7. Dissipative terms are assumed linear and con-
trolled with the parametey. The dynamical variable de-
scribes the angle with the horizon, and the system is coupled
with a thermal bath of temperatufie Therefore, the system
is ruled by[9]

w2

X"+ yx"+ g/l cogx)=7/ml+ &(t), 2

\/ (EOEN))=2(yKaTNZm) 8(t—1"), 3

where £(t) is a Gaussian noise of zero mean, &g is
— 2 -
FIG. 1. (@) The simplest excitable system B described by ~Beltzmann constant. Let us call=yKgT/I"m, d=g/I and

Adler equation Eq(1) with a node(N) and a repulsor§). (py = 7/ml, where we write our systems as
Scheme of an excitable system livingR1x St (infinite cylindes,

with two fixed points: one saddi) and one stable focusdN). The x'=y, (4)
unstable manifold of the saddI&\') feeds the focus embracing the
evlinder: y'=—yy+F-deosgx) + (), ®)
create an excitable system. This is precisely what we get
with the Adler equation (§(D&("))=2Ds(t—t"). (6)

X' =u—cogX). (1) In Fig. 2 we show the parameter space partitioned in three

regions where the dynamics of the noise free system is quali-
When w<1, we have two fixed points atx= tatively different. In region Ill we have periodic solutions

+arccosfs). Let us kick a system initially at the stationary (the torque is strong enough to force the system to perma-
solution, with a perturbation larger than the distance betweenently go aroundS!). Region Il presents an excitable dy-
the two fixed points. The trajectory will then evolve return- namics as the one described at the beginning of the section,
ing to the stationary state after completing one full turn to thewith two fixed points(a saddle and an attracfpmhile re-
circle [see Fig. 1a)]. Sigeti studied the dynamics of this gion | presents the coexistence of an attractor, a saddle, and
system subjected to noise, and found a maximum in the hisan attracting periodic orbit. The separatrix between regions |
togram of the interspike time distributidim this context, we and Il is defined by a homoclinic bifurcatigeaddle looj, in

are calling “spikes” the full turns aroun8!). The exponen- which the upper branches of the stable and unstable mani-
tial decay of the distribution, on the other hand, is knownfolds coincide. The bifurcation limiting regions Il and Ill is a
since the work of Kramers. The interesting consequence caddle node, one which has a global connection between the
the existence of a maximum in the interspike time distribu-manifolds of the fixed points, in such a way that after the
tion is that even if the system has no periodic orbits, thebifurcation a limit cycle remains. Finally, between regions |
coupling to a noise source gives rise to a quasioscillatoryand IIl an ordinary saddle-node bifurcation takes place. The
behavior. This characteristic time can be controlled with thethree branches meet at the tripartite point saddle-node-
intensity of the noise, and its dispersion has a minimum for @aomoclinic bifurcation(SNH) which is a codimension two
certain noise level. This effect has been recently described gmint. The results that we will present can be generalized to
a “coherent resonance[7]. other unfoldings of this codimension two bifurcation.
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FIG. 2. Bifurcation diagram
and phase portraits for the system
described by Eqgs(4),(5). In re-
gion lll we have periodic solu-
. . ] ] ] i . tions (the torque is strong enough
————————————— to force the system to rotate per-
b ] manently. Region | displays the
coexistence of an attractor, a
saddle, and an attracting periodic
| orbit, while region Il presents an
excitable dynamics. The separa-
trix between regions | and Il is de-
- fined by a homoclinic bifurcation,
in which the upper branches of the
stable and unstable manifolds co-
0 1 1 | 1 | | 1 incide.

