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Quintessence dissipative superattractor cosmology
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Departamento de F́ısica, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

We investigate the simplest quintessence dissipative dark matter attractor cosmology character-
ized by a constant quintessence baryotropic index and a power–law expansion. We show a class of
accelerated coincidence–solving attractor solutions converging to this asymptotic behavior. Despite
its simplicity, such a “superattractor” regime provides a model of the recent universe that also ex-
hibits an excellent fit to supernovae luminosity observations and no age conflict. Our best fit gives
α = 1.71 ± 0.29 for the power-law exponent. We calculate for this regime the evolution of density
and entropy perturbations.

PACS number(s): 98.80.Hw, 04.20Jb

1

http://arxiv.org/abs/astro-ph/0101549v3


I. INTRODUCTION

A new picture of the universe is emerging from observations of large scale structure, searches for Type Ia supernovae,
and measurements of the cosmic microwave background anisotropy. They all suggest that the universe is undergoing
cosmic acceleration and is dominated by a smoothly distributed dark energy component with large negative pressure
[1–3]. Moreover, recent data coming from BOOMERANG and MAXIMA projects seem to indicate that the density
of the universe is near the critical density [4]. The most frequently proposed candidates for this dark energy are a
cosmological constant, or vacuum energy density [5], and quintessence [6], a scalar field with negative pressure. On the
other hand, gravitationally clustered matter is usually assumed to be dominated by cold, collisionless, nonbaryonic
dark matter (CDM).
In addition to the old cosmological constant problem, related to the smallness of the observational upper bound on

the vacuum energy density compared to particle physics scales [7], a new challenge to the model with cosmological
constant and CDM (ΛCDM) is the “cosmic coincidence” problem: why is it that the vacuum density dominates
the universe only recently [8]. A dynamical self–interacting scalar field may explain why the dark energy is small.
However, a minimally coupled scalar field combined with perfect fluid matter, such as in “tracking” QCDM models
[9], cannot explain the observed acceleration and solve the coincidence problem [10,11]. On the other hand it has
been shown in Ref. [10] that both acceleration and coincidence can be satisfactorily explained by a combination of
quintessence and dissipative dark matter (QDDM). For these models it was shown that late–time attractor solutions
exist with very interesting properties: an accelerated expansion, spatially flatness, and a fixed ratio of quintessence to
dark matter energy density. Recently, it has been shown that such accelerated coincidence–solving attractor solutions
also exist in spatially flat models with an exponential self-interaction quintessence potential and phenomenologically
chosen couplings between the quintessence field and baryotropic dark matter [12,13].
Consideration of dissipative effects in dark matter also arises from increasing evidence that numerical simulations of

dark matter halos on sub-galactic scales based on conventional CDM models lead to conflicts with observations. One of
the major problems shown by these simulations is that galactic halos are too centrally concentrated [14]. Confirmation
of this problem would imply that structure formation is somehow suppressed on small scales. Several scenarios
addressing this issue have been considered assuming some kind of interaction for dark matter particles: nonthermally
produced and weakly interacting [15], self–interacting [16], repulsive [17], annihilating [18], and decaying [19]. It is
quite reasonable to expect that dark matter is out of thermodynamical equilibrium and these same interactions are
at the origin of the cosmological dissipative pressure. A simple estimation shows that a cross section of the order of
magnitude proposed in these halo formation scenarios, corresponding to a mean free path in the range 1 kpc to 1
Mpc, yields at cosmological densities a mean free path a bit lower than the Hubble distance. Hence a description for
interacting dark matter as a dissipative fluid is valid at cosmological scales [20].
Dark matter may also have several components, from very heavy weakly interacting massive particles to a lightweight

neutrino [21]. Even if this neutrino-like component does not contribute significantly to the density budget of the
universe [3], it may have nevertheless a relevant dynamical role as distinct components of dark matter, cooling at
different rates, give rise to bulk viscosity [22].
Recently the relationship between dark matter clustering, the nature of dark matter and the origin of ultrahigh

energy cosmic rays (UHECRs) has been explored [23]. Heavy particles (mX ∼ 1012 − 1014 GeV) can be produced in
the early universe in different ways [24–27] and their lifetime can be finite though longer than the age of the universe.
In these circumstances, super-heavy particles can represent an appreciable fraction of dark matter and the decay of
these particles results in the production of UHECRs, as widely discussed in the literature [25,28–30]. In particular,
if the relics cluster in galactic halos, as is expected, they can explain the cosmic ray observations above ∼ 5 × 1019

eV. The effect of decaying dark matter on the equation of state has been studied numerically in Ref. [31], and the
equivalence between particle production and dissipative bulk viscosity has been investigated in Ref. [32].
All this shows that many different scenarios may occur where significant dissipative processes develop in dark

matter, in particular when it behaves as a viscous fluid. So a variety of accelerated coincidence–solving attractors
are possible. In this paper we will show that for a wide class of QDDM models attractor solutions are themselves
attracted towards a common asymptotic behavior, the “superattractor”. The superattractor scenario is described
in Sec. II and observational constraints on this scenario are investigated in Sec. III. These include the luminosity
distance–redshift relation for type Ia supernovae and the age of the universe. We apply the covariant gauge–invariant
formalism to calculate the evolution of density and entropy scalar perturbations in the QDDM regime and solve
them for the superattractor regime in Sec. IV. Finally the main conclusions are discussed in Sec. V. Units in which
c = 8πG = kB = 1 are used throughout.
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II. QDDM SUPERATTRACTOR SCENARIO

In Ref. [10] it was shown that the Friedmann–Lamaitre–Robertson–Walker (FLRW) universe filled with perfect
normal matter plus quintessence fluid, corresponding to some minimally coupled scalar field governed by the Klein–
Gordon equation, cannot at the same time drive an accelerated expansion and solve the coincidence problem. To
solve it, some additional bulk dissipative pressure π in the stress–energy tensor of dark matter was considered. Any
dissipation in FLRW universes has to be scalar in nature, and in principle it may be modeled as a bulk viscosity effect
within a nonequilibrium thermodynamic theory such as the Israel–Stewart theory [33,34]. In a certain regime, that
formulation can be approximated by the more manageable truncated transport equation

π + τπ̇ = −3ζH , (1)

where H ≡ ȧ/a denotes the Hubble factor, ζ stands for the phenomenological coefficient of bulk viscosity, and τ is the
relaxation time associated with the dissipative pressure [35–37]. As usual an overdot means derivative with respect
to cosmic time.
The overall stress–energy tensor of the QDDM model reads

Tij = (ρm + ρφ + pm + pφ + π)uiuj + (pm + pφ + π)gij , (2)

where ρ = ρm + ρφ and p = pm + pφ. Here ρm and pm are the energy density and pressure of the matter whose
equation of state is pm = (γm − 1)ρm with baryotropic index in the interval 1 ≤ γm ≤ 2. Likewise ρφ and pφ, the
energy density and pressure of the minimally coupled self–interacting quintessence field φ, are related by the equation
of state, pφ = (γφ − 1)ρφ, with baryotropic index

γφ =
φ̇2

φ̇2/2 + V (φ)
, (3)

where for non-negative potentials V (φ) one has 0 ≤ γφ ≤ 2. The scalar field can be properly interpreted as quintessence
provided γφ < 1 –see e.g. [6]. In general γφ varies as the universe expands, and the same is true for γm since the
massive and massless components of the matter fluid redshift at different rates.
The Friedmann equation and the energy conservation of the normal matter fluid and quintessence (Klein–Gordon

equation) are

H2 +
k

a2
=

1

3
(ρm + ρφ) (k = 1, 0,−1), (4)

˙ρm + 3H

(

γm +
π

ρm

)

ρm = 0, (5)

ρ̇φ + 3Hγφρφ = 0, (6)

where the prime means derivative with respect to φ. Introducing Ωm ≡ ρm/ρc, Ωφ,≡ ρφ/ρc, with ρc ≡ 3H2 the
critical density and Ωk ≡ −k/(aH)2 plus the definition Ω ≡ Ωm + Ωφ, the set of equations (4)–(6) can be recast as
(cf. [38])

Ωm +Ωφ +Ωk = 1, (7)

Ω̇m + 3H

(

γm +
π

ρm
+

2Ḣ

3H2

)

Ωm = 0 , (8)

Ω̇φ + 3H

(

γφ +
2Ḣ

3H2

)

Ωφ = 0 , (9)

where γ is the effective baryotropic index given by
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γΩ = γmΩm + γφΩφ. (10)

Equations (7)–(9) have fixed point solutions Ω = 1, Ωm = Ωma and Ωφ = Ωφa, respectively, when the partial
baryotropic indices and the dissipative pressure are related by

γm +
π

ρm
= γφ = − 2Ḣ

3H2
. (11)

Asymptotical stability of Ω = 1 occurs whenever γ + π/ρ < 2/3. This condition, together with Eq. (11), leads to the
additional constraints π < (2/3− γm) ρm, which is negative for ordinary matter fluids, and γφ < 2/3. Additionally
the stability of Ωm = Ωma and Ωφ = Ωφa, and hence of the ratio Ωm/Ωφ, has been established in [10]. These solutions
provide a natural explanation to several features observed in our universe: an accelerated expansion, spatial flatness,
and a ratio of dark energy to matter density of order unity. We denote by a subindex a the asymptotic limit of
magnitudes in the attractor regime, while the subindex 0 will denote as usual their current values.
Combining Eq. (11) with Eq. (1) we obtain the equation of motion of the attractor solutions of the system (4),

