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Abstract

We demonstrate that a suitable coupling between a quintessence scalar field and a pressureless cold dark matter (CDM) fluid
leads to a constant ratio of the energy densities of both components which is compatible with an accelerated expansion of the
Universe. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is a growing consensus among astrophysicists
that we live in an accelerating Universe. On the one
hand, high-redshift type Ia supernovae (SNIa) are
significantly fainter than expected in a decelerating
model (such as the Einstein–de Sitter) [1]. Although
the statistics is still low and extinction by interstellar
dust may partly account for their low brightness and
no conclusive model of evolution of SNIa and their
progenitors is still available, the acceleration scenario
is gaining further ground [2]. On the other hand,
while measurements of the average mass density of
the Universe systematically fall below the critical
density, about 0.3 or 0.4 in critical units (see, e.g.,
[3] and references therein), the position of the first
acoustic peak in the temperature anisotropy power
spectrum of the CMB strongly suggests that the
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total energy density is critical or near critical [4].
Combining both results one may rule out a flat matter-
dominated universe (withΩM = 1 and ΩΛ = 0)
as well as an open universe with no cosmological
constant (ΩM = 0.3 andΩΛ = 0) at high statistical
level [5]. More generally, one is led to conclude
that very likely (i) about two third of the energy of
the Universe is “dark” (i.e., non-luminous and not
subject to direct detection via dynamical methods),
and (ii) connected to this exotic and elusive energy
must be a negative pressure, able to violate the strong
energy condition.

The immediate candidate for such exotic energy,
a small cosmological constantΛ, poses however an
embarrassing question: why the energy density in cold
dark matter (which in the absence of interactions red-
shifts asa−3, wherea(t) is the scale factor of the ho-
mogeneous and isotropic metric) and the constant en-
ergy associated toΛ are of the same order precisely
today? For this to occur one must have fine-tuned ini-
tial conditions right after the inflationary epoch. This
constitutes the so-called “coincidence problem” [6].
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To overcome this hurdle it was suggested that a nearly
homogeneous but time depending scalar field with
negative pressure should replaceΛ. This peculiar
field, widely known as “quintessence”, was indepen-
dently introduced by Ratra and Peebles [7] and Wet-
terich [8] well before the supernovae results were even
suspected. Today a host of quintessence models are
known both in the realm of general relativity (see, e.g.,
[9,10]) and in scalar–tensor theories [11].

The target of this letter is to clarify a specific as-
pect of the coincidence problem, namely to present
an attractor type solution of the two-component dy-
namics which is characterized by a constant ratio of
order unity of the energy densities of the CDM and
quintessence components and at the same time ad-
mits an accelerated expansion of the Universe. The
basic ingredient of the corresponding model is to as-
sume a coupling between CDM and the quintessence
scalar field. It is this assumption of an interacting
quintessence component by which our analysis differs
from most investigations in this field which assume an
independent evolution of CDM and the scalar field.
“Coupled quintessence” models have been shown to
be useful in handling the coincidence problem by
Amendola et al. [10]. While the models of these au-
thors assumed a specific coupling from the outset, our
strategy here is different. We do not specify the cou-
pling from the beginning. Wedetermine its structure
from the requirement that it shall admit a solution for
the dynamics of the two-component system of CDM
and quintessence with a constant ratio for the energy
densities. This strategy seems legitimate since there
does not exist any microphysical hint on the possible
nature of a coupling between CDM and quintessence.
It will provide us with a transparent phenomenological
picture of the “final state” of the cosmic dynamics (for
a less bleak eschatological scenario, see [12]), leaving
open, of course, the question of how this state is ap-
proached and whether or not our current Universe has
already reached it.

2. Scalar field plus cold dark matter

Let us consider a two-component system with an
energy–momentum tensor

(1)Tik = ρuiuk + phik,

wherehik = gik + uiuk and

(2)ρ = ρS + ρM, p = pS + pM.

The subscriptS refers to the scalar field component,
the subscriptM to the matter component (i.e., CDM).
The energy density and pressure of the scalar field are

(3)ρS = 1

2
φ̇2 + V (φ) and pS = 1

2
φ̇2 − V (φ),

respectively. The splitting (2) implies that there is only
one 4-velocity,

ui = ui
M = ui

S = − gij φ,j√−gabφ,aφ,b

.