0 0.2 0.4 0.6 0.8
YHd

A simulation of the system, Eq$4)—(6) is displayed in  presence of cluster of peak€) in the time seriegsee Fig.
Fig. 3 for parameter values within region Il, near the SNH3(a)]. As the system is moved away from the vicinity of the
point. The interspike histograffig. 3(b)] reveals the exis- homoclinic bifurcation we return to the wide-peaked distri-
tence of two different statistical behaviors: an exponentiabution studied by Sigeti. We will start our analysis in follow-
decay predicted by Kramers for long interspike times and ang Sec. Il with this last distribution, which can be found in
narrow peak for short times. The maximum found by Sigetithe high-friction limit of the bidimensional system. This will
is eclipsed by the narrow peak, which is associated to thallow us to derive an approximate analytic expression for the

interspike time distribution.

F/d

0.2 EXCITABLE

4 T T T T T T T T T
a)
3r 1 IIl. THE INFINITE DISSIPATION LIMIT
2r i
g L ] In the case of large friction, Eq$4)—(5) can be written,
§ . M\N WW | after the adiabatic elimination of the inertial term, as
¢ oYl W
v it | x"=F/y—(d/y)cogx)+ &(t)/y. (7)
3 i Rescaling time' =td/vy, and makingnp(t') = &(t)/d, this
-4 ) equation reads

0 50 100 150 200 250 300 350 400 450 500
t (arb. units)

x'=F/d—cogx)+ 5(t"). (8)
Having defined a new time and introducing a new difus-

sion coefficientR=D/yd, the correlation function of the
noise reads

(n()n(t"))=2Rs(t—t"). 9

We have then obtained Adler equation, calliRgd= .
These equations can be thought of as describing the motion
0 1020 30 40 . 0 60 70 80 of a Brownian particle, in the high friction limit, when sub-

t (arb. units) jected to the biased periodic potentitl{x)=sin(x)—Fx/d,

FIG. 3. Temporal serie&@) and interspike time distributiotb) displayed in F'g'_4' . . o
for the pendulum with torquéEgs. (4)—(6)] within the excitable Now, we are interested in computing, for a set of initial
region F=0.9, d=1.0, y=1.0, andD=0.1). The variablex is conditions, the d|str|qu|on of the escape times. L_et us begin
displayed modulo 2, therefore, the jumps of the variable representOUr program by defining the following expressions, used
full rotations. The left side peak of the histogram corresponds tghroughout the rest of this work.
consecutive spikes in the time series, usually called clusters. There We are callingP(x,t;x,) the probability of transition
are two characteristic times: the leftmost peak and the exponentidfom Xo att=0 to x at t, which satisfies both the Fokker—
decay for larger times. Planck(or Kolmogoroy equation
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W(Xp,t) with closed solutions. The moments can be related

Ux) to the transition probability through
-2 b o
x 2T \ Ta(Xo) = fo t"W(xo,t)dt (14
x
= -b 1 =00
=—J t"—G(Xo,t)dt (15)
\ o ot
Xy X b
= —(t“G(xO,t))§§+nJ t"1G(xo,t)dt (16)
0
3 on T 0 T

X (radians)

% b
=nf dtf t"IP(x,t;%0)dX, (17
FIG. 4. Potential associated with E®) interpreted as the high- 0 2

friction limit of a Brownian particle. The spiking process can be \yhere the integrated term vanishes as longss,,t) —0
divided in two parts{l) the reinjection of the trajectories in the box (as t—w), faster than any power. Now multipl;}ing both
(—b,b) enclosing the saddle) and the attractory,), and(ll) the sides of Iéq.(ll) by nt"~1, and integratin’g spatially in the

escape process from this box. box (a,b) and in time fromt=0 tot=, it is easy to derive
(integrating by parts the left sigi¢he following equation for