(5), (6), (1) satisfying flatness, acceleration and coincidence:

ν−1

(

Ḧ

H
+ 3γmḢ

)

+ Ḣ +
3γm
2

H2 − 3ζ

2Ωma
H = 0 . (12)

Here ν = (τH)
−1

is the number of relaxation times in a Hubble time – for a quasistatic expansion ν is proportional
to the number of particle interactions in a Hubble time. Perfect fluid behavior occurs in the limit ν → ∞, and a
consistent hydrodynamical description of the fluids requires ν > 1. Rewriting (12) in terms of the field baryotropic
index γφ, we get

γ′

φ = 3γ2
φ − (ν + 3γm)γφ + ν

(

γm − ζ

ΩmaH

)

, (13)

where a prime indicates derivative with respect to η = ln a.
When the phenomenological coefficient of bulk viscosity satisfies ζ = ζs, where

ζs = Ωma (γm − γφs)
[

1− 3γφs ν
−1
]

H ≡ κH , (14)

Eq. (13) admits the constant solution γφ = γφs. It gives an accelerated expansion in the late time regime when
γφs < 2/3. As ζ > 0 and γm ≥ 1, the hydrodynamical parameter ν is restricted to ν > 3γφs. The case of constant κ
in the interval 0 < κ < 1 arises, for instance, in a radiating fluid, and the nearly linear regime, with slowly varying ν
and γm, was already investigated in the quasiperfect limit, corresponding to ν−1 → 0 [10].
To analyze the stability of the solution γφ = γφs we insert Eq. (14) into (13)

γ′

φ = 3
(

γ2
φ − γ2

φs

)

− (ν + 3γm) (γφ − γφs) . (15)

As γφs < 2/3, ν > max(3γφs, 1), and γm ≥ 1, Eq. (15) shows that ∂γ′

φ/∂γφ < 0 in a neighborhood of γφs. Hence

this constant solution is asymptotically stable, showing that all solutions of Eq. (12), that is, all the accelerated
coincidence–solving attractors of the system (4), (5), (6), (1), are themselves attracted towards the constant solution
γφ = γφs provided that they satisfy ζ ∼ ζs when t → ∞. As the same occurs with all solutions whose initial conditions
lay within the domain of attraction of each of these attractor solutions, we will refer to the constant solution as the
“superattractor” of this class of QDDM models. We denote with subindex s magnitudes in the superattractor regime.
As an example of models satisfying ζ → ζs we note the case ζ ∝ √

ρm, investigated in Refs. [39–42].
Let us characterize this asymptotic stage. From Eq. (11) the superattractor solution yields a power–law evolution

for the scale factor

as(t) = a0

(

t

ts

)α

, (16)

where α = 2/3γφs, a0 is the current scale factor and ts is the age of a superattractor universe. The dynamics of the
scalar field in the attractor regime is obtained from Eqs. (3) and (11):

V =
3

2
Ωφa(2− γφ)H

2 , (17)
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φ̇2 = 3Ωφaγφ H
2 . (18)

These equations together with (12) close the problem of finding the potential V and the scalar field φ as functions

of t. Expressing the potential (17) and field (18) in terms of cosmological time, that is, V = Ωφa(3H
2 + Ḣ) and

φ̇2 = −2ΩφaḢ, it is easy to find, for the superattractor solution,

Vs(φ) =
2Ωφa

3 (γφsts)
2 (2− γφs)e

−Aφ , (19)

φs(t) = φ0 +

√

4Ωφa

3γφs
ln

t

ts
, (20)

where A = (3γφs/Ωφa)
1/2 is the slope parameter. Then we find α = 2/(ΩφaA

2) and φ0 = (2/A) ln γφs. We note that
in the superattractor regime, the exponent α is larger, by a factor of 1/Ωφa, than the exponent 2/A2 of a scalar field
dominated era. This is a particular instance of a general property of QDDM models in that dissipative effects assist
quintessence driven acceleration through the negative non-equilibrium pressure π. Using Eq. (11) we can evaluate its
ratio to quintessence pressure:

π

pφ
=

γφ − γm
γφ − 1

Ωma

Ωφa
. (21)

Hence, in the superattractor regime, this ratio is also a constant (provided that γm is a constant), and when dark
matter is cold it is just the ratio of matter to quintessence energy density.
Let us sketch the evolution of the actual universe from a nearly thermodynamical equilibrium early era (when

