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Abstract

We demonstrate that a suitable coupling between a quintessence scalar field and a pressureless cold dark matter (CDM) fluic
leads to a constant ratio of the energy densities of both components which is compatible with an accelerated expansion of the
Universe.d 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction total energy density is critical or near critical [4].
Combining both results one may rule out a flat matter-
There is a growing consensus among astrophysicistsdominated universe (with2y, = 1 and £24 = 0)
that we live in an accelerating Universe. On the one as well as an open universe with no cosmological
hand, high-redshift type la supernovae (SNla) are constant 2, = 0.3 and$2,4 = 0) at high statistical
significantly fainter than expected in a decelerating level [5]. More generally, one is led to conclude
model (such as the Einstein—de Sitter) [1]. Although that very likely (i) about two third of the energy of
the statistics is still low and extinction by interstellar the Universe is “dark” (i.e., non-luminous and not
dust may partly account for their low brightness and subject to direct detection via dynamical methods),
no conclusive model of evolution of SNla and their and (ii) connected to this exotic and elusive energy
progenitors is still available, the acceleration scenario must be a negative pressure, able to violate the strong
is gaining further ground [2]. On the other hand, energy condition.
while measurements of the average mass density of The immediate candidate for such exotic energy,
the Universe systematically fall below the critical a small cosmological constaut, poses however an
density, about B or 04 in critical units (see, e.g., embarrassing question: why the energy density in cold
[3] and references therein), the position of the first dark matter (which in the absence of interactions red-
acoustic peak in the temperature anisotropy power shifts asa—3, wherea(t) is the scale factor of the ho-
spectrum of the CMB strongly suggests that the mogeneous and isotropic metric) and the constant en-
ergy associated tal are of the same order precisely
 E-mail addresses: winfried.zimdahl@uni-konstanz.de tpday? F.O.r this _tO occurone mUSt.have fine-tuned I.m-
(W. Zimdahl), diego@ulises.uab.es (D. Pavon), tial conditions right after the inflationary epoch. This
chimento@df.uba.ar (L.P. Chimento). constitutes the so-called “coincidence problem” [6].
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To overcome this hurdle it was suggested that a nearly whereh;; = gix + u;u; and
homogeneous but time depending scalar field with
negative pressure should replage This peculiar ~ ° = PS T PM: pP=ps+pu. @)
field, widely known as “quintessence”, was indepen- The subscriptS refers to the scalar field component,
dently introduced by Ratra and Peebles [7] and Wet- the subscrip to the matter component (i.e., CDM).
terich [8] well before the supernovae results were even The energy density and pressure of the scalar field are
suspected. Today a host of quintessence models are . 1.,

known both in the realm of general relativity (see, e.g., #s=5¢"+ V(p) and ps= 2%~ Vig), (3)
[9,10]) and in scalar—tensor theories [11].

The target of this letter is to clarify a specific as-
pect of the coincidence problem, namely to present
an attractor type solution of the two-component dy- ;
namics vyhich is characterized .b.y a constant ratio of \/m'
order unity of the energy densities of the CDM and (¢.« is assumed to be timelike.) We postulate that the

qglntessence components gnd at the same time ad'components do not evolve independently but that there
mits an accelerated expansion of the Universe. The

. . . . exists some interaction between them, described by a
basic ingredient of the corresponding model is to as- y

sume a coupling between CDM and the quintessencesource (loss) term in the energy balances

scalar field. It is this assumption of an interacting puy + 3H (pp + pm) =38, (4)
guintessence component by which our analysis differs and

from most investigations in this field which assume an

independent evolution of CDM and the scalar field. ps +3H (ps + ps) = —6. (5)
“Coupled quintessence” models have been shown to The |ast equation is equivalent to

be useful in handling the coincidence problem by = .