2 the momentsT,, [10]:

d J Jd
EP(x,t;xo) =— a—XF(x)P(x,t;xo)+ R% P(x,t;Xq),
(10) F(X0) Tr(Xo) + RTR(X0) = —NnTy-1(Xo)- (18

with F(x)=F/d—cos), and the backward Fokker—Planck It is now clear the gain in stating the problem in terms of
equation(which we will also later use the moments: the first derivative of the moments will satisfy
a first order equation, with closed solutions. Iteratively, we
P P 72 can (in principle) solve as many moments as we need to
—P(X,t;Xg) =F(Xg)=— P(X,t;X) + R——P(X,t;Xo). properly approximate the desired distributidnotice that
at %o 9*Xo To=1, since we deal with normalized distributionsAll
(1) what is left is to translate the original boundary conditions
b for P into boundary conditions fofr,,. Integrating, we get
Let us denote by5(xo,t;a,b) =JaP(X,t;xg)dx the prob- 4t T () =0 andT/(—b)=0. Once these boundary condi-
ability of remaining at the intervala,b) at timet, whenever  ions are computed, EG18) can be solved since it is a first
Xo€ (a,b). _ order (nonhomogeneolis equation for T/(X,). Writing
Fma_ll_y, we are callingi(xo,t) = f‘;G(XO't;a'b)/&t the Tn(Xo) =Uv (with u the solution of the homogeneous prob-
pr-o.bablhty.o_lens.lty of the escape times frora, ) for an lem), and solving the two resulting first order equationsifor
initial condition inxye (a,b). anduv. one finds that
Even if our system is periodic we will study the distribu- '
tion of escape times from a box enclosing the sadsie énd n (b v
the node %), as displayed in Fig. 4. This will allow us to To(Xo)= _f dy eU(y)/RJ' dz e [VORIT (7). (19
generalize later our results to the case of finite dissipation. RJx —b
Now, we choose the proper boundary conditions. Itiseasyto . . : . .
see that once that a trajectory goes beyardb, it is un- It Is important to keep in mind _that the equation .
likely a return to the box. Therefore, this can be seen as a tudy has been written aft_er_resgal_mg the ongmql time by a
absorbing wall. On the other hand, trajectories can hardlyaCtOr (_)f?’/d for the h_|gh-fr|ct|0n limit. Also that’ within the
reachx=—b, and if they eventually do, they will return to same limit, every orbit that leaves our absofb!”g yvall \.N'” be
the neighborhood of the deterministic attractor. Therefore w€iniected atx=—b (after some mean reinjection time
can callx=—b a reflecting wall. These conditions can be herefore, all we are concerned with so far is the set of
written as momentsTn(—b). o .
Even if we have now a prescription for solving our prob-
lem, we have to decide whether the integrals written in Eq.

P(x=D,t:X)=0, (12 (19) will be approximated in order to obtain expressions in
closed forms, or if we will choose to lose elegance by com-

d . o puting them numerically. At this point, we find it useful to
(9_XOP(X_ ~b.tXo)=0. (13 revisit Kramers’ results. The purpose is to illustrate which

approximations are incompatible with our objectives.
Unfortunately, the analytical solution for this equation has In the 1940s, Kramers came up with an approximation
no closed form. However, it is possible to write an infinite which allowed him to compute the first moment of the dis-
set of recursive equations for the moments of the distributiortribution in terms of local properties of the potential in the
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well (x,) and in the barrierXs). The core of this approxi- origin of the maximum of the escape-times distribution, and
mation is to convert Eq19) to Gaussian integrals. This can then making a reasonable approximation for the Fokker—
be achieved by expanding the argument of the exponential tBlanck equation based on our former observations.

second order and keeping only the leading terms Computing the probability of transitionP(x,t;Xq,0)
within the box (—b,b), it is easy to observe that after a
20 certain time, this distribution reaches a stationary limit
Ti(x)= [ ————eVXxJ-Ux)IR (modulo renormalizing the number of particles to account for
RU"(Xn) the escaping ongsThe time necessary to reach this “sta-

b tionary” distribution is approximately the one in which the
X f dy e (U"(x9|2R)(y—x9)? escape time distribution has a maximum. After this time, the
Xo distribution of escape times is approximately exponential
(i.e., memoryless, consistent with the observation that the