π/ρm ≃ 0) into this superattractor stage (when π/ρm = γφs − γm). Along the radiation and matter dominated eras
|π/ρm| ≪ 1 and the inequality γm + π/ρm > γφs holds. Then dissipative processes become more significant, the
attractor condition (11) is approached, γφ is driven towards γφs, and the expansion of the scale factor accelerates.
Clearly the timescale of this transition period depends on the details of the dissipative processes occurring in dark
matter, encoded into the evolution of the dissipative magnitudes ζ(t) and ν(t) – some models exhibiting this con-
vergence stage have been investigated in Ref. [10]. The superattractor stage finally settles when ζ ≃ ζs. Assuming
that the ratio of this transition period to the age of the universe t0 is small and this transition period started early
enough, we may approximate the recent evolution of a(t) by the superattractor solution (16); hence, γφ0 ≃ γφs and
(1 + z)−1 = a/a0 ≃ (t/t0)

α.
As Eq. (19) shows, the class of models converging to the superattractor stage has V (φ) ∼ Vs(φ) for large φ. In

addition to this exponential tail, no other constraint has to be imposed on the quintessence potential for convergence
to the superattractor era. For a wide range of initial values of φ and φ̇ the quintessence field approaches a common
evolutionary path (20) for which γφ = γφs; i.e., the late behavior is insensitive to the initial conditions.

III. OBSERVATIONAL CONSTRAINTS

A. Luminosity distance of supernovae

It has been found that supernovae of type Ia (SNeIa) are nearly standard candles. Properly corrected, the difference
in their apparent magnitudes is only related to differences in luminosity distance dL and consequently to cosmological
parameters [43,44]. Taking profit of this property, several accelerated expanding cosmological models like ΛCDM and
QCDM have been fitted to recent observations of high redshift supernovae (z<∼1) [43,45–47]. Though they have a
good fit in some regions of the parameter space corresponding to an accelerated expansion, these models require fine
tuning to account for the observed ratio between dark energy and clustered matter.
On the other hand, QDDM models provide models that simultaneously provide an accelerated expansion and

solve the coincidence problem within the general trend of the universe towards an attractor and with it towards the
superattractor. As in QCDM models, these scenarios depend on the quintessence potential and initial conditions. In
addition, they depend on the evolution of the magnitudes characterizing the details of dissipative processes occurring
in dark matter. Let us examine the issue of reconstructing part of this evolution through observations of distant
SNeIa.
Ignoring gravitational lensing effects, the standard expression for the luminosity distance to an object at redshift z

in a spatially homogeneous and isotropic universe is [48]
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dL(z) =
1 + z

H0|Ωk0|1/2
S
(

H0|Ωk0|1/2
∫ z

0

dz′

H(z′)

)

, (22)

with S(u) = (sinu, u, sinhu) for k = (1, 0,−1) respectively. Then for a QDDM universe we have

H(z)

H0
=

{

Ωm0 exp

[

3

∫ z

0

dz′

1 + z′

(

γm +
π

ρm

)]

+Ωφ0 exp

(

3

∫ z

0

dz′

1 + z′
γφ

)

+ Ωk0(1 + z′)2
}1/2

(23)

In the case of a spatially flat universe, dL has a simpler expression in terms of the effective baryotropic index

dL(z) =
1 + z

H0

∫ z

0

dz′ exp

[

−3

2

∫ z′

0

dz′′

1 + z′′

(

γ +
π

ρ

)

]

(24)

where

γ +
π

ρ
= γm +

π

ρm
−
(

γm +
π

ρm
− γφ

)

Ωφ0 exp

(

3

∫ z

0

dz′

1 + z′
γφ

)

(25)

We see from Eqs. (24) and (25) that dL(z) depends on the time evolution of dissipative processes through a double
integral in π/ρm(z) and on the time evolution of the quintessence field through a double or triple integral in γφ(z) (we
assume that γm ≃ 1). On one the hand, there is a degenerancy here as these two functions cannot be reconstructed
from knowledge of the single function dL(z). Besides the time variation of these magnitudes is largely smoothed
out and, similarly to the analysis in Refs. [49–51] for QCDM models, we find that the luminosity distance is highly
insensitive to these variations. So we may safely replace these time-varying magnitudes by their mean values in the
interval (0, z). Assuming that the universe has already settled in the superattractor regime at the age of the farthest
observed supernova the degenerancy is eliminated and both functions become constant. Then, the expression (24)
simplifies drastically and we obtain (cf. [52])

dL(z) =
(1 + z)

[

(1 + z)β − 1
]