Amendola et al. [10]. While the models of these au- #l¢ +3H¢ + V'] = —4. (6)

thors assumed a specific coupling from the outset, our As already mentioned, we will not specify the interac-
strategy here is different. We do not specify the cou- tion from the outset but constrairby demanding that
pling from the beginning. Weletermine its structure  the solution to (4) and (5) be compatible with a con-
from the requirement that it shall admit a solution for gtgnt ratio between the energy densitigsand pg. It

the dynamics of the two-component system of CDM s convenient to introduce the quantiti&, and I7s

and quintessence with a constant ratio for the energy by

densities. This strategy seems legitimate since there

does not exist any microphysical hint on the possible 8 = —3H Iy =3HIIs, (7)

nature of a coupling between CDM and quintessence. with the help of which we can write

It will provide us with a transparent phenomenological

picture of the “final state” of the cosmic dynamics (for M +3H (om + py + ITy) =0, (8)

a less bleak eschatological scenario, see [12]), leavingand

open, of course, the question of how this state is ap- .

proached and whether or not our current Universe has©S + SH(ps + ps +1I1s) =0. ©)

already reached it. The rewriting of Egs. (4) and (5) into Egs. (8) and (9),
respectively, makes the dynamic equations formally
look as those for two dissipative fluids. The fact that

respectively. The splitting (2) implies that there is only
one 4-velocity,

i .
=yl — 8.
=uhy =ul=

2. Scalar field plus cold dark matter there is a coupling between them has been mapped
onto the relationlTy; = —I1s between the effective
Let us consider a two-component system with an Pressurediy andIIs. Some early models of power
energy—momentum tensor law inflation also share this feature (see, e.g., [13]).

Below we shall map the interaction tershonto a
Tix = pu;ug + phig, Q) corresponding interaction potential.
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3. Attractor solution and cosmological dynamics

Consider now the time evolution of the rapgy / os,

(P_M> _ P_M[ﬂ_M _ &] (10)
0s ps Lom  ps
By introducing the shorthands
yy=PMEPM 4 L PM and

oM M

ps+ps _ ¢?

ys= 2 P8 P (11)

0s s
we obtain

(p—M) ——3gM |:VM —ys+ LI'IM]- (12)
ps ps PMPS

Obviously, there exists a stationary solutign, / ps)’

=0 for

My =—Is= M
oM+ ps

Since the CDM behaves as dust, i.ey < oy, We

find

(vs —vym)- (13)

P2
HM%—[l—l.L}pspM, (14)
§¢2 +V] p
or, by virtue of}¢? — vV = ps ~ p,
1:2
20°—V ps )4
Oy~2———2py=Zpy (15)
162+V o p
The coupling term corresponding to this is
P2
8=3H[1—1.¢7]'05pM, (16)
§¢2 +V] p
or, equivalently,
s=—3HS py = —BH(ys— LM (17
o ps + pm

Introducing the notation = p,;/ps = const we may
further write

oM
§=-3H —1)——-, or
(s )r—l—l

,
§=—-3H(ys—1)——ps.

(vs )r 17
Invoking the Friedmann equation valid for universes
with spatially flat sections,

(18)

3H? =81 Glps + pml, (19)

135
we have 3 = /247 Gp, and, consequently,
PSPM
8=—241G (ys — 1) ————. 20
Y v Ps + pm (20)

With (18), in a spatially flat universe equivalent
to (20), we have identified the interaction between
the pressureless fluid (CDM) and the scalar field
(quintessence) that guarantees a constantratfahe
energy densities of both components.