— m eU(x9) =U(xn)/R space distribution has reached a stationary stéteother
VU (X)|U" (Xs)| words, the escape process can be understood in two steps: a
transient behavior for short times in which the escape times
% 1—erf( X0~ Xs } grows rapidly, and a stgtipna}ry distribution for Ia_lrge times,
Ih ' with a unique characteristic time that can be estimated with

Kramers’ law.
wherel,,= y2R/U"(x,) is a thermal length. This gives, when  Kramers’ approach seems more natural to explain the ex-
Xo= —b is far enough from the saddle, and returning to theponential tail(actually, Kramers assumed that the metastable
original variables, the celebrated Kramers’ result state had reached an equilibrium distribujioNow, all that
we need is a reasonable approximation for the transient state.
To understand the transient behavior, we will focus on a
Trramere= ————e("PIVX)=V(x) = (20)  single realization of the random process.tAtO one particle
WV (x0) [V (Xs)] is injected atx,=—b. It will descend, more or less ran-
domly, toward the node at=x, and eventually climb the
potential barrier. If the particle can cross the saddle before
the stationary distribution is reached, it will be part of the
fast growing part of the distribution of escape times. In the
other case, it will be part of the stationary distribution and
will obey Kramers’ law. We will describe the evolution of
the fastest escapes, or equivalently, the transition probability
from xo= —b to the top of the barrier for times before the
onset of the stationary distribution. The transition probability
for fixed spatial coordinates displays a step-like form for
Recalling that the moments of the distributions are theobvious reasons: at zero time has zero value and, after a
Taylor coefficients of the characteristic functiéwhich is  while, it reaches its stationary value. This step function can
related to the probability distribution by means of a Fourierbe seen as a slow “turn on” of the exponential decay. In
transformation [11], it is easy to obtain the distribution other words, we are proposing that the distribution of escape
function predicted within Kramers’ framework: times can be understood in terms of a product of two differ-
ent functions, corresponding to the transient behagtep-
1 like function and the stationary onéexponential decay
Wiramerdt) = T—e(_ml)- (220 Now, we attempt to derive the step-like function from the
! Fokker—Planck equation. Again, if the true transition prob-

This distribution fits reasonably well the results for long @Pility for our potential has no closed form, then we will
times. Yet, two aspects of the real distribution cannot bd'ave to make some approximations. o
captured within this approximation: the impossibility of in-  Let us assume the simplest hypothesis: a linearized flux
stantaneous escap@&/(0)=0) and the existence of a maxi- around the node=x(=—Xx,). This means that we only
mum. This essential feature of the distribution was missedeal with first-order dynamics:
when we used Gaussian integrals to compiéxg) in Eq.

(19. X' =—Ax+ 7(t), (23

Going beyond Kramers’ result is not trivial. Even when
the moments could be calculated using ELp), the recon-
struction of the distribution of escape times via the charac- (n()n(t"))=2Rs(t—t"), (24
teristic function converges so slowly that severe numerical
problems arise before obtaining a distribution function quali-where we shifted the zero of the originalvariable to the
tatively better than Kramers’. Moreover, the series obtainedhodex—x+xs, and\ =U"(x,,) corresponds to the absolute
involves cumbersome recurrence formulas and provides nealue of the eigenvalue of the node. The associated Fokker-
physical insight into the process involved. Planck equatiofiEq. (11) with F(Xg) =AX,] is a typical text-

Instead, our strategy will consist of first inspecting nu-book examplg9] (Ornstein—Uhlenbeck procesand has the
merical simulations of our system in order to elucidate theexact solution

2wy

whereV(x)=U(x)d is the real potential.

It is important to notice that, in Kramers’ approximation,
the mean escape time does not depencgrit is therefore
possible to write, at the same level of approximation,ritre
moment as

Ty

Tnznl(ﬁ)n. (21
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P(X,t,XO): \/T(t)zex - Tz(t) , (25)
o¥(t)= %(1—672“), (26)
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nential in Eq.(27) taking logarithms and calling=e .

