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Surface shape resonances and surface plasmon polariton excitations
in bottle-shaped metallic gratings
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~Received 23 October 2000; published 27 March 2001!

We study surface plasmon polariton excitations and surface shape resonances in a lossy metallic grating with
bivalued cavities. The modal formalism is used to solve the diffraction problem for the infinite grating and the
homogeneous problem for a single cavity in a plane surface. Both polarization modes are considered. We
provide curves of reflected efficiency versus wavelength as well as near-field plots. The resonances are iden-
tified as dips in the reflected efficiency, which imply significant power absorptions. Results for various depths
of the cavities and for several angles of incidence are shown, where the different types of resonant behavior can
be appreciated. Particular attention is paid to the changes introduced by the finite conductivity of the metal in
relation to the results obtained for a perfect conductor.
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I. INTRODUCTION

It is well known that when an infinite metallic grating
illuminated byp-polarized light, a surface plasmon polarito
~SPP! can be excited along the surface@1#. This excitation is
accompanied by a significant power absorption@2,3#, and
consequently it produces a sudden change in the efficie
curves of the reflected orders. For a given period and m
rial of the grating, and for a fixed angle of incidence, t
excitation of a SPP is produced for a particular wavelengt
which one of the diffracted orders propagates parallel to
surface, and therefore, the electric field near the surfac
intensified. This phenomenon is particularly important wh
the corrugations are shallow. As the depth of the groove
increased, another type of resonance can take place
eigenmodes of each cavity can be excited, producing in
esting resonant effects, such as field enhancement insid
corrugations@4–6#. Contrary to the SPP excitations, the
resonances are associated with the particular shape of
groove and can be excited bys-polarized light@7–9#, inde-
pendently of the period of the grating and the angle of in
dence. They are usually called surface shape resona
~SSRs!. Both effects manifest themselves as dips in the
flected and absorbed power curves, and they can even m
into one another forming hybrid resonances@10#.

To identify the SSRs it is important to perform an ind
pendent calculation of the waveguide modes of the cavi
so that the dips are distinguished from other effects that a
in infinite gratings. The solution of the homogeneo
problem—the scattering problem from a single cavity wi
out incident field—gives us a good estimation of the reson
wavelengths@6,11#.

The only experimental evidence of the SSR excitatio
was recently given by Lo´pez-Rioset al. @10#, for lamellar
gratings. In Ref.@10# the authors compare experimental r
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sults for a gold grating with numerical computations bas
on the transfer matrix formalism, forp-polarized incident
light. By varying the depth of the cavities, they analyze t
evolution of the resonances and show that for shallow co
gations the resonances correspond to the SPP type, and
sequently the field is weak in the groove and intense in
external surface. On the other hand, for deeper gratings
resonances are of SSR type where the electric field is ma
concentrated in the grooves and is practically zero in
other regions.

Taking into account that fors-polarized incident light we
do not have SPP resonances but we do have SSR, gra
can be used in many applications based on selective
cesses, such as polarizers and filters. In particular, biva
profiles of the grooves can yield more significant intensific
tions of the field and higher quality resonances than sing
valued profiles@4,5#, especially fors polarization. The reso-
nant characteristics of volumes such as open cylinders
been studied by many authors@12–16# mainly for circular
geometries. However, the ‘‘bottle’’ shape of the cavities co
sidered in this paper provides us with advantages, such
the freedom to vary the depths and widths independently,
ease to manufacture this kind of structures, and the simp
ity of the modal formalism used to model the diffractio
problem.