To study the stability of this stationary solution
against small perturbations we introduce the ansatz

Py _ (P_M> te
PS PS J st

into (12)—the subscript st is for “stationary”. The
result is

11
() 5
()]
Prs st
11
X [E — <1+ ('O—M) +6)—Mi|.
Prs PS /st oM

The behavior of the perturbed solution depends on the
ratio Iy /pp - For the stationary solution itself we
may read offf1y from (7) and (18). However, for
deviations from stationarity an additional assumption
is necessary. At first sight the most obvious choice
seems to be|lly| « py also in the vicinity of
the stationary solution. As to be seen from (7), the
coupling term becomes asymmetric with respect to
pm and ps under such conditions. It will turn out
that a more appropriate choice is the assumption
Iy = —cp, Wherec is a constant > 0. This type

of interaction is symmetric imy; and pg. Up to first
order ine we find in such a case,

(21)

2_1
é=3Hcr

€. (22)

This implies that the stationary solution is stable for
r < 1, which is clearly compatible with the presently
favored observational datay; ~ 0.3 and ps ~ 0.7.
Consistency with'y, from (7) and (18) fixes:

_, 1w
Q0
The positivity ofc is guaranteed fops < 1.

(23)
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With p ~ pgs today, the stability condition corre-
sponds to [cf. Eq. (21)]

p Iy

o pM

<o. (24)
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while (5) with (18) results in

. r
ps+3Hysps =3H (ys — 1) ——ps. (27)

r+1

Assumingys, which is in the range & ygs < 2, to be
(at least piecewise) constant, we obtain

Since we seek accelerated expansion, the total pres-

surep ~ pg must be negative, i.e., the potential term
must dominate the kinetic term, equivalengtp< 1.

It is remarkable that according to (23) this coincides
with the condition forc to be positive. From (7) and
(18) we find that a valuers < 1 implies ITy; < O
and § > 0. There is a transfer of energy from the
scalar field to the matter, which reminds of decaying
vacuum energy approaches for the dynamics of the
early universe (see, e.g., [20]). The stationary epoch
Iy /pom = p/p has to be approached in such a way
that

[[Ty| _ |pl
<=
oM o

Since |ITy| is proportional tos, this means, the
interaction may be small as long as the system is still
far from the attractor solution.

Itis expedient to emphasize that the apparently sub-
tle point to assumély,| o p instead of|ITy| o puy
is essential for the stability properties of the station-
ary solution. Namely, similar considerations as those
leading to (22) show, that there does not exist a stable
solution with accelerated expansion fidf ;| o< pp.
Therefore, a dependenfl@y, | « p is mandatory for a
physically sensible solution. This represents a restric-
tion on the type of interaction that produces a station-
ary ratiopys/ps. While for the stationary solution it-
self ITy; o« pyr and ITy; o< p are not really different
since py  p, the difference becomes crucial if one
perturbs the solution.

Note that the stability is connected to the presence
of an effective dissipative stress in the matter fluid.
This parallels the result that the scalar field needs the
assistance of a dissipative fluid stress for the coinci-
dence problem to find solution in spatially flat acceler-
ating Friedmann—Robertson—Walker models [14].

Given the interaction term (18), we may find the
dependence qgfy; andps on the scale factor. Because
of py = 0, Eq. (4) with (18) yields

(25)

pm +3Hpy = —3H (ys — 1)r'OTM (26)

17

ys+r
r+1°
Both energy densities happen to redshift at the same
rate because we have choseto correspond to the
stationary state. With the relationshipx a =" we can
solve the Friedmann equation (19) to find

). (29)

The total energy density redshiftsasc r 2, indepen-
dently of ys andr. Power law accelerated expansion
will occur forv < 2, equivalent to

v

psoca’, Y

oM xa v=3

(28)

2/\) _ a _ V
4 1 aH? < 2

r+ 3ys < 2. (30)

Together with the above derived stability condition
r < 1 this amounts tors < 1/3 or ps/ps < —2/3 for
accelerated expansion.