Then, we obtain the following quadratic equation for

[AX2+ A (b—Xg)?—2RIN(1/2) 122+ 2\ Xp(b—Xg)Z

+2RIn(1/2) =0, (32)

which, as could be expected, points to a Gaussian distribfTom which is now easy to calculatas a function of the

tion with time-dependent mean and standard deviation. |
our new variables, the particles are injectedxgt xs— b,

gparameters of the problem.
Now, we are almost done. In order to finish with the de-

and we are interested on the transition probability as a funcScription of the escape process, we have to consider the evo-
tion of time, evaluated in a point representing the barrier. Idution time interval €o) from the saddle point to the absorb-
the spirit of Kramers, we chose the point where the potentialnd barrier atx=b. Since the deterministic escape time from

reaches the height of the barri@d(x)). Let us call this
point X,,. Then, the probability that a particle injectedn
=Xg reaches the barrier in a tintas

Wt 1 F{ (xh—<xO+xs)e-“)2]
Xo,t)= X —
w0 2 20%(t) ’
(27)
FXs
Xh=2 1_ﬁ, (28)

This is the step function that we have anticipated. W

distribution is only reached after the maximum of the escap
time distribution(likewise, the step functionHence, we can
consider the transient distributidzq. (27)] and the Kram-
ers’ one as two statistically independent processes. Then

will write our distribution of escape times as a product of the
step function and the exponential decay predicted by Kram

ers

Wi i(Xo,t) = WoWi(Xo,t)e Y7o, (29

where W, is the normalization constant. The characteristic

time of the long term decay, still remains an unknown

parameter. We have seen that within the Kramers’ approach

To= Tkramers DUt this no longer holds for our distribution
function. Thus, we are tempted to return to our moment
serieg Eq. (19)] in order to derive an expression fag. The
first moment of the distributiotmean first passage timwill
serve our purpose. Again, the computation of the first mo
ment of the distribution of Eq29) can be easily done if we
approximate the step functiofEq. (27)] by a Heaviside
function

eS/TO ©
T,= f te Y7o dt (30)
’TO s
= 'To+ S, (31)

where s is the mid point of the step function, anf, is
calculated from Eq(19). We still need an analytic expres-

sion fors. This can be derived by noting that the step func-

e
recall now that Kramers’ law assumes a stationary distribu
tion and that from our numerical simulations this stationary

a fixed point goes to infinity we must take into account the
noise. We only display the result; the calculation is done in
b—Xxs

Sec. IV

In Fig. 5 we compare the numerically obtained distribu-
tions of escape times from the box-p,b) for an initial
condition inx= —b with the approximate analytical distribu-
tion W, ;(—b,t—ty) for three different noise levels. The
agreement is quite good. In Fig. 6 we vary the parameter of

1

X (33

to

our systemF/d for a fixed noise level. Again, the derived

distribution function fits the numerically obtained data. This
greement holds as long as the same hypothesis of the high-
riction limit of the Kramers’' rate law is maintained.

Namely, the barrier height is greater than the noise level and

V\}Be friction is strong enough. In addition to this, the solution

IS adequate only when the reinjection point is placed between
—b and the node. In any other case the effects of the saddle
in the short term are unavoidable. In Sec. IV we will deal
with this problem.

IV. THE NOISE DRIVEN PENDULUM WITH TORQUE
IN THE CASE OF FINITE DISSIPATION

In Sec. Il we analyzed the interspike time distribution for

a pendulum with infinite dissipation. Now we are about to

éjescribe how this statistic changes as we begin to lower the

dissipation. In order to carry out this program, we are going
to review how the organization of the invariant manifolds of
the deterministic system changes as this parameter is varied.
In Fig. 7, we see three phase space portraits as the dissipation
is lowered. The most noticeable feature is that the stable
manifolds of the attractor and the saddle approach each
other. The distance between the manifolds can become even
smaller than the distance between the fixed points.

The dynamical consequence of this process, if the system
is coupled to a source of noise, is that the trajectories will
find it easier to cross the threshold during the reinjection than
during their visits to the neighborhoods of the attractors.
These early escapes happen more frequently as the dissipa-
tion is lowered. Our previous study was based on the inspec-
tion of the trajectories that would begin in the neighborhood
of the attractor(or in the phase space region even further

tion [Eq. (27)] will reach its mid point when the exponential away from the threshold than where the attractor)wisisw,
part of this function doe&he prefactor relaxes rapidly to its the issue is precisely how to describe the trajectories that are
asymptotic valug We calculate the mid point of the expo- reinjected eventually close to the threshold. Before attempt-
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0.03
0.025 | FIG. 5. Distribution of escape
times from the attractor in the
high friction limit [Egs. (8),(9)],
0.02 for initial condition x(0)=—b,
o parameter values-/d=0.9, and
\; different noise levels:R=0.03
3:0.015 - (solid line), R=0.05 (dash—dotted
line), and R=0.07 (dashed ling
In each case we compare the re-
0.01 sult of the numerical simulations
(wiggled lineg with the approxi-
mated analytical distribution dis-
0.005 - played in Eq.(29) (smooth linex
All parameters from Eq(29) are
0 calculated analytically.
0

time (arb. units)

ing a quantitative description of this process, let us note that= 5. These will be ruled by the following equations:
we expect roughly two families of trajectories: those that

after a reinjection come close to the attractor, and those that X' =\x+ g(t), (34)
took advantage of early escapes during the reinjection. Those
two will have different statistics. Clearly, the early escapes (p(H)7(t"))=2R8(t—t'), (35)

are associated with small values of interspike times. Notice

that although the separation between trajectories in tw@yhich are the same as E¢23,24, but now the Ornstein—

classes is somewhat arbitrary, the interspike time distribugypjenbeck process is unstable. We took advantage of our

tions show two clearly distinct times. As discussed in Sec. lpotentialU(x), since the eigenvalues of the fixed points are

these look typically like distributions of the kind discussed inequal in absolute value. Hence, an initial delta-like distribu-

Sec. lll, superimposed on narrow distributioferrespond-  tion at (x,< &) will become a Gaussian distribution with first

ing to the early escapgsas can be seen in Fig(t. and second moments increasing exponentially in time. This
In order to unveil the nature of the statistics of the early,;oyid be the same as Eq25,26 substitutingt by —t.

escapes, we have to study the evolution of trajectories inTherefore, the probability that at timethe trajectory still
jected close to a saddle, conveniently located-a0. Some  emains within a semi-infinite box-(x,8) is given by

of those trajectories are deflected to negative values, of
which we can assume will mostly end up visiting the attrac-

Aty 2
tor for a while. The others will constitute what we call early Gy(Xg,t)= ;fﬁ exg — M
escapes, and we are interested in finding the time distribution s V2mo?(t) ) -= 202(1) '
of those crossing an imaginary box with its rightmost side at (36)
0.03 T T T T
i —
h=092 -----
0.025 - .
PR FIG. 6. Distribution of escape
PN times from the attractor in the
0.02 [ 4 KN - high friction limit [Egs. (8),(9)],

for initial condition x(0)=—h,
noise leveR=0.05 and parameter
values: F/d=0.88 (solid line),
F/d=0.90(dash—dotted ling and
F/d=0.92 (dashed ling As in

Wi (O

0.015

0.01 [~ Fig. 5 we compare the result of
the numerical simulations
(wiggled lineg with the approxi-

0.005 [~ mated analytical distribution dis-

played in Eq.(29) (smooth lineg

time(arb. units)
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FIG. 7. Phase potratits of the deterministic part of the bidimensional sy&tgsi(4),(5)] for parameter value§=0.9, d=1.0, and three
friction coefficients:(a) y=2.0,(b) y=1.2, and(c) y=0.9. As the friction is lowered the upper branch of the unstable man(galitl line)
and stable manifold of the saddi@ashed lingapproach each other. Box A is used to separate the spiking preeess noise is addedn
an escape problem plus a reinjection.