βH0
, (26)

where β = aä/ȧ2 = 1 − 1/α is the acceleration parameter. So β increases with α and 1 < α < ∞ corresponds to
0 < β < 1. On the superattractor we have

γφs =
2

3α
=

2

3
(1 − β) . (27)

We have used the sample of 38 high redshift (0.18 ≤ z ≤ 0.83) supernovae of Ref. [43], supplemented with 16 low
redshift (z < 0.1) supernovae from the Calán/Tololo Supernova Survey [53]. This is described as the “primary fit”
or fit C in Ref. [43], where, for each supernova, its redshift zi, the corrected magnitude mi and its dispersion σi were
computed.
The predicted magnitude for an object at redshift z with luminosity distance dL is

m(z) = M+ 5 logDL(z), (28)

where M is related to the absolute magnitude M by

M = M − 5 log

(

H0[km/s Mpc]

c[km/s]

)

+ 25 (29)

and DL is the luminosity distance in units of the Hubble radius.
We have determined the optimum fit of the superattractor model by minimizing a χ2 function:

χ2 =

N
∑

i=1

[mi −m(zi;β,M)]
2

σ2
i

, (30)
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where N = 54 for this data set. The most likely parameters are (β,M) = (0.395, 23.96), yielding χ2
min/NDF = 1.12

(NDF = 52), and a goodness–of–fit P (χ2 ≥ χ2
min) = 0.253. These numbers show that the fit of superattractor QDDM

cosmology to this data set is as good as the fit of the ΛCDM model (see Fig. 1). We note that it occurs even though
the superattractor model has basically only the acceleration parameter to fit large redshift supernovae (M being
largely determined by low redshift supernovae). It also means that the density of clustered matter is not constrained
by measurements of SNeIa and it has to be determined through independent observations.
We estimate the probability density distribution of the parameters by evaluation of the normalized likelihood [54]

p(β,M) =
exp

(

−χ2/2
)

∫

dβ
∫

dM exp (−χ2/2)
. (31)

Then we obtain the probability density distribution for β marginalizing p(β,M) over M. This probability density
distribution p(β) is plotted in Fig. 2 and it yields β = 0.398± 0.104 (1σ). Hence we can state that 0.085 < β < 0.711
with a confidence level of 0.997, so that an accelerated superattractor QDDM universe is strongly supported by this
data set, in agreement with a similar analysis of ΛCDM and QCDM models [43,44,55,46].

B. Age of the Universe

For a QDDM model the age of the universe has the integral representation

t0 =

∫

∞

0

dz

(1 + z)H(z)
, (32)

where H(z) is given by Eq. (23). Along the transition period of the universe from an early nearly equilibrium
stage towards the superattractor stage the inequality γm + π/ρm > γφs holds. As a consequence H(z) > Hs(z) =
H0(1 + z)1−β (whenever Ωk ≥ 0) and t0 < ts = α/H0. The characteristics of this transition period, and hence the
value of the difference ts − t0, are model dependent and will not be dealt with here.
Using the fit to SNe Ia of the previous subsection and Eq. (27) we obtain α = 1.711 ± 0.288. Combined with

H0 = 65 ± 5 km/s Mpc [2], it yields for the age of the superattractor universe ts = 25.9± 4.8 Gyr. This shows that
the QDDM cosmology does not suffer of any age discrepancy and can accommodate comfortably the 1σ interval 9–16
Gyr for the age estimate of globular clusters [3].

C. Parameters of the superattractor era

Using the probability distribution for β and Eq. (27) we obtain γφs = 0.401± 0.069, in agreement with previous
results for QCDM models in the limit Ωm → 0. Then, using Eq. (11) and assuming that dark matter is cold
(γm = 1), we find π/ρm = −0.599± 0.069. This figure implies that substantial dissipative processes are taking place
in dark matter. This fact is also shown by the large value of the effective baryotropic index. In effect, combining the
estimate Ωm0 = 0.35 ± 0.07 from cluster baryons [2] with the a priori constraint Ω = 1 and inserting into Eq. (10)
we get γs = 0.61± 0.09. For a perfect fluid this value would correspond to a power-law exponent 2/3γs ≃ 1.1, quite
lower than α. Using Eq. (14), we find that the linear relationship κ = κ1 + κ2ν

−1 holds, where κ1 = 0.21± 0.05 and
κ2 = −0.25±0.07. The requirement of asymptotic stability of the superattractor solution imposes that ν > 1.20±0.21.
Using Eqs. (17) and (18), we find the quintessence kinetic energy density parameter ΩK0 = 0.13 ± 0.03 and

ΩV 0 = 0.52±0.06 for the potential energy density parameter. These figures show that the scalar field is moving down
the potential outside the slow–roll regime. Similarly we find for the slope of the exponential potential A = 1.36± 0.14
and for the current value of the scalar field φ0 = −1.3± 0.3. This implies a mass parameter of the Planck scale.

IV. DENSITY PERTURBATIONS

Besides the model degenerancy of luminosity distance determinations, even within the superattractor cosmology
there are some thermodynamical parameters like ν and the speed of sound cs that are not fixed. For this reason we will
investigate the evolution of density fluctuations in the perturbative long–wavelength regime during the superattractor
era. It is possible that weak lensing techniques could yield more information about these parameters [56].
Scalar perturbations are covariantly and gauge–invariantly characterized by the spatial gradients of scalars. Density

inhomogeneities are described by the comoving fractional density gradient [57]
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δi =
aDiρ

ρ
, (33)

where Di stands for the covariant spatial derivative DjAi··· = hj
khi

l · · ·∇kAl···. The scalar part δ ≡ aDiδi = (aD)2ρ/ρ
corresponds to the usual gauge-invariant density perturbation scalar εm [58,59], which encodes the total scalar con-
tribution to density inhomogeneities. Also the comoving expansion gradient, the normalized pressure gradient, and
normalized entropy gradient are defined by [57,60]

θi = aDiθ , pi =
aDip

ρ
, ei =

anTDis

ρ
, (34)

n being the particle number density, T the temperature, and s the specific entropy per particle. The evolution equation
for scalar density perturbations reads [60]

δ̈ +H
(

8− 6γ + 3c2s
)

δ̇ − 3
2H

2
{

1 + 5 (γ − 1)2 − 6c2s+

[

(1 − 3 (γ − 1)2 + 2c2s

]

k
}

δ − c2sD
2δ = S[e] + S[π] + S[q] + S[σ] , (35)

where

c2s =

(

∂p

∂ρ

)

s

, r =
1

nT

(

∂p

∂s

)

ρ

, (36)

are, respectively, the adiabatic speed of sound and a non-baryotropic index. The sources in the right–hand side of Eq.
(35) arising, respectively, from entropy perturbations, bulk viscous stress, energy flux, and shear viscous stress are
given in [60]. Since in our case there are no shear viscous stress (σij = 0) and S[q] vanishes by choosing the energy
frame (qi = 0), we reproduce here only the expressions for S[e] and S[π]:

S[e] = r
(

3kH2 +D2
)

e , (37)

S[π] = −
(

3kH2 +D2
)

B , (38)

where the scalar entropy perturbation

e = aDiei =
a2nT

ρ
D2s (39)

and the dimensionless perturbation scalar

B =
a2D2π

ρ
, (40)

related to the inhomogeneous part of the bulk viscous stress, were defined.
Also, the entropy perturbation equation in the energy frame is

ė+ 3H
(

c2s − γ + 1 + r
)

e = −3HB . (41)

The coupled system that governs scalar dissipative perturbations in the general case is given by the density pertur-
bation equation (35), the entropy perturbation equation (41), the equation for the scalar bulk viscosity (1), and the
equation for temperature perturbations.
When only bulk viscous stress dissipation is present, the coupled system can be reduced to a pair of coupled

equations in δ (third order in time) and e (second order in time). For a flat background, the equations are [60]:

τ
...

δ +
[

1 + 3
(

2− γ + c2s
)

τH
]

δ̈ +H
{

8− 6γ + 3c2s + 3τ
(

c2s
)·

− 1
2

[

−14 + 75γ − 48γ2 + (21γ − 30)c2s
]

τH
}

δ̇

− 3
2H

2
{

6− 10γ + 5γ2 − 6c2s − 4τ
(

c2s
)·
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−2
[

−6 + 18γ − 15γ2 + 5γ3 +
(

6− 28γ + 10γ2
)

c2s
]

τH
}

δ

=
a2ζ

ργ
D2
(

D2δ̇
)

+
3a2(γ − 1)H

ργ
D2
(

D2δ
)

+ τc2sD
2δ̇ + τrD2ė

+

[

(1− 3γτH) c2s + τ
(

c2s
)·
+ 3

(

∂ζ

∂ρ

)

s

]

D2δ

+

[

(1− 3γτH) r + τ ṙ + 3

(

∂ζ

∂s

)

ρ

]

D2e , (42)

and

τ ë +
[

1− 3
2

(

−2 + 3γ − 2c2s − 2r
)

τH
]

ė

−3H
[

γ − 1− c2s − r + 3γ
(

γ − c2s
)

τH + τ
(

c2s + r
)·

−ρ

γ

(

∂ζ

∂s

)

ρ

]

e = − ζ

γ
δ̇ +

3H

γ

[

(γ − 1) ζ + ρ

(

∂ζ

∂ρ

)

s

]

δ . (43)

We shall consider here the evolution of the density and entropy perturbations in the superattractor stage with the
conditions r = 0 and ∂ν/∂s = 0. Together with Eq. (14) they imply

(

∂ζ

∂s

)

ρ

= 0 , (44)

(

∂ζ

∂ρ

)

s

=

(

∂ζ

∂ρm

)

s

=
κ1 + κ2/ν

6ΩmH
(45)

In this case, Eq. (42) decouples to give

...

