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Stochastic Relaxation Oscillator Model for the Solar Cycle
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We perform a detailed analysis of the sunspot number time series to reconstruct the phase sp
the underlying dynamical system. The features of this phase space allow us to describe the beha
the solar cycle in terms of a simple relaxation oscillator in two dimensions. The absence of syste
self-crossings suggests that the complexity of the sunspot time series does not arise as a conse
of chaos. Instead, we show that it can be adequately modeled through the introduction of a stoc
fluctuation in one of the parameters of the dynamic equations.

PACS numbers: 96.60.Qc, 05.45.Tp, 96.50.Bh
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The solar cycle was discovered by Schwabe in 184
Using observations of the sunspot number as a funct
of time, Schwabe determined a period of approximate
10 years, and also described an irregular behavior, w
fluctuations in the cycle duration as well as in the individ
ual shape and maximum intensity [1]. In 1848 Wolf intro
duced the criteria currently used to measure the suns
number, and in 1852 he reported the well-known 1
year cycle.

Even though the global aspects of the solar cycle are w
explained by dynamo theory [2], the nature of the irreg
larities displayed by the sunspot time series is still bei
debated. Numerous attempts to explain these irregulari
have been invoked in the literature, which rely on either
two rather different mechanisms: chaos or stochasticity

The chaotic approach consists of modeling the dyna
ics of the system by a set of equations of reduced dim
sionality, including nonlinearities able to display chaot
behavior for reasonable values of the relevant parame
(see, for instance [3,4], and references therein). Althou
the chaotic approach seems appealing, there are no
indicators of chaos in the sunspot number time series
Recent studies have shown that the standard algorith
used to search for signatures of a low-dimensional chao
attractor in time series (like Lyapunov exponent estim
tors, correlation dimensions, and increase of a predict
error with a prediction horizon) can lead to spurious co
vergence when applied to a limited time series (see [6
for a review). Also, it was shown that the increase in th
prediction error with an increase in the prediction horizo
can in fact be observed in systems with a determinis
skeleton and stochastic components [8–10].

Considering the spatial and temporal complexity ass
ciated with the turbulent dynamics of the dynamo regi
(the solar convective region), we show that it is reasona
to look for alternative mechanisms, other than a chaotic
tractor. For instance, the scenario of a stochastically driv
solar dynamo has been studied in a number of recent pa
[11–13]. Within this framework, the spatial and tempor
irregularities observed in the time series can be descri
as the end result of a stochastic process underlying the
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terministic equations governing the dynamics of the ma
netic fields.

Recently, Palǔs and Novotná [14] have shown evidenc
for a randomly driven nonlinear oscillator underlying th
dynamics of the sunspot cycle. They found a correlati
between the instantaneous amplitude and frequency in
yearly sunspot number time series, and the statistical s
nificance of this correlation was tested against other mo
els like the one proposed by Barneset al. [15] as well as
surrogate sets of the original data.

In this Letter we perform an embedding of the dai
sunspot number time series (Fig. 1a), to reconstruct
phase space of the underlying dynamical system and g
erate a simple model of the solar cycle. As an importa
result, we find that the features of this phase space al
us to describe the global behavior of the solar cycle
terms of a deterministic skeleton given by a rather simp
relaxation oscillator in two dimensions. Also, we propos
an intrinsic stochastic component to model the irregula
ities, associated with the turbulent processes in the ris
and sinking of convective cells at the solar interior.

The physical quantity of interest in solar cycle studie
is the magnetic field. Many authors choose the suns
number as a quadratic quantity in the magnetic field co
ponents (for instance, [16] chose the toroidal compon
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FIG. 1. (a) Daily sunspot number from 1816 to the prese
(Royal Observatory of Belgium), and (b) time series propo
tional to the magnetic field obtained from the daily sunsp
number (thin line), and smoothed version of the time ser
(thick line).
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while [17] chose the poloidal one), since according to dy-
namo models the number of sunspots is proportional to the
magnetic energy erupting to the photosphere. Dealing with
the intensity time series might affect the topology of the
attractor obtained after the embedding [18]. Therefore, it
is necessary to obtain a field amplitude time series from
the observational data before performing the embedding.

Since the solar magnetic field displays a period of 22
years with a polarity inversion every 11 years, it is cus-
tomary to define the Bracewell number [19] to explicitly
show these features. This number is defined as the sunspot
number with a sign change at the beginning of each period,
and therefore this index displays a period of 22 years with
a sign change every 11 years. Considering the sunspot
number as quadratic in the magnetic field, we take the
square root of the sunspot number series and change sign
at each minimum following [19], to obtain a time series
proportional to the spatially averaged magnetic field. The
location of solar activity minima was determined by filter-
ing the time series with a low-pass filter to eliminate the
high frequency components, and comparing the location of
the minimum values thus obtained with those tabulated by
the Zurich observatory. Figure 1b shows the time series
obtained after applying this method.

The daily sunspot number has a considerable level of
high frequency fluctuations. We need to smooth out the
series and calculate its derivatives in order to build the
underlying phase space. In Fig. 1b we also show a filtered
time series in which we eliminated all frequencies whose
amplitudes were smaller than 2% of the amplitude of the
fundamental mode, and the spurious daily oscillation was
removed using a low-pass filter. Without loss of generality
and following [16], we will consider this time series to be
proportional to the toroidal magnetic field B.

The daily time series of B has more than 60 000 data.
To obtain a simple dynamical system of the solar cycle we
reconstructed the phase space using a differential phase
space embedding (see, for instance, [20,21] for a review).
The temporal derivatives of B�t� were calculated using
centered finite difference formulas.

Even though the dimension of the embedding is not
known, and would justify an analysis of the degrees of
freedom of the data, the number of periods is insufficient
for such analysis. As an example, Fig. 2 shows an embed-
ding of the time series in two dimensions using a step of
200 days in the finite differences formulas.

At first glance, the presence of self-crossings of the tra-
jectory in phase space seems to justify an embedding in a
phase space of higher dimensionality. However, the cross-
ings observed in Fig. 2 are not systematic and can be re-
garded as caused by the addition of noise to a simple limit
cycle, rather than to projection effects from a larger phase
space. The lower density of points in the horizontal sides is
indicative of a slow dynamics along these sides and a much
faster evolution along the vertical sides. To check the con-
vergence, filter out noise, and clearly identify the attractor
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FIG. 2. Trajectories of the observed time series (thin line) and
of the Van der Pol oscillator in phase space (thick line).

of the underlying dynamical system, we performed the fol-
lowing analysis.

Differentiation increases the ratio between noise and
the original signal. As a result, when the step used in
the finite difference formulas is reduced, noise and self-
crossings increase noticeably, but for large enough step
sizes, the system shows a quite rectangular limit cycle with
the dynamics just described. We calculated the slope of
each side of the rectangle (two horizontal sides with slow
dynamics and two vertical sides with fast evolution) using
a least squares fit and finite differentiation with step sizes
decreasing from 1600 to 200 days. In each of these regions
the slope was found to converge gently for small step sizes,
justifying the interpretation of the phase space as an almost
rectangular cyclic attractor with two different time scales.

To simulate this behavior, we seek a dynamical system
with an attracting solution sharing the features found in the
data. The two key elements that we want to reproduce are
(a) the difference of time scales in different portions of the
trajectory (namely, the slow dynamics in its lateral sides
and the much faster evolution in its horizontal sides), and
(b) the rectangular shape of the average cycle. These two
features together can be modeled by a dynamical system
displaying relaxation oscillations.

Let us analyze the paradigmatic (and probably sim-
plest) relaxation oscillator described in the literature: the
Van der Pol oscillator. This dynamical system describes
an autonomous oscillator where the friction coefficient de-
pends on the amplitude of the oscillations,Ω

�x � 2y 2 mx�jx2 2 1� ,
�y � √2x . (1)

For positive values of m, the origin is a repeller, and the
phase space displays an attracting limit cycle which shows
two time scales, like the ones observed in the solar cycle
time series. By performing a best fit of the parameters, the
shape of the limit cycle obtained from the observed series
(see Fig. 2) can be correctly described by a Van der Pol
5477
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oscillator. Notice that it is possible to interpret these equa-
tions in physical terms: if x is proportional to the toroidal
component of the magnetic field, and y is a linear combina-
tion of the toroidal and poloidal components, Eqs. (1) give
rise to a truncated expression of the dynamo equations.
The linear terms represent the role of a poloidal velocity
field, and the a and v effects, and the cubic nonlinearities
correspond to a quenching and magnetic buoyancy (see,
e.g., [2,3] for a review on the dynamo equations).

Since this set of equations is written in terms of two
variables and only one of them is proportional to the ob-
served time series, we used the so-called standard form
[22,23] to reconstruct the vector field. Changing coordi-
nates in Eqs. (1),

u � 2y 2 m�jx3 2 x� , (2)

we obtain Ω
�x � u ,
�u � 2√2x 2 mu�3jx2 2 1� , (3)

where the standard function is F�x, u� � 2√2x 2

mu�3jx2 2 1�. Now we can build the original phase
space by appropriately setting the free parameters in the
standard function F. Assuming that x in Eqs. (3) corre-
sponds to the observed time series B, we can compute u
and �u following a finite difference scheme,

u �
x�ti1h� 2 x�ti2h�

ti1h 2 ti2h
, (4)

�u � 4
x�ti1h� 2 2x�ti� 1 x�ti2h�

�ti1h 2 ti2h�2 . (5)

To set the free parameters that best fit the observational
data, we randomly took 30 000 data from the time series
B�t� and minimized the mean square error between F and
�u using a simplex method. As a result, we obtained an
adjustment with x2 � 0.4 per point, and8<

:
√ � 0.2993 ,
m � 0.2044 ,
j � 0.0102 .