(φ,a is assumed to be timelike.) We postulate that the
components do not evolve independently but that there
exists some interaction between them, described by a
source (loss) termδ in the energy balances

(4)ρ̇M + 3H(ρM +pM) = δ,

and

(5)ρ̇S + 3H(ρS + pS) = −δ.

The last equation is equivalent to

(6)φ̇[φ̈ + 3Hφ̇ + V ′] = −δ.

As already mentioned, we will not specify the interac-
tion from the outset but constrainδ by demanding that
the solution to (4) and (5) be compatible with a con-
stant ratio between the energy densitiesρM andρS . It
is convenient to introduce the quantitiesΠM andΠS

by

(7)δ ≡ −3HΠM ≡ 3HΠS,

with the help of which we can write

(8)ρ̇M + 3H(ρM +pM + ΠM) = 0,

and

(9)ρ̇S + 3H(ρS + pS + ΠS) = 0.

The rewriting of Eqs. (4) and (5) into Eqs. (8) and (9),
respectively, makes the dynamic equations formally
look as those for two dissipative fluids. The fact that
there is a coupling between them has been mapped
onto the relationΠM = −ΠS between the effective
pressuresΠM andΠS . Some early models of power
law inflation also share this feature (see, e.g., [13]).
Below we shall map the interaction termδ onto a
corresponding interaction potential.
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3. Attractor solution and cosmological dynamics

Consider now the time evolution of the ratioρM/ρS ,

(10)

(
ρM

ρS

)·
= ρM

ρS

[
ρ̇M

ρM

− ρ̇S

ρS

]
.

By introducing the shorthands

γM ≡ ρM + pM

ρM

= 1+ pM

ρM

, and

(11)γS ≡ ρS + pS

ρS

= φ̇2

ρS

,

we obtain

(12)

(
ρM

ρS

)·
= −3H

ρM

ρS

[
γM − γS + ρ

ρMρS

ΠM

]
.

Obviously, there exists a stationary solution(ρM/ρS)
·

= 0 for

(13)ΠM = −ΠS = ρMρS

ρM + ρS

(γS − γM).

Since the CDM behaves as dust, i.e.,pM � ρM , we
find

(14)ΠM ≈ −
[
1− φ̇2

1
2φ̇

2 + V

]
ρSρM

ρ
,

or, by virtue of1
2φ̇

2 − V = pS ≈ p,

(15)ΠM ≈
1
2φ̇

2 − V

1
2φ̇

2 + V

ρS

ρ
ρM = p

ρ
ρM.

The coupling term corresponding to this is

(16)δ = 3H

[
1− φ̇2

1
2φ̇

2 + V

]
ρSρM

ρ
,

or, equivalently,

(17)δ = −3H
pS

ρ
ρM = −3H(γS − 1)

ρSρM

ρS + ρM

.

Introducing the notationr ≡ ρM/ρS = const. we may
further write

δ = −3H(γS − 1)
ρM

r + 1
, or

(18)δ = −3H(γS − 1)
r

r + 1
ρS.

Invoking the Friedmann equation valid for universes
with spatially flat sections,

(19)3H 2 = 8πG[ρS + ρM ],

we have 3H = √
24πGρ, and, consequently,

(20)δ = −√
24πG(γS − 1)

ρSρM√
ρS + ρM

.

With (18), in a spatially flat universe equivalent
to (20), we have identified the interaction between
the pressureless fluid (CDM) and the scalar field
(quintessence) that guarantees a constant ratior of the
energy densities of both components.

To study the stability of this stationary solution
against small perturbations we introduce the ansatz

ρM

ρS

=
(
ρM

ρS

)
st

+ ε

into (12)—the subscript st is for “stationary”. The
result is

ε̇ = 3H

[(
ρM

ρS

)
st

+ ε

][
pS

ρS

− ρ

ρS

ΠM

ρM

]

= 3H

[(
ρM

ρS

)
st

+ ε

]

(21)×
[
pS

ρS

−
(

1+
(
ρM

ρS

)
st

+ ε

)
ΠM

ρM

]
.