FIG. 1. The infinite grating made of bottle-shaped cavities in
metallic surface.
©2001 The American Physical Society08-1
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FIG. 2. Specular efficiency versus waveleng
for a perfectly conducting grating of periodd
51 mm with bottle-shaped grooves of widthc1

50.35 mm andc250.1 mm, h150.9h, u0510°
and p polarization, for three different values o
the total depthh: 0.5, 0.8, and 1mm.
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The purpose of this paper is to provide numerical e
dence of resonances in deep metallic gratings with multiv
ued corrugations. In a previous paper@6#, we considered the
ideal case of a perfectly conducting material and found
teresting results that have led us to extend the study to
real case of a lossy metal. This extension, done by mean
the surface impedance boundary condition~SIBC! @17#, is
presented in this paper. The variety of applications that co
up from the numerical results also intend to encourage
design of experiments to measure these resonant prope

In Sec. II we outline the modal method applied to t
diffraction problem from an infinite metallic grating wit
bottle-shaped grooves, using the SIBC. We considers andp
polarizations of the incident plane wave. In Sec. III we po
the homogeneous problem for a single cavity in a meta
plane. The method is analogous to that presented in@6# for a
perfectly conducting surface, so the reader is referred to
above reference for more details on the procedure. Som
the results of the numerical computations are shown and
cussed in Sec. IV, where plots of reflected efficiency a
near field are provided. Finally, concluding remarks a
given in Sec. V.

II. DIFFRACTION FROM THE INFINITE GRATING

The grating consists of a periodic array of bottle-shap
one-dimensional cavities on a metallic surface, as show
Fig. 1. The structure is illuminated by a plane wave of wa
lengthl, whose wave vectorkW forms an angleu0 with they
axis, and thez axis coincides with the rulings direction. Th
complete problem is solved by separating the basic polar
tion cases: TE ors ~electric field in thez direction! and TM
or p ~magnetic field in thez direction!. Both scalar problems
are solved using the modal approach, which provides us w
a simple formulation for the present geometry. Each cav
has a wide part that we call ‘‘body’’~region 1! and a narrow
part referred to as ‘‘neck’’~region 2!. The body has widthc1
and heighth1, and the neck has widthc2 and heighth2 ~see
Fig. 1!. The total depth of the rulings ish5h11h2 and the
period of the grating isd. The field in region 3(y>0) is the
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sum of the incoming plane wave and the diffracted field

f 3~x,y!5ei (a0x2b0y)1 (
n52`

`

R n
qei (anx1bny), q5s,p

~1!

where~ j denotes the region!

f j~x,y!5H Ez j~x,y! in thes mode

Hz j~x,y! in thep mode,
~2!

a05k sinu0 , ~3!

b05k cosu0 , ~4!

an5a01
2p

d
n, ~5!

bn5HAk22an
2 if k2.an

2

i Aan
22k2 if k2,an

2 ,
~6!

k5ukW u5v/c52p/l, i is the imaginary unit, andR n
q are

unknown complex amplitudes usually referred to as Rayle
coefficients.

To account for the losses in the metallic substrate, we
the surface impedance boundary condition~SIBC! @17#,
which allows us to obtain the diffracted efficiencies and t
fields inside the cavities without calculating the fields insi
the metallic region. The expression of the SIBC is

EW i5Zn̂3HW i , ~7!

whereEW i andHW i are the tangential components of the ele
tric and the magnetic field, respectively,n̂ is the normal to
the boundary surface andZ is the surface impedance. Fo
highly conducting materials,Z can be approximated by 1/n
(n is the complex refraction index!. This condition is applied
to find the modal eigenfunctions in regions 1 and 2. In the
zones the fields can be expressed as
8-2
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SURFACE SHAPE RESONANCES AND SURFACE . . . PHYSICAL REVIEW E 63 046608
f j~x,y!5 (
m50

`

Um, j
q ~x!wm, j

q ~y!, q5s,p, j 51,2 ~8!

whereUm, j
q (x) andwm, j

q (y) are linear combinations of trigo
nometric functions ofx and y, respectively, and depend o
the polarization mode, as denoted by the superscriptq ~see
the Appendix for the explicit expressions of these function!.