δ +
c1
t
δ̈ +

c2
t2
δ̇ +

c3
t3
δ = c4 t2α D4δ̇ + c5 t2α D4δ + c2sD

2δ̇

+
(c6
t
+ c7

)

D2δ , (46)

and Eq. (43) becomes

ë+
c8
t

ė+
c9
t2

e =
c10
t2

δ̇ +
c11
t2

δ (47)

where the constant coefficients c1 . . . c11 depend upon the parameters of the model: ν, κ1, κ2, Ωm, α, γ, c2s , and the
present value of the scale factor a0. For our purposes, only the explicit expression for c1, c8, and c9 are relevant, being

c1 = αν + 3α
(

2− γ − c2s
)

,

c8 = α

[

ν − 3

2

(

3γ − 2− 2c2s
)

]

,

c9 = −3α2
[

ν
(

γ − 1− c2s
)

+ 3γ
(

γ − c2s
)]

. (48)

We deal with the system (46),(47) by performing separation of variables in the form δ = δx δt and e = ex et, where
δx and ex depend upon the spatial variables while δt and et are functions of the coordinate time t. Then, Eq. (46)
can be recasted as

9



...

δ t

δt
+

c1
t

δ̈t
δt

+
c2
t2

δ̇t
δt

+
c3
t3

= t2α

(

c4
δ̇t
δt

+ c5

)

D4δx
δx

+

(

c2s
δ̇t
δt

+
c6
t
+ c7

)

D2δx
δx

, (49)

which can only hold if

(

D2 − µ
)

δx = 0 , (50)

µ being an arbitrary constant. Also, Eq. (47) leads to

t2 (ët/et) + c8 t (ėt/et) + c9

c10

(

δ̇t/et

)

+ c11 (δt/et)
=

δx
ex

, (51)

which requires ex = A δx , with A an arbitrary constant which can be absorbed into the temporal functions, resulting
in the same spatial distribution of the entropy and density perturbations. Under the condition (50) the evolution
equation for δt becomes

...

δ t +
c1
t
δ̈t +

(c2
t2

− µ2 t2α c4 − µc2s

)

δ̇t

+
[c3
t3

− µ2 t2α c5 − µ
(c6
t
+ c7

)]

δt = 0 . (52)

As we are interested in the asymptotic behavior for the superattractor regime, it suffices to consider the dominant
terms in (52), α being a positive number, we have

...

δ t +
c1
t
δ̈t − µ2 t2α c4 δ̇t − µ2 t2α c5 δt ∼= 0 . (53)

Equations (50) and (53) give the form of the asymptotic density perturbations in the model. The parameter µ
appearing in (50) depends, in principle, on the boundary conditions of the problem being the quantity µ−1/2, a
characteristic coordinate length related to the range of the exponentially decaying modes of the spatial part δx. In
the special case µ = 0, Eq. (50) has the Laplace form, describing long–range density perturbation modes. Here, we
are going to study the asymptotic evolution of the long–range modes by performing a series expansion of δt in powers

of µ2. Up to first order we have δt ∼= δ
(0)
t + µ2 δ

(1)
t , then, replacing this expression in Eq. (53) and retaining terms up

to first order in µ2 we obtain

[

...

δ
(1)

t +
c1
t
δ̈
(1)
t − t2α c4 δ̇

(0)
t − t2α c5 δ

(0)
t

]

µ2+
...

δ
(0)

t +
c1
t
δ̈
(0)
t = 0 . (54)

The zeroth–order solution gives

δ
(0)
t (t) =

A1

(1− c1)(2− c1)
t2−c1 +A2 t+A3 , (55)

for c1 /∈ {1, 2} and Ai , i = 1, 2, 3 integration constants. Then, δ
(1)
t satisfies the inhomogeneous equation

...