The behavior of the perturbed solution depends on the
ratio ΠM/ρM . For the stationary solution itself we
may read offΠM from (7) and (18). However, for
deviations from stationarity an additional assumption
is necessary. At first sight the most obvious choice
seems to be|ΠM | ∝ ρM also in the vicinity of
the stationary solution. As to be seen from (7), the
coupling term becomes asymmetric with respect to
ρM and ρS under such conditions. It will turn out
that a more appropriate choice is the assumption
ΠM = −cρ, wherec is a constantc > 0. This type
of interaction is symmetric inρM andρS . Up to first
order inε we find in such a case,

(22)ε̇ = 3Hc
r2 − 1

r
ε.

This implies that the stationary solution is stable for
r < 1, which is clearly compatible with the presently
favored observational dataρM ≈ 0.3 andρS ≈ 0.7.
Consistency withΠM from (7) and (18) fixesc:

(23)c = r
1− γS

(1+ r)2
.

The positivity ofc is guaranteed forγS < 1.
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With p ≈ pS today, the stability condition corre-
sponds to [cf. Eq. (21)]

(24)
p

ρ
− ΠM

ρM

� 0.

Since we seek accelerated expansion, the total pres-
surep ≈ pS must be negative, i.e., the potential term
must dominate the kinetic term, equivalent toγS < 1.
It is remarkable that according to (23) this coincides
with the condition forc to be positive. From (7) and
(18) we find that a valueγS < 1 implies ΠM < 0
and δ > 0. There is a transfer of energy from the
scalar field to the matter, which reminds of decaying
vacuum energy approaches for the dynamics of the
early universe (see, e.g., [20]). The stationary epoch
ΠM/ρM = p/ρ has to be approached in such a way
that

(25)
|ΠM |
ρM

� |p|
ρ

.

Since |ΠM | is proportional to δ, this means, the
interaction may be small as long as the system is still
far from the attractor solution.

It is expedient to emphasize that the apparently sub-
tle point to assume|ΠM | ∝ ρ instead of|ΠM | ∝ ρM

is essential for the stability properties of the station-
ary solution. Namely, similar considerations as those
leading to (22) show, that there does not exist a stable
solution with accelerated expansion for|ΠM | ∝ ρM .
Therefore, a dependence|ΠM | ∝ ρ is mandatory for a
physically sensible solution. This represents a restric-
tion on the type of interaction that produces a station-
ary ratioρM/ρS . While for the stationary solution it-
self ΠM ∝ ρM andΠM ∝ ρ are not really different
sinceρM ∝ ρ, the difference becomes crucial if one
perturbs the solution.

Note that the stability is connected to the presence
of an effective dissipative stress in the matter fluid.
This parallels the result that the scalar field needs the
assistance of a dissipative fluid stress for the coinci-
dence problem to find solution in spatially flat acceler-
ating Friedmann–Robertson–Walker models [14].

Given the interaction term (18), we may find the
dependence ofρM andρS on the scale factor. Because
of pM ≈ 0, Eq. (4) with (18) yields

(26)ρ̇M + 3HρM = −3H(γS − 1)
ρM

r + 1
,

while (5) with (18) results in

(27)ρ̇S + 3HγSρS = 3H(γS − 1)
r

r + 1
ρS.

AssumingγS , which is in the range 0� γS � 2, to be
(at least piecewise) constant, we obtain

(28)ρS ∝ a−ν, ρM ∝ a−ν, ν = 3
γS + r

r + 1
.

Both energy densities happen to redshift at the same
rate because we have chosenδ to correspond to the
stationary state. With the relationshipρ ∝ a−ν we can
solve the Friedmann equation (19) to find

(29)a ∝ t2/ν �⇒ q ≡ − ä

aH 2
= −

(
1− ν

2

)
.

The total energy density redshifts asρ ∝ t−2, indepen-
dently ofγS andr. Power law accelerated expansion
will occur for ν < 2, equivalent to

(30)r + 3γS < 2.

Together with the above derived stability condition
r < 1 this amounts toγS < 1/3 orpS/ρS < −2/3 for
accelerated expansion.

Defining

(31)ΩM ≡ 8πG

3H 2 ρM, and ΩS ≡ 8πG

3H 2 ρS,

we have

(32)ΩM = r

r + 1
, and ΩS = 1

r + 1
,

respectively, and also

(33)ΩS = 8πG

3

ν2

4
ρSt

2.

ForρS we find

(34)ρS = 1

6πG

1+ r

(γS + r)2

1

t2
.