(6)

The number of degrees of freedom of the x2 distribution
is given by the difference between the number of data
points and the adjusted parameters. To give a quantitative
measure of the goodness of fit we used the probability
Q [24], from which we obtain that a probability of 99%
corresponds to x2 � 0.98 per point. Therefore, the quality
of our fit (x2 � 0.4) is remarkably good.

In Fig. 2 we overlay the trajectory of the Van der Pol
oscillator in phase space, with the set of parameters listed
in Eqs. (6), to the observed time series B. We confirm that
the Van der Pol oscillator that best fits the observed series
is indeed a reasonable dynamical system to describe the
main features of the evolution of the variable B.

However, the sunspot number time series (and conse-
quently the observed time series B) also has an irregular
behavior with fluctuations in its frequency and in the in-
5478
tensity of its maxima. Considering the spatial and tem-
poral complexity associated with the turbulent convective
motions of the dynamo region, these irregularities can be
understood as the result of a stochastic process.

The parameter j in Eqs. (3) is responsible for the non-
linear saturation of the system. In dynamo theories [25],
the source of poloidal magnetic field is the eruption of
magnetic structures caused by instabilities driven by tur-
bulent photospheric motions. The saturation is provided
by the Lorentz force, acting to locally limit turbulent mo-
tions. Therefore, it seems perfectly natural to assume that
j is a stochastic variable, i.e.,

j � j0 1 rjs , (7)

where js is assumed to be a zero mean Gaussian stochastic
process, describing white noise with dispersion equal to
unity, and the dimensionless parameter r is the rms value
of the stochastic part of j.

The Van der Pol equations (3) can now be written in the
following form:Ω

�x � u ,
�u � 2√2x 2 mu�3�j0 1 rjs�x2 2 1� . (8)

In Fig. 3 we show the result of integrating the
Van der Pol equations (8) for a period of 150 years, with
r � 0.02, and the observed time series B. The value
for js was randomly changed every 30 days, which is a
typical lifetime for giant cells [11]. However, changing the
correlation time from 1 day to 30 days did not change our
results appreciably.

This set of equations models the shape of the peaks
and the relaxation oscillations of the system quite ade-
quately. Taking the square of the time series we obtain the
sunspot number. The theoretical time series displays fast
increase and slow decrease in the sunspot number, reach-
ing each maximum in approximately 4 years and decaying
in 6 years, which agrees fairly well with the average times
observed in the observed sunspot number series. Six his-
torically important observable quantities are generated out
of our synthesized data and displayed in Table I, namely,
mean values and deviations of the cycle period, rise time
and maximum sunspot number. Note that the theoretical
dispersions of all the parameters listed in Table I (i.e., pe-
riod, rise time, and maximum) have been adjusted with
only one parameter (r).
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FIG. 3. Observed times series (thin line) and the stochastic
Van der Pol oscillator (thick line).
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TABLE I. Mean values and deviations for the observational
data and for the theoretical dynamical system driven by noise.

Period Rise timea Maximum
(years) (years) valueb

Van der Pol 21.4 6 0.8 4.3 6 0.4 152 6 38
Time series B 21.4 6 1.6 4.2 6 0.4 113 6 40

aFrom zero to maximum.
bFor the square of the time series.

In summary, we used the daily sunspot number to recon-
struct the phase space of the underlying dynamical system
and build a simple model of the solar cycle. The lack of
systematic self-crossings in the reconstructed phase space
allows us to propose a two-dimensional phase space to de-
scribe the deterministic part of the dynamics of the solar
cycle. The features of the phase space thus obtained sup-
ports a description of the global behavior of the solar cycle
in terms of a Van der Pol oscillator. We adjusted the free
parameters in the equations using the so-called standard
form. We find that the Van der Pol oscillator that best fits
the observed series is able to describe the main features of
the observations quite adequately.

The irregularities of the solar cycle were reasonably
modeled through the introduction of a stochastic parameter
in the equations. The mean values and deviations obtained
from the theoretical model for the rising times, periods,
and peak values, are in good agreement with the corre-
sponding values obtained from the observations.
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