TABLE I. Resonant wavelengthsl (mm) for a perfectly con-
ducting rectangular waveguide, forp polarization.

n h51 mm h50.8 mm h50.5 mm

1 1.8 1.44 0.9
2 0.9 0.72 0.45
3 0.6 0.48 0.3
4 0.45 0.36 0.225
04660
These eigenfunctions involve unknown modal amplitud
Am

q , am
q , and bm

q , which are to be found by matching th
fields at the interfacesy52h2 and y50. The procedure
followed here is essentially the same as that in Ref.@18#
except for the fact that in the present case we have to m
the fields at one more interface (y52h2). Thus, four sys-
tems of equations are generated for the four unknown vec
~three of modal amplitudes in regions 1 and 2 and the R
leigh coefficientsR n

q). After substitutions and matrix inver
sions we get a matrix equation forR n

q , and the reflected
efficiencies (en

q) can be calculated as

en
q5uR n

qu2bn /b0 , q5s,p. ~9!

III. EIGENMODES OF A METALLIC BOTTLE-SHAPED
CAVITY

In this section we calculate the surface shape resona
of a bottle-shaped groove on a metallic plane. An indep
FIG. 3. Near electric field for the same grating of Fig. 2 andp polarization:~a! h51 mm andl50.885 67mm, ~b! h51 mm andl
50.586 67mm, ~c! h50.8 mm andl50.7055mm, ~d! h50.8 mm andl50.586 67mm.
8-3
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FIG. 4. Specular efficiency versus waveleng
for a perfectly conducting grating of periodd
51 mm with bottle-shaped grooves of widthc1

50.35 mm andc250.1 mm, h150.9h, u0510°
ands polarization, for two different values of the
total depthh: 0.4 and 0.5mm.
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dent calculation of the resonant wavelengths of the cavitie
essential to characterize the response of the grating, an
differentiate between surface shape resonances—assoc
with geometrical parameters of the cavity—and other ty
of anomalies. A good estimation of the SSR wavelengths
be obtained by the solution of the homogeneous probl
i.e., the scattering problem without incident field. Maradud
et al. @11# solved it for a rectangular cavity on a perfect
conducting plane.

The procedure followed in the present paper for los
metals is the same as the one we used for a perfectly
ducting structure of the same shape@6#. Even though inter-
esting results were reported in@6#, the perfect conductor is
still an idealization and cannot account for effects such
selective absorption. Consequently, here we use the m
method in conjunction with the SIBC to solve the homog
neous problem of a single bottle-shaped one-dimensio
cavity on a lossy metallic plane. The field in region 3 is th
expressed as

f 3~x,y!5E
2`

`

R q~a!ei (ax1by)da, ~10!

whereR q(a) is an unknown function, andb25k22a2. In
regions 1 and 2 the modal expansions have the same ex
sions as in the periodic grating case given in the Appen
since the SIBC is also applied here. When matching
fields aty52h2 and aty50, we obtainx-dependent equa
tions. After projection in appropriate bases of functions a
several substitutions, we obtain a homogeneous matrix e
tion for the unknown modal amplitudes of the body of t
cavity, i.e., forAm

q . This system has a nonzero solution if th
determinant of the complex matrix vanishes. The sets of
rameters (l,c1 ,c2 ,h1 ,h2 ,n) that make the determinant van
ish correspond to resonant conditions, and consequent
surface shape resonances of the cavity. Since the matr
complex, the roots of the determinant are also complex:
real part is related to the resonant parameter and the im
nary part is associated with the quality of the resonance.
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FIG. 5. Near electric field for the same grating of Fig. 4 ands
polarization:~a! h50.4 mm andl50.509 33mm, ~b! h50.5 mm
andl50.557 33mm.
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SURFACE SHAPE RESONANCES AND SURFACE . . . PHYSICAL REVIEW E 63 046608
peaks in a plot ofudet@M #u22 versus wavelength provide u
with a good estimate of the resonant wavelengths of the c
ity @19,20,11,6#.

IV. RESULTS AND DISCUSSION

The examples below show the influence of the differ
types of resonances—SPP and SSR—in the power refle
from an infinite grating. The particular characteristics of t
near field at resonant wavelengths and the influence of
finite conductivity of the gratings are also studied.

In Fig. 2 we plot the specular efficiency from an infini
perfectly conducting grating of periodd51 mm with bottle-
shaped grooves of widthsc150.35mm andc250.1mm. The
grating is illuminated by ap-polarized plane wave impinging
with an angleu0510°. The three curves correspond to d
ferent depths of the cavities, but in all cases the ratio,h1 /h
50.9, is maintained. Forl>1.174, the only propagating or
der is the specular order and therefore, the total reflec
power goes in that direction and all fluctuations are forb
den. Thus, we analyze the response of the grating for sm
wavelengths. In the range ofl considered in Fig. 2, the
number of propagating orders goes from one to five. Let
note that more diffracted orders contribute to the total
flected power for small values of the wavelength than
higher values. The first significant feature to notice in Fig
is that each curve has several minima. Some of these

TABLE II. Resonant wavelengthsl (mm) for a gold grating of
periodd51 mm, corresponding to SPP excitations.

n u0510° u0520° u0540°

1 0.847 0.695 0.501
2 0.492 0.209 0.190

21 1.182 1.349 1.647
22 0.616 0.690 0.832
23 0.463 0.497 0.573
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appear almost at the same positions for the different de
considered, but some of them are shifted. It could be
pected that the anomalies related to the appeara
disappearance of a propagating order~SPP! do not depend on
the depth of the cavities but only on the period of the grat
and the incidence angle. On the other hand, the minima
sociated with the particular shape of the cavities~SSR! de-
pend on their geometrical parameters, particularly the de
so the positions of these dips are expected to vary from
curve to the other. Consequently, we can identify two diff
ent kinds of resonances: SPP and SSR. Since the neck o
cavities is narrow, we can compare the resonant wavelen
of the cavity with those calculated analytically for a perfec
conducting rectangular waveguide. In this case, the reso
wavelengths satisfy the conditionkh15np, wheren is an
integer. These values are listed in Table I for the depthh
considered in Fig. 2. Comparing these values with the p
tions of the dips in Fig. 2, and taking into account that the
wavelengths depend on the depth of the cavity, we can ea
identify which of the resonant wavelengths correspond
SSR. The wavelengths listed in Table I for the rectangu
waveguide are slightly greater than those of Fig. 2, and
is in agreement with the results obtained in@4# for a bivalued
perfectly conducting cavity with circular cross section.

To confirm the nature of the different dips in Fig. 2, w
have calculated the near field in a single period of the gra
for the corresponding wavelengths, and this is shown as c
tour plots in Fig. 3. The black respresents the minimum
tensity and the white represents the maximum intensity.
h51 mm, we plot the near electric field forl50.885 67mm
@Fig. 3~a!#, and forl50.586 67mm @Fig. 3~b!#. We observe
that in Fig. 3~a! the electric field has penetrated in the cavi
whereas in Fig. 3~b! the field is intensified on the surface
The field distribution in both cases suggests that the first c
corresponds to a SSR and the second corresponds to a
excitation. A similar result was obtained by Lo´pez-Rios
et al. in @10# for a rectangular grating. Comparing Figs. 3~c!
and 3~d!, which correspond toh50.8 mm, the same analysis
can be made. In this case it is also clear that the dip al
s
FIG. 6. Total reflected efficiency versu
wavelength for a gold grating of periodd51 mm,
with grooves of widthc150.35mm, c250.1mm,
h50.5 mm, h150.9h and p polarization, for
three different incidence angles:u0510°, 20°,
and 40°.
8-5
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FIG. 7. udet(M )u22 versus wavelength for a
single bottle-shaped groove with parametersc1

50.35 mm and c250.1 mm, h50.5 mm, h1

50.9h, on a gold surface. The incident light isp
polarized.
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50.7055mm @Fig. 3~c!# corresponds to a SSR and the dip
l50.586 67mm @Fig. 3~d!# corresponds to a SPP.

In Fig. 4 we plot the specular efficiency versus the in
dent wavelength for the same grating considered in Fig
but now illuminated by ans-polarized incident wave. The
different curves correspond to different values of the dep
h50.4 mm and 0.5mm. In the range ofl considered, only
one dip for eachh is observed. Since the position of the d
depends on the depth of the cavity, we associate this e
with a surface shape resonance. The reasons that accou
the presence of a single dip in each curve are the follow
On the one hand, there is no possibility of exciting a surfa
plasmon along the surface unders-polarized illumination,
and therefore all the anomalies related to SPPs are
present in this case. On the other hand, the wavelength
sociated with surface shape resonances are now diffe
from those corresponding top polarization. In the limiting
case of a rectangular waveguide, the resonant wavelen
for the first modes are found by imposing the conditi
v11h15np, instead of that used for thep case~see the Ap-
pendix for the definition ofv11). For the range ofl under
consideration, the only resonant values resulting from
waveguide condition arel50.5 mm ~for h50.4) and l
04660
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50.552mm ~for h50.5), and it can be observed that the
values coincide almost exactly with the positions of the d
in Fig. 4. These dips are more localized than those in Fig
for p polarization, as it was already observed in@6#.

To verify that the minima in Fig. 4 can be identified a
SSR, we show in Fig. 5 contour plots of the near elec
field for these cases. Fig. 5~a! corresponds toh50.4 mm and
l50.509 33mm, and Fig. 5~b! corresponds toh50.5 mm
andl50.557 33mm. In both cases the field is concentrat
inside the cavity, with the highest intensity in its center. As
was shown in the previous example, this is a characteristi
SSR.

Having considered the ideal case of a perfectly condu
ing grating, we now study the more interesting and realis
case of lossy metals. The losses are included in the ana
applying the SIBC@17#. The refraction indexn at different
wavelengths in the range under consideration was taken f
Ref. @21#, and then the curven(l) was estimated by fitting
these values with a second order polynomial. In the follo
ing figures, we consider a gold grating with bottle-shap
cavities. To find the wavelengths at which it is possible
excite a SPP for the grating studied, we solved the impl
equation
8-6
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FIG. 8. Near electric field for the same grating of Fig. 6 andp polarization: ~a! u0510° andl50.604 mm, ~b! u0510° andl
50.988mm, ~c! u0520° andl50.686mm, ~d! u0520° andl50.98mm.
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11n~l!2
2sinu0G d

n
2l50, ~11!

and some of the solutions of Eq.~11! are listed in Table II.
In Fig. 6 we plot the total reflected efficiency as a functi

of the incident wavelength, for a gold grating with cavities
c150.35mm, c250.1mm, h50.5mm, h1 /h50.9, d51 mm
and incidentp polarization, for three incidence angles: 10
20° and 40°. Notice that for a real metal, the minima rep
sent power absorption, forbidden in the previous case o
perfect conductor. The dips in the solid line of Fig. 6 a
moved with respect to those corresponding to the per
conductor~dashed line in Fig. 2!. As expected, the SPP ex
citations ~see Table II! and the SSR now take place at d
ferent wavelengths. Comparing the three curves in Fig. 6,
can notice that some of the dips remain at almost the s
positions, whereas some others move. Those minima
04660
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remain almost fixed when changing the angle of inciden
are supposed to correspond to SSR since geometrical pa
eters are much more relevant for their excitation than in
dent conditions. However, a slight shift is also expected
cause at oblique incidence the projection of the wavelen
in the (x,z) plane increases with the angle, and conseque
the resonances occur for slightly smaller wavelengths. T
behavior was already observed in@5#. On the other hand, the
minima produced by a SPP excitation are expected to m
with the angle of incidence, as is understood from Eq.~11!.