δ
(1)

t +
c1
t
δ̈
(1)
t − t2α c4 δ̇

(0)
t − t2α c5 δ

(0)
t = 0 , (56)

whose general solution has the form

δ
(1)
t =

B1

(1− c1)(2− c1)
t2−c1 +B2 t+B3 + a1t

2α+4−c1 +

+a2 t2α+3 + a3 t2α+5−c1 + a4 t2α+4 , (57)

where the coefficients Bi, i = 1, 2, 3 are integration constants depending upon the initial conditions, and ai, i = 1, . . . , 4
depend on α, c1, and the Bi. Then, the asymptotic evolution of the long range modes up to first order in µ2 results in
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a combination of powers of time. When c1 < 2 all the exponents are positive, while for c1 > 2 there exists a decaying
mode. With the parameters of the model, because of Eq. (48) this last situation is equivalent to c2s < ν/3 + 0.999
which is always satisfied because of the lower bound ν > 1.2 (in our units c2s < 1). As a consequence, a decaying
mode exists in this model and the dominant exponent is 2α + 4. Hence the density power spectrum redshifts as
P (k, z) ∝ (1 + z)−(4+8/α).
On the other hand, Eq. (43) becomes, in the leading regime,

ët +
c8
t
ėt +

c9
t2
et = c12t

2α+1

[

1 +
3

ν

(

γ − 1 +
1

2Ωma

)

t

]

, (58)

whose solution is

et(t) = B4t
λ1 +B5t

λ2 + c13t
2α+3

[

1 +
3

ν

(

γ − 1 +
1

2Ωma

)

t

]

, (59)

where λ1,2 are the roots of the equation λ2 + (c8 − 1)λ + c9 = 0, B4, B5 are arbitrary integration constants, and
c12, c13 are functions of the parameters and the previously defined integration constants. In this way the entropy
perturbations may yield additional information about the parameters ν, c2s , and Ωma.

V. DISCUSSION

We have shown that within the class of accelerated coincidence–solving attractor solutions of QDDM models, a
distinguished attractor solution exists with constant quintessence baryotropic index. This superattractor cosmology
is quite attractive because of its simplicity: the scale factor expansion follows a power–law, and all its parameters can
be evaluated in a model independent way. Notwithstanding its simplicity, its fit to SNeIa observations is as good as
the ΛCDM model, and it does not suffer from any age conflict either.
Our results are quite valuable to give general statements about a large class of QDDM models that are driven

towards this superattractor but they are limited to the late–time regime. Undoubtedly a large variety of models
arise both from different quintessence potentials as well as from different dissipative processes in dark matter. The
only requirement is that the potential has the exponential tail (19) or, equivalently, that the viscosity coefficient
has the asymptotic behavior (14). This diversity of possibilities makes the transition period of the universe from
its nearly thermodynamical equilibrium early stage towards the superattractor regime model dependent and requires
more detailed investigation. In particular it would be of importance to evaluate the effects of dissipative processes on
the CMB angular power spectrum.
Standard CDM models have been quite successful in describing the evolution of cosmic structure. Hence a suffi-

ciently long matter–dominated era must have taken place during which the observed structure grew from the density
fluctuations measured by CMB anisotropy experiments. As a consequence the transition to the currently observed
accelerated regime should have been quite recent in the evolution of the universe. For QDDM models this seems
to imply that dissipative effects in dark matter were small until density inhomogeneities became large. If so, it is
suggestive to think that the size of dissipative processes, as measured by the ratio π/ρm, grows with dark matter
density and became large precisely because of the development of inhomogeneities. The observed smoothness of halo
structure and the correlation between high energy cosmic ray production and dark matter clustering might provide
support for this relationship.
Even though the supernovae search is extended to z > 1 this does not enable a precise determination of the time

variation in the quintessence baryotropic index γφ and the ratio π/ρm because the luminosity distance depends on
these magnitudes through a multiple-integral relation that smears out detailed information about their variability.
Besides their independent variation cannot be disentangled from the determination of a single function. Hence
further independent cosmological probes are required to investigate this issue. As a first step in this direction we have
calculated the dominant large–time long–wavelength behavior of density and entropy fluctuations in the superattractor
regime.
The combined distribution of dark mass and dark energy can be investigated via its gravitational effects inducing

correlated shear in the images of distant galaxies. This weak lensing effect could, in principle, be used to probe
the large–scale structure and thereby yield additional information about the thermodynamical and cosmological
parameters not constrained by the luminosity–redshift relationship.
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FIG. 1. The magnitude residuals ∆m of the SNeIa (fit C data set of Ref. [43]) from the best fit superattractor QDDM model
with (β,M) = (0.395, 23.96). For comparison is shown the magnitude residual for the best fit ΛCDM model, corresponding to
(Ωm0,ΩΛ,M) = (0.54, 1.09, 23.93) [45].

14



0

0.5

1

1.5

2

2.5

3

3.5

0.2 0.4 0.6 0.8 1

β
0

p(  )β

FIG. 2. The estimated probability density distribution (normalized likelihood) for the acceleration parameter β of the
superattractor model.
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