Defining
87 G 8nG

QQy=—— and Q¢=——= 31

M= 2 oM S = 32 Ps: (31)
we have

r 1

Qy=——, and 5= 32

M= ST (32)
respectively, and also

87G 1?2 P

25 = ———pst*. 33

S= =3 4 Ps (33)
For ps we find

1 1+ 1

= . 34
PS= 612G (ys + 11212 (34)
Combination with (11) yields
. s(1+7r) 1 1
b= = (35)

6rG (ys+r)t

i.e.,¢ evolves logarithmically with time. Furthermore,
with the help of (3) and (11) it follows that

_ V@) _¢?
2—ys ys

s (36)
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which together with (34) and (35) leads to

1 ys\ 1+r 1

e O et 0
Since

R 1%
Vigrg=V(¢)= —27, (38)
by virtue of (35) we obtain
Vi(g)=—1V(9), (39)
where

247 G
= |— 40
,/ys(1+r)(ys+r) (40)

and, consequently,
V(¢) = Voexpl—A(¢ — ¢o)]. (41)

By similar steps one shows that the interaction térm
in EqQ. (6), given by the second expression in (18), may
be mapped onto an interaction potentigk:

) 2r

1—ys
=  Vinn=

Cystr2—ys
Introducing an effective potential

V(). (42)

Vet = V(@) + Vint, (43)
the equation of motion for the field becomes
¢+ 3Hp+ Vig=0. (44)

It is rather reassuring (although not unexpected,
cf. [15]) to find a potential (43) with (41) and (42), sub-
stantially backed by some field theories. It appears for
instance inN = 2 supergravity [16]. Likewise, linear
combinations of exponential potentials naturally arise
in theories undergoing dimensional compactification
to an effective 4-dimensional theory; it is reasonable to
expect that one of them will eventually dominate [17].

With the help of (30) the condition for accelerated
expansion becomes

(1—ys)?
A+r)ys
This is similar but not identical to conditions which

22 < 247G (45)
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exponential potential in which is a free parameter
initially. Then they investigated the parameter range
for which there exists an attractor solution which is
also inflationary. Our strategy is different insofar, as
we have first constructed a solution with the required
properties and then read off the corresponding para-
meter combination.

Notice also that the way the attractor is approached
remains open (only that in order to guarantee stability
the approach, according to (25), has to proceed from a
smaller coupling than given by the stationary solution
itself).

4. Discussion

We proposed a coupling (given by (17), (18), or
(42) with (41)) between a quintessence scalar field
and a CDM fluid that leads to a stable, constant ra-
tio for the energy densities of both components, com-
patible with a power law accelerated cosmic expan-
sion. This interacting quintessence approach indicates
a phenomenological solution of the coincidence prob-
lem that afflicts many attempts to cope with late ac-
celeration (especially those based in a cosmological
constant). Unlike other approaches the potential is not
an input but derived from the coupling. It remains to
be seen to what extent this potential is consistent with
measurements of the supernovae distances [22] once
the SNAP satellite comes up with enough SNla sta-
tistics [23]. Alternative and possibly earlier available
tests rely on the Alcock—Paciagky test for quasar
pairs [cf. Ref. [24]].

While focusing on the stationary solution straight-
forwardly provides us with an expression for the inter-
action which realizes a corresponding state, we men-
tion again that this procedure leaves open how this
interaction is exactly “switched on” in order to ac-
count for the necessary transition from the era of
decelerated expansion to that of accelerated expan-
sion. The coupling should be ineffective until the con-
densation of protogalaxies has entered the non-linear
regime. In a sense, this feature reminds of the “exit
problem” of many inflationary models. There are at-
tempts to tackle this problem with the help of a spe-

have been obtained for corresponding solutions in the cific coupling function betweespp and CDM together

non-interacting case [8,18,19] or for different types of
coupling [10,13,18,21]. These authors started with an

with a separately postulated exponential potential [10].
However, a really satisfactory solution is still miss-



138

ing. What one would like to have is an interaction
which is negligible in the matter dominated era and
asymptotically approaches (17) for large times. We
hope that our stationary solution will give an indi-
cation for a quintessence—CDM coupling that, aside
from characterizing the stationary state of the late
accelerated expansion, smoothly joins the previous
matter-dominated era of decelerated expansion when
one goes backward in time.
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