R each distribution. This has to do with the global properties of
o?(t)= X(ezm—l), (37 the system, more precisely with the homoclinic bifurcation
described above where the parameter controlling the dissipa-
which can be properly written, after making’=(x  tion is involved. Hence, the relative weight of the distribu-

—xo€M)/202(t) and A(t)=(5—x,eM)/V202(t) as fol- tion will be the only parameter that we will fit. The final
distribution of escape times for the one dimensional system,

lows:
now for an arbitrary reinjection poing,, will be a weighted
Gy(Xo,t)= [ 1+erf(A(1)], (38)  sum of the two distribution deduced above
2R -~z Wiot(Xo, 1) =Wo[ Wh(Xq ,t) +CWs(Xo, 1) ], (42)
A(t)=(5—xy€e") T(e M_1) . (39

wherec is the relative weight of the distributions. Note that
As explained at the beginning of Sec. llI, the distributionthe trajectories that lose this opportunity of an early escape

of escape times is just its time derivative, that is W,,s are assumed to start from the nade
In Fig. 8 we show the distribution of escapes for the one
\/T((;_XO e M) dimensional systeniEq.(8)—(9)] when the trajectories are
Wq(Xg,t)= reinjected in three different points approaching the saddle.

2mR (EZM_ 1)3/2

N(6—XqeM)?
X expg 2h\— ——————
2R(e®M—1)

We also display our approximated analytic solutidis).
(42)] with adjusted weightgFig. 8(c)] shown in the caption.

, (40) Again, the agreement is quite good and the functional form
obtained easily compares with the distribution of interspike
times for the two dimensional systewee Fig. &)].

very similar to the expression found by Stone and Holmes Now we arrive to the main claim of our work. We argue

when studying the statistics of a noise driven attracting hothat the interspike statistics of a two dimensional noise

moclinic loop[8]. driven excitable system near a saddle-node-homoclinic bifur-
We can also make use of this result to calculate the addication[like the pendulum with torque described by EG—
tional time to added to the distribution in the high-friction (6)] can be reproduced by the escape_time statistics from the
limit [Eq. (33)]. The mean first passage time for an initial metastable state with only one coordinate, endowed with a
condition in the saddle going towards the barriexatb is  two dimensional reinjection process. The nontrivial statistics
of the interspike histogram generated by the two dimensional

N system close to the homoclinic bifurcation is mimicked by
= fo erf[A(t)]dt. (4D the one dimensional escape process reinjecting the trajecto-
ries close to the barrier. We claim that the escape time dis-

For low noise level this integral can be approximated to Eqtribution of the analogous one dimensional problem can be

(33) as shown i 8]. understood in terms of a superposition of the escape-time

We have then obtained two separate distributions startingdistribution in the high-friction limitwj,(t) [Eq. (8)] and the

from local properties of the systefaigenvalues of the fixed distribution of early escapéd/s(t) [Eq. (40)].

pointy and the noise level, which are unable to be deduced The distribution of escape time#/,(xq,t) will repro-

only from local properties which weight must be assigned taduce the interspike histogram for the two dimensional sys-
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FIG. 8. Distribution of escape times from the attractor in the high friction I[f&gs. (8),(9)], for F/d=0.90, noise leveR=0.05, and
different initial conditionsx,= 0 (solid line), x,= 0.1 (dash—dotted ling andx,=0.2 (dashed ling We compare the result of the numerical
simulations(wiggled lines with the analytical distribution proposed in the tékg. (42)] (smooth lineg This distribution is a weighted sum
of the distribution deduced in the high-friction linfiEq. (29)] and the distribution of early escapg. (40)], but the relative weight must
be adjusted numericallyc=18.33(for x,=0), c=20.62 (k,=0.1), andc=23.34 (k,=0.2).

tem with finite dissipation as long as we can calculégthe In Fig. 9 we compare the interspike time distribution for
reinjection time intervak, and (b) the reinjection pointx,  the two dimensional system, close to the homoclinic bifurca-
corresponding to the value of the dissipatipnThese two tion, with the distribution of Eq(42). This agreement holds
values can be obtained numerically integrating the unstablfor a wide region close to the homoclinic bifurcatiGmhen
manifold of the saddle, using the determinisic equations. Itrajectories are reinjected close the sagidi@r intermediate

we now define a narrow two dimensional box as displayed iny values, however, the trajectories of the two dimensional
Fig. 7(c) we can compute the deterministic reinjection timesystem are reinjected between the saddle and the attractor
t, and the coordinate of the reinjection poky. Since the and the one dimensional approach is less effective. For
unstable manifold of the saddle is attractive, these estimatdsgher values ofy the trajectories are reinjected close to the
also apply to the trajectories obtained when small noise isittractor and we return to the high-friction distributiffaq.
added. Therefore, in order to reproduce the interspike histo29)] which again gives good agreement with the numerical
gram it suffices to evaluatéV,,(xy,t"'—t,), where t’ data.
=td/ v is the rescaled time. Note that our distribution func-

tion depends on a somewhat arbitrary choice of the escape-

- . V. CONCLUSIONS
box edge(parameteb), however this effect is compensated

by the variation of the reinjection timg . Typically, b is In [5,4] it was reported that noise driven excitable systems
placed one thermal lengtkl,,=+2R/U"(x,)) beyond the could present two characteristic times. It was conjectured
saddle. that the finite dissipation in the system studied played an
0.1 T T T T T
. wtot(x FIG. 9. Distribution of escape

numerical “*** ] times from the attractor for the bi-
] dimensional systemEqgs. (4,6)
near the homoclinic bifurcation
(F=0.9, d=1.0, y=0.9, andD
=0.05) obtained from a numeri-
cal integration(dashed ling and
compared with the approximated
analytical distribution function
Wiot(Xo,td/ y—t;) [see Eq.(42)].
All parameters buig, t,, andc
have analytical expressions,
andt, can be calculated numeri-
cally from the deterministic part
of the system and is the only pa-
1 1 1 1 rameter fitted with the real distri-
20 40 60 80 100 bution. For these parameter values
Xo=0.3,t,=4.47, andc=30.04.

Wtot(t)

0.01

0.001
0

time (arb. units)
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important role. In this work we analyzed this problem in Hugh Nagumo and Hodgkin—Huxley. On the other hand,
detail, studying the evolution of interspike time distributionsthere are many twéor more dimensional unfoldings of the
as the dissipation was changed in a noisy pendulum witkaddle-node-homoclinic bifurcatiofiike the equations pre-
torque. We have solved, under a reasonable linear approxéented in[5]), which have a similar manifold organization
mation, the high-friction limit problem which has a single- (eventually, the two distributions derived in this work might
peaked distribution of escape times. NeXt, we worked out thﬁave their maxima Separated enough to give rise to a bimo_
finite dissipation problem as a superposition of a two dimengg| interspike distributions as i5]).

sional reinjection proces@which has to be solved numeri-  Among the systems with the features analyzed in this
cally) and a one dimensional escape process. We found th@jork, there are also models of excitable neurdlitee the

in this case, the interspike time distribution can be expressegjison—Cowan[12]), which display interspike histograms
as the sum of two one peaked distributions: the one of thgualitatively similar to the ones presented here. This could
high-friction limit and a distribution of early escapes, both pe especially useful because it is well known that in many

calculated from a linear stochastic process. _neurons, the relevant information is believed to be coded in
These results can be generalized to other systems whighe inter-spike time distributiofiL3].

present the same dynamical ingredients: a saddle-node bifur-

cation on a limit cycle and an homoclinic bifurcation, which

are organized around a saddle-node-homaoclinic bifurcation ACKNOWLEDGMENTS

point. The minimal dimension required to achieve this is
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