To confirm that a certain dip corresponds to a SSR, i
important to solve the homogeneous problem. This calcu
tion was done here for a bottle-shaped groove in a lo
metallic plane surface~see Sec. III!. A similar problem was
already solved for the perfect conductor case@6#. As ex-
plained in Sec. III, the last step of the solution process is
find the roots of the determinant of a complex matrix. A
other possibility to identify the resonant wavelengths of t
8-7
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DIANA C. SKIGIN AND RICARDO A. DEPINE PHYSICAL REVIEW E63 046608
cavity is to plot udet(M )u22 versus wavelength, and th
peaks in this curve represent resonant conditions of the s
ture @19,20,11,6#. The number of modal terms considered
the calculation is varied to identify each peak with a partic
lar resonant mode. For instance, in Fig. 7~a! we consider
only one modal term in the field expansions inside the ca
~gold surface with a groove ofc150.35 mm, c250.1 mm,
h50.5 mm, h150.9h, p-polarization case!. This implies that
the two peaks correspond to the lower symmetric mode
the groove. For Fig. 7~b! two modes had been included in th
calculation, and it can be noted that in addition to t
maxima observed in Fig. 7~a! there are new peaks that can
associated with higher order modes. Since the surface s
resonances do not depend on the incidence conditions
peaks in Fig. 7 are associated with resonant wavelengths
any angle of incidence. Particularly, if we compare this cu
with Fig. 6, it can be noticed that two of the dips that do n
move with the angle of incidence (l'0.55 mm and l
'0.98 mm! appear at the wavelengths of the peaks in F
7~a!. There is another dip atl'0.83mm, which in principle
can be associated with one of the peaks in Fig. 7~b!. The near
electric field for the case of Fig. 6 is shown in Fig. 8, f
several wavelengths corresponding to minima in the reflec
efficiency: u0510° andl50.604 mm @Fig. 8~a!#, u0510°
and l50.988 mm @Fig. 8~b!#, u0520° andl50.686 mm
@Fig. 8~c!#, and u0520° andl50.980 mm @Fig. 8~d!#. As
observed in Fig. 3 for the perfectly conducting surface, in
case of surface shape resonances@Figs. 8~b! and 8~d!#, the
field enters inside the cavity, where the maximum intensit
found. On the other hand, for the SPP excitations@Figs. 8~a!
and 8~c!#, the field is more intense on the surface, a
slightly penetrates into the cavity. However, there are dip
Fig. 6 that can hardly be identified with one of the two typ
of resonances, as, for example, the dips atl'0.55. Even
though these dips seem to be associated with a SSR, the
field distribution suggests that this is a hybrid mode. In F
9 we show the near field for the case in Fig. 6, foru0510°
and l50.558mm @Fig. 9~a!# and for u0540° andl50.55
mm @Fig. 9~b!#. In this type of resonance the near field e
hibits a character intermediate between the typical behav
corresponding to SPP and SSR, as shown in Fig. 8. Th
hybrid resonances had already been observed for lam
gratings@10#.

In the last example we consider thes-polarization mode.
In Fig. 10~a! we plot the total reflected efficiency for a go
grating with cavities of widthsc150.35 mm, c250.1 mm,
h50.5 mm, h1 /h50.9, d51 mm, andu0510°. Comparing
this curve with that for the perfect conductor~Fig. 4!, it can
be noticed that the dip is now shifted and less localized. B
changes are associated with the finite conductivity of
metal: the SSR depends not only on the geometrical par
eters but also on the material of the structure, as is confirm
in Fig. 10~b! where we plotudet(M )u22 for a single cavity in
the s mode. The location of the peak coincides with the p
sition of the dip in Fig. 10~a!. In Fig. 10~c!, the SSR charac
ter of this resonance is confirmed, since for this wavelen
l50.6458mm, most of the intensity is concentrated insi
the cavity.
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V. CONCLUSION

In this paper we have solved the diffraction problem fro
an infinite grating with bottle-shaped cavities on a meta
surface, fors andp polarizations. We believe that the mo
interesting contribution of this paper is the introduction
the lossy characterisitic of a real metal, and the effects
this property produces in the behavior of the electromagn
field. We used the modal approach, which is particula
suitable for this geometry, and the surface impedance bou
ary condition to take into account the losses in the metal.
also solved the homogeneous problem of a single cavity
plane metallic surface using the same technique. The res
shown place particular emphasis on the excitation of surf
plasmon polaritons and surface shape resonances in this
of bivalued structures. We verified the different nature of t

FIG. 9. Near electric field for the same grating of Fig. 6 andp
polarization: ~a! u0510° andl50.558 mm, ~b! u0540° andl
50.55mm.
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FIG. 10. ~a! Total reflected efficiency versu
wavelength for a gold grating of periodd51 mm
with grooves of widthc150.35mm, c250.1mm,
h50.5 mm, h150.9h, u0510°, ands polariza-
tion, ~b! udet(M )u22 versus wavelength for a
single groove with the same parameters of~a!,
and~c! near electric field for the same grating o
~a! and forl50.6458mm.
y,
b

ri
e
im

of
be-
ace
ces
resonances that appear as dips in the reflected efficienc
calculating the eigenmodes of a single cavity and also
analyzing the near field distribution. The existence of hyb
modes was also addressed for the gratings studied. Th
sults suggest that the resonant wavelenghts and the prox
04660
by
y

d
re-
ity

between them can be controlled by changing the angle
incidence and/or the depth of the cavities. A comparison
tween the results obtained for a perfectly conducting surf
and for a lossy metal was also provided, and the differen
between them were discussed.
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APPENDIX: EXPLICIT EXPRESSIONS OF THE MODAL
FUNCTIONS

Um, j
s ~x!5sin@um, j

s ~x2xj !#1hsum, j
s cos@um, j

s ~x2xj !#,

j 51,2, ~A1!

Um, j
p ~x!5

hp

um, j
p

sin@um, j
p ~x2xj !#1cos@um, j

p ~x2xj !#,

j 51,2, ~A2!

wm,1
q ~y!5Aq@Km

q cos~vm,1
q y!1sin~vm,1

q y!#, q5s,p,
~A3!

wm,2
q ~y!5am

q cos~vm,2
q y!1bm

q sin~vm,2
q y!, q5s,p,

~A4!
,

t.

as

04660
s

wherex152(c12c2)/2, x250, (vm, j
q )25k22(um, j

q )2,

hq5H iZ/k5 i /nk if q5s

Zk/ i 5k/n i if q5p,
~A5!

Km
s 5

hsvm,1
s cos~vm,1

s h!1sin~vm,1
s h!

cos~vm,1
s h!2hsvm,1

s sin~vm,1
s h!

, ~A6!

Km
p 5

hp sin~vm,1
p h!1vm,1

p cos~vm,1
p h!

hp cos~vm,1
p h!2vm,1

p sin~vm,1
p h!

, ~A7!

andum, j
q are determined by an eigenvalues equation for e

polarization:

tan~um, j
s cj !5

2hsum, j
s

~hsum, j
s !221

,

~A8!

tan~um, j
p cj !5

2hpum, j
p

~um, j
p !22~hp!2

.
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@10# T. López-Rios, D. Mendoza, F.J. Garcı´a-Vidal, J. Sa´nchez-
Dehesa, and B. Pannetier, Phys. Rev. Lett.81, 665 ~1998!.

@11# A.A. Maradudin, A.V. Shchegrov, and T.A. Leskova, Op
Commun.135, 352 ~1997!.

@12# R.W. Ziolkowski and J.B. Grant, IEEE Trans. Antenn
Propag.35, 504 ~1987!.
@13# D. Colak, I. Nosich, and A. Altintas, IEEE Trans. Antenna
Propag.41, 1551~1993!.

@14# D. Colak, I. Nosich, and A. Altintas, IEEE Trans. Antenna
Propag.43, 440 ~1995!.

@15# V.V. Veremey and V.P. Shestopalov, Radio Sci.26, 631
~1991!.

@16# V.V. Veremey and R. Mittra, IEEE Trans. Antennas Propa
46,4, 494 ~1998!.

@17# R.A. Depine, inScattering in Volumes and Surfaces, edited by
M. Nieto-Vesperinas and J.C. Dainty~North-Holland, Amster-
dam, 1990!, pp. 239–253.

@18# R.A. Depine and D.C. Skigin, J. Opt. Soc. Am. A11, 2844
~1994!.

@19# A.A. Maradudin, P. Ryan, and A.R. McGurn, Phys. Rev. B38,
3068 ~1988!.

@20# A.V. Shchegrov and A.A. Maradudin, Appl. Phys. Lett.67,
3090 ~1995!.

@21# G. Hass, inMirror Coatings, Applied Optics and Optical En-
gineering, edited by R. Kingslake~Academic Press, New
York, 1996!, Vol. 3, p. 316.
8-10