Combination with (11) yields

(35)φ̇ =
√

γS(1+ r)

6πG

1

(γS + r)

1

t
,

i.e.,φ evolves logarithmically with time. Furthermore,
with the help of (3) and (11) it follows that

(36)ρS = 2V (φ)

2− γS
= φ̇2

γS
,
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which together with (34) and (35) leads to

(37)V (φ) = 1

6πG

(
1− γS

2

)
1+ r

(γS + r)2

1

t2
.

Since

(38)V ′(φ)φ̇ = V̇ (φ) = −2
V

t
,

by virtue of (35) we obtain

(39)V ′(φ) = −λV (φ),

where

(40)λ =
√

24πG

γS(1+ r)
(γS + r)

and, consequently,

(41)V (φ) = V0 exp[−λ(φ − φ0)].
By similar steps one shows that the interaction termδ

in Eq. (6), given by the second expression in (18), may
be mapped onto an interaction potentialVint:

(42)
δ

φ̇
≡ V ′

int �⇒ Vint = − 2r

γS + r

1− γS

2− γS
V (φ).

Introducing an effective potential

(43)Veff ≡ V (φ)+ Vint,

the equation of motion for theφ field becomes

(44)φ̈ + 3Hφ̇ + V ′
eff = 0.

It is rather reassuring (although not unexpected,
cf. [15]) to find a potential (43) with (41) and (42), sub-
stantially backed by some field theories. It appears for
instance inN = 2 supergravity [16]. Likewise, linear
combinations of exponential potentials naturally arise
in theories undergoing dimensional compactification
to an effective 4-dimensional theory; it is reasonable to
expect that one of them will eventually dominate [17].

With the help of (30) the condition for accelerated
expansion becomes

(45)λ2 < 24πG
(1− γS)

2

(1+ r)γS
.

This is similar but not identical to conditions which
have been obtained for corresponding solutions in the
non-interacting case [8,18,19] or for different types of
coupling [10,13,18,21]. These authors started with an

exponential potential in whichλ is a free parameter
initially. Then they investigated the parameter range
for which there exists an attractor solution which is
also inflationary. Our strategy is different insofar, as
we have first constructed a solution with the required
properties and then read off the corresponding para-
meter combination.

Notice also that the way the attractor is approached
remains open (only that in order to guarantee stability
the approach, according to (25), has to proceed from a
smaller coupling than given by the stationary solution
itself).

4. Discussion

We proposed a couplingδ (given by (17), (18), or
(42) with (41)) between a quintessence scalar field
and a CDM fluid that leads to a stable, constant ra-
tio for the energy densities of both components, com-
patible with a power law accelerated cosmic expan-
sion. This interacting quintessence approach indicates
a phenomenological solution of the coincidence prob-
lem that afflicts many attempts to cope with late ac-
celeration (especially those based in a cosmological
constant). Unlike other approaches the potential is not
an input but derived from the coupling. It remains to
be seen to what extent this potential is consistent with
measurements of the supernovae distances [22] once
the SNAP satellite comes up with enough SNIa sta-
tistics [23]. Alternative and possibly earlier available
tests rely on the Alcock–Paczyńsky test for quasar
pairs [cf. Ref. [24]].

While focusing on the stationary solution straight-
forwardly provides us with an expression for the inter-
action which realizes a corresponding state, we men-
tion again that this procedure leaves open how this
interaction is exactly “switched on” in order to ac-
count for the necessary transition from the era of
decelerated expansion to that of accelerated expan-
sion. The coupling should be ineffective until the con-
densation of protogalaxies has entered the non-linear
regime. In a sense, this feature reminds of the “exit
problem” of many inflationary models. There are at-
tempts to tackle this problem with the help of a spe-
cific coupling function betweenφ and CDM together
with a separately postulated exponential potential [10].
However, a really satisfactory solution is still miss-



138 W. Zimdahl et al. / Physics Letters B 521 (2001) 133–138

ing. What one would like to have is an interaction
which is negligible in the matter dominated era and
asymptotically approaches (17) for large times. We
hope that our stationary solution will give an indi-
cation for a quintessence–CDM coupling that, aside
from characterizing the stationary state of the late
accelerated expansion, smoothly joins the previous
matter-dominated era of decelerated expansion when
one goes backward in time.
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