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Understanding the relationship between landscape pattern and environmental processes requires quantification
of landscape pattern at multiple scales. This will make it possible to relate broad-scale patterns to fine-scale pro-
cesses and vice versa. In this study,we used class level landscapemetrics calculated atmultiple scales tofit scaling
functions that were used to downscalemetrics at higher resolutions. Themain objectives were to assess the per-
formance of different type of functions (i.e. power, logarithmic, etc.) to downscale metrics at the subpixel level
and to analyze the variability of the accuracy of subpixel estimates amongpatch classes for each landscapemetric.
We used thirteen frequently used landscape metrics, computed on a land use/land cover map derived from
Landsat imagery through visual interpretation and supervised classification using Support Vector Machines.
The performance of scaling functions was assessed with the Accuracy Improvement percentage (AI). In general,
the power function fitted better formost landscapemetrics and classes; however, in several cases, more than one
type of function showed similar R2 values. Accuracy of subpixel estimates was very variable among landscape
metrics and also among patch classes within a metric. The amount of variation was such that no generalization
about the predictability of a landscape metric calculated at the class level was possible. Indeed, predictability
seemed to be more of a characteristic of the class than a characteristic of the landscape metric. Additionally,
the goodness of fit of the scaling functions was not a good indicator of the functions' ability to downscale
landscape metrics accurately, indicating that different scaling functions should be analyzed when downscaling
landscape metrics at higher resolutions is required.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

One of the main goals of landscape ecology is to understand how
ecological systems work, assuming that the spatial arrangement of eco-
systems, habitats or communities, that is, the landscape pattern or struc-
ture, is inextricably linked to environmental processes (Gustafson,
1998; Swanson et al., 1988; Turner, 1990; Turner and Gardner, 1991;
Wiens, 1989). Before going further into this interaction between pattern
and processes, landscape structuremust be appropriately identified and
quantified (Turner, 1990; Turner et al., 1989). Several landscape indices
or metrics have been developed for landscape pattern quantification,
belonging to three different levels of analysis: patch, class and land-
scape. Patch indices are computed for single patches of a class type
and class indices represent the spatial pattern of a class type. Instead,
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landscape indices represent the spatial pattern of the whole landscape
mosaic, considering all patch types simultaneously (McGarigal et al.,
2002). All three levels of indices provide numerical data on landscape
structure and configuration, proportion of classes and shape and area
of landscape elements (Peng et al., 2010; Vila Subirós et al., 2006). Quan-
tification of landscape pattern allows for objective comparisons of land-
scapes as well as land use/cover changes monitoring over single areas
(Li and Reynolds, 1994) and further studies aiming to shed light on
the mechanisms underlying its origin and maintenance (Griffith et al.,
2000; Levin, 1992).

When analyzing landscape pattern it is of fundamental importance
to be aware that the systems' description will depend on the scale cho-
sen (Forman and Godron, 1981; Stohlgren et al., 1997; Turner, 1990;
Wiens, 1989). Turner (1989) identifies two components defining
scale: grain and extent. The former refers to data resolution, which in
the case of satellite imagery corresponds to pixel size and the latter re-
fers to the size of the area under study. Then, the question of how to de-
fine the proper scale for description arose (Lam and Quattrochi, 1992).
However, if environment is seen from the perspective of the level of or-
ganization of a species, it should be considered that each specieswill ex-
perience the system in a unique range of scales (Nams et al., 2006;
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Wiens and Milne, 1989). As a result, instead of trying to identify the
“correct” scale to describe a landscape, it would bemore valuable to un-
derstand how it changes through scales (Levin, 1992; Qi andWu, 1996).

Also, to relate landscape pattern to process, landscape heterogeneity
must be quantified atmultiple scales (Turner et al., 1989;Wu andDavid,
2002) in order to be able to relate broad-scale patterns to fine-scale pro-
cesses and vice versa, since patterns interact with processes at multiple
scales. Thus, methods for scaling or extrapolating information across
scales are indispensable (Saura and Castro, 2007; Shen et al., 2004;
Wiens et al., 1993). Unfortunately, our knowledge is still rather limited
on this topic and the development of such methods turns very difficult
due to the complexity of interactions between pattern and processes
(Wu and David, 2002; Wu et al., 2002).

In order to deal with landscape pattern quantification at multiple
scales, Wu (2004) and Wu et al. (2002) proposed ‘scalograms’, which
consist of curves that represent the value of a landscape metric as a
function of a variable grain or extent. In these studies, scalograms
were built for class and landscape level metrics over different types of
ecosystems; then data were fitted to simple functions and their param-
eters were calculated. According to the goodness of fit, it was suggested
that some metrics could be extrapolated to different scales simply and
precisely. Nevertheless, Saura (2004) and García-Gigorro and Saura
(2005) observed that, to obtain the parameters of those scaling func-
tions, empirical data at larger pixel sizes or extents were necessary. At
this point, the use of such functions to extrapolate landscape metrics
at broader scales becomes meaningless.

Instead, Saura (2004) suggested that themajor interest of the scaling
functions remained on the estimation of landscape pattern metrics at
the subpixel level, that is, estimating landscape metrics at finer spatial
resolutions (i.e. finer grain/pixel) by using functions developed on
data from coarser resolutions. This methodology provides an overall
subpixel metric value without requiring any previous information on
patterns at the subpixel level. However, it does not provide spatially ex-
plicit landscape patterns (Saura and Castro, 2007). Downscalingwill en-
able comparison and integration of disparate datasets, which are useful
for many applications (Atkinson, 2012). For instance, since patterns in-
teract with processes at multiple scales, understanding pattern-process
relationships might need, at some point, landscape pattern data at
higher resolutions than available. Also, downscaling landscape metrics
will allow comparing a landscape at two or more different points in
time, if data available has different spatial resolutions, without losing
information.

Working with scaling functions requires consideration of the ‘scale
domain’ concept proposed by Wiens (1989). A domain of scale repre-
sents a portion of the scale spectrum at which pattern does not change
or changes are predictable. However, extrapolation between domains
turns difficult due to the characteristics of the transition zone
(Wheatley, 2010). An important issue to deal with when developing
scaling functions from remote sensing aggregated data is the challenge
of adequately matching the scales of observation with the ecological
scales affecting organisms or processes of interest (Karl and Maurer,
2010a, 2010b).

To our knowledge, only García-Gigorro and Saura (2005) and Saura
and Castro (2007) tested scaling functions to downscale landscapemet-
rics. The former study reported inaccurate subpixel estimates of land-
scape metrics on binary forest/non-forest maps by fitting the scaling
functions using data at only two different pixel sizes. The latter, tested
scaling functions fitted using different ranges of spatial resolution in
various multi-class landscapes and found that many metrics could be
accurately extrapolated at finer resolutions. Nevertheless, accuracy of
subpixel estimates was reported as averages of the different land
cover classes and it still remains unknown how variable the accuracy
of subpixel estimates can be among classes. Additionally, scaling func-
tions were fitted according to the scaling behavior (i.e. type of function)
reported by previous research in different landscapes. This might not be
optimal since the behavior of landscapemetrics across scales is variable
among landscapes and extrapolation from one region to another may
not provide the best results (Turner et al., 1989). So, themain objectives
of this studywere: i) to assess the performance of different type of func-
tions to downscale frequently used class-level landscape metrics at the
subpixel level; and ii) to analyze the variability of the accuracy of
subpixel estimates among patch classes within this frequently used
class-level landscape metrics.

2. Materials and methods

2.1. Study area

Landscapemetricswere calculated on a Flooding Pampa landscape, in
central Buenos Aires province, Argentina: the lower basin of the Azul
stream (ca. 3750 km2, Fig. 1, Centroid: 36° 29′ 35″ S, 59° 35′ 34″ O).
The combination of climatic, topographic and edaphic conditions pro-
duces recurrent flooding which originates temporal and permanent
water bodies and limits crop yielding to relatively higher lands. The
main productive activity of the lower basin is cattle rising based on
natural grasses. Originally, this landscape was dominated by Paspalum
quadrifarium, a native tussock grass locally known as “pajonal”
(Vervoorst, 1967). However, due to its low palatability, farmers tend to
replace pajonals (Laterra et al., 1998) and thus, only relic patches of this
native tussock remain nowadays, surrounded by a matrix of short
grasses, composed mainly of other native species of the Pampa. In sum-
mary, four land use/land cover (LULC) classes can be identified as domi-
nant in the study area: Short Grasses, Pajonals, Annual Crops and Water
Bodies.

2.2. Mapping of land use/land cover classes

Land use/land cover classesweremapped by supervised classification
of satellite imagery and visual interpretation. Three Landsat TM images of
30mpixel resolution (path/row225/85) acquired on18/10/2009, 12/04/
2010 and 19/09/2010 and downloaded from http://www.inpe.br were
used to map native grasses and Crops while two additional images of a
wetter period (20/06/2006 and 06/11/2006)were also used tomap tem-
porary and permanentWater Bodies by visual interpretation considering
a minimum mapping unit (MMU) of 9 pixels (≈1 ha). Imagery pre-
processing included conversion of digital numbers to reflectance, accord-
ing to coefficients of Chander et al. (2009), and geometrical correction. To
do so, a previously georeferenced panchromatic Landsat ETM + image
was used as the reference map, which was geometrically corrected
using ground control points from topographic maps (1:50,000, Gauss–
Krüger projection, Datum Campo Inchauspe, International Ellipsoid of
1924) from the Military Geographic Institute. Our images were regis-
tered using 27 ground control points spread over the entire images
with a root mean square error (RMSE) lower than 1 pixel.

A supervised classification was performed over the six reflective
bands of 2009 and 2010 imagery (bands 1–5 and 7) to map Short
Grasses, Pajonal and Annual Crops. The latter were divided into winter
and summer crops for the purpose of digital classification, since their
spectral responses differ markedly during the year. However, they
were then merged for landscape metrics calculation and further analy-
sis. Classification was performed using Support Vector Machines
(SVM, Melgani and Bruzzone, 2004), which transform training data
into a higher dimensional feature space through a kernel where a linear
separating hyperplane between classes can be fitted. The kernel used
was the Gaussian Radial Basis Function (RBF) and a 10 fold cross valida-
tion, performed with R 2.10.1 (R Development Core Team, 2010), pack-
age “e1071” (Dimitriadou et al., 2010), was used to set the two
parameters required by RBF: the error penalty of misclassified training
data (C) and the width of the Gaussian kernel function used (γ). The
ranges of values considered were C∈[2−5, 215] and γ∈[2−15, 23], ac-
cording to recommendations of Hsu et al. (2009). The one against one
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Fig. 1. Land use/land cover map of the Azul stream lower basin.
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strategy was used to assign the class of each pixel, since it proved to be
better than others (Hsu and Lin, 2002).

Smoothing techniques were applied to the raw LULC map before
spatial analysis (Kelly et al., 2011) to improve visualization and classifi-
cation accuracy. We applied a majority filter, which is a logical operator
appropriate for categorical maps (Benson and MacKenzie, 1995;
Lillesand et al., 2008), using a 3 × 3 sized window. This filter replaces
the central pixel of the considered window with the most frequent
class appearing in it.

Additionally, patches of Annual Crops smaller than 21 pixels (b2 ha)
were eliminated, because they were considered as classification errors,
since no crop fields smaller than 2 ha were observed on the field. The
gaps left after elimination were filled with successive applications of
majority filters only affecting blank spaces.

Two novel land cover classes, water courses and roads, were later
added to the LULC map in order to account for their effect on the frag-
mentation of land cover classes (Jaeger, 2000; Swanson et al., 1988).
The influence of these linear elements on fragmentation is sometimes
overlooked in landscape pattern studies. These land cover classes
were derived by rasterization of the vector layers and applying a buffer
of 1 pixel for both classes.
2.3. Ground data and accuracy assessment of the LULC map

A total of 416 ground control points (GCPs) were collected and spa-
tially referenced with a ProMark 3 GPS between October and December
2009. EachGCPwas digitized as a polygon of approximately 3 × 3 pixels
and rasterized afterwards. In order to prevent classification from being
influenced by both training and assessing data selection, a stratified
random sampling was performed to generate training and assessing
data sets (Foody et al., 2006; Oommen et al., 2008). This selection strat-
egy helps to minimize the effects of spatial auto-correlation of blocks of
pixels of grounddata collected (Mather, 2004). From the total number of
pixels of ground truth, 70% was used to train the classifier and the re-
maining 30% was used to evaluate classification accuracy.

Classification accuracy was assessed with an error matrix, and
overall accuracy was derived as the percentage of pixels correctly
classified (Congalton, 1991). Additionally, producer's accuracy and
user's accuracy (PA and UA, respectively) of each class were calculat-
ed to evaluate individual precisions. PA reports the proportion of
each class that is correctly identified by classification and UA repre-
sents the proportion of pixels on the map that actually occurs on
the ground (Chuvieco, 2002).
2.4. Landscape metrics

Scaling functions were fitted for 13 landscape metrics calculated at
the class level, considering the 8-neighborhood rule to define a patch:
number of patches (NP), total edge (TE), large patch index (LPI), Mean
patch size (MPS), patch size standard deviation (PSSD), patch size coef-
ficient of variation (PSCV), landscape shape index (LSI), mean patch
shape index (MSI), area-weighted mean patch shape index (AWMSI),
mean patch fractal dimension (MPFD), area-weightedmean patch frac-
tal dimension (AWMFD), mean Euclidean nearest neighbour distance
(ENND_MN) and Euclidean nearest neighbour distance standard devia-
tion (ENND_SD) (for further description of landscape metrics see Ap-
pendix A). Landscape metrics were calculated with Fragstats 3.3
(McGarigal et al., 2002).
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2.5. Scaling functions development and improvement assessment

Landscapemetrics at different spatial resolutionswere calculated on
coarse resolution LULC maps derived from the original 30 m resolution
map. Pixel size was systematically changed from 1 to 100p (where p is
the number of original 30mpixels on a side of the new square aggregat-
ed pixel), increasing pixel length by 1p from 1 to 15p and then by 10p,
from20 to 100p (Wu et al., 2002). Pixel aggregation followed themajor-
ity rule, whichworks in the sameway as themajority filter explained in
Section 2.2. It is a logical operator appropriate to aggregate categorical
data and is commonly used in ecology and remote sensing to this pur-
pose (e.g., Benson and MacKenzie, 1995; Saura and Castro, 2007; Shen
et al., 2004; Wu, 2004; Wu et al., 2002). Each time, aggregation started
with the original data (1p) instead of a cumulative procedure that may
introduce more errors (Wu, 2004).

Landscape metrics were then calculated on each map. Scalograms
were created from landscapemetrics across scales and scaling functions
fitted from the scalogram of each landscape metric and land cover type.
Four different types of functions were tested: linear (1), power (2), log-
arithmic (3) and exponential (4):

y ¼ a � xþ b ð1Þ

y ¼ a � xb ð2Þ

y ¼ a � ln xþ b ð3Þ

y ¼ a � eb�x ð4Þ

where y is the class metric value corresponding to a pixel size x (length
of the pixel size) and a and b are constants that characterize the metric
scaling behavior. All scaling functions having coefficients of determina-
tion (R2)≥ 0.70were used to estimate landscapemetrics at the subpixel
level. Additionally, the influence of the range of the spatial resolutions
used to fit the scaling function in the accuracy of the subpixel estimates
was tested, varying the amount of data points from 4 (2p to 5p) to 23
(2p to 100p).

Accuracy assessment of landscape metrics estimates at the target
resolution requires their comparisonwith the true values of the indices.
To this purpose, target resolution was fixed at the original spatial reso-
lution of 30m and the scaling functionswere fitted starting from a pixel
size of 2p (Saura and Castro, 2007). Thismeans that our subpixel level is
not actually subpixel in terms of our 30 m resolution map, but it is in
terms of the aggregated pixels we used to fit scaling functions.

The performance of the scaling functions for landscape metrics esti-
mation at the subpixel level was assessed through the accuracy im-
provement percentage (AI) (Saura and Castro, 2007), computed as:

AI %ð Þ ¼ 100
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where Yact is the value of the landscape metric at the target resolution
(i.e. computed on the original map with the software), Yest is the value
of the landscape metric estimated at the target resolution through the
scaling function and Yfin is the landscape metric value at the finest spa-
tial resolution included to fit the scaling function (i.e. the landscape
metric value computed at the spatial resolution of 2p). AI values range
from −100 to 100%, reaching its maximum when the scaling function
estimate equals the real value (Yact = Yest). When AI = 0%, the scaling
function does not provide any improvement in the downscaling proce-
dure and negative values are obtained when estimates are worse than
using Yfin as the metric value at the target resolution (Saura and
Castro, 2007).

The use of AI is advantageous because it considers the ranges of var-
iation of eachmetric, which avoids giving a false impression of accuracy
for low variability metrics to which estimates can be very close to the
actual value at the target resolution (Saura and Castro, 2007). The fol-
lowing categorization of the accuracy improvements achieved by
subpixel estimates is proposed to analyze results: High (AI ≥ 70%),
Moderate (AI between 40 and 69%), Low (AI between 20 and 39%)
and Very Low (AI ≤ 19%).

3. Results

3.1. Classification accuracy

A very good overall accuracy of 95.8%was obtained, with both annu-
al crop classes identification higher than 97% (i.e. Producer's accuracy)
and Short Grasses higher than 99%. Pajonals had lower percentage of
identification (≈73.8%), but still over the 70% suggested as minimum
for individual classes (Thomlinson et al., 1999). Pajonals were con-
foundedwith Short Grasses (Table 1), probably due to pajonals' intrinsic
heterogeneity, because it sometimes occurs as open stands, with tus-
socks intermixing with Short Grasses, as reported by Herrera et al.
(2009). Short Grasses (SG) represented 76.4% of the study area, clearly
constituting the landscape matrix, while the other classes represented
much lower proportions, with Crops (CR) accounting for 11.4%, Water
Bodies (WB) for 5.9%, Pajonals (PJ) for 2.8% and others for 3.4%.

3.2. Upscaling behavior of landscape metrics

In general, landscape metrics behavior was consistent in all classes
when increasing pixel size, with some exceptions regarding Short
Grasses. As resolution turns broader, smaller patches tend to disappear
or merge into larger patches, thus decreasing the number of patches,
but increasing in size and also in isolation. These larger patches have
lower edge to area ratios and as a result of the larger pixels, patches
have simpler shapes. These facts explain the decreasing behavior of
NP, TE and LSI and the increasing behavior of MPS and ENND_MN
(Fig. 2). Variability metrics, such as PSSD and ENND_SD increased with
larger pixel sizes because as patches became larger so did the absolute
variability. Conversely, since MPS increased with pixel size in a higher
rate than PSSD, the relative variability (i.e. the variability as a percentage
of the mean: PSCV) decreased as pixel size increased (Fig. 2).

Large patch index behavior was different among patch classes. For
Short Grasses it increased up to a nearly asymptotic value, while for
Pajonal it maintained below 0.5% up to a pixel size of 60p and then in-
creased up to 2% on average. Water Bodies and Crops had LPI values
lower than 1% for all pixel sizes; the former reached a constant value
until its disappearance and the latter exhibited mostly a decreasing
behavior.

In general, shape metrics exhibited a decreasing behavior at larger
pixels. However, Short Grasses exhibited an increasing behavior for
MSI and MPFD up to 30p, the pixel size at which the class clumped
into only one patch. This is probably because Short Grasses is the land-
scape matrix, and as pixel size increases nearest patches tend to merge,
resulting in a more complex shaped patch. Nevertheless, when these
metrics were weighted by area (AWMSI and AWMPFD), they only in-
creased between 1p and 3p (Fig. 2). This different behavior of SG is sup-
ported by Frohn and Hao (2006) that reported different behaviors of
these two metrics with class proportions.

The landscape metrics response to changes in spatial resolution ob-
served here is in accordance to other studies and also shows the influ-
ence exerted by the proportion of the class on such behavior (see Bar
Massada et al., 2008; Benson and MacKenzie, 1995; Frohn and Hao,
2006; García-Gigorro and Saura, 2005; Li et al., 2011; Peng et al., 2010;



Table 1
Error matrix of SVM classification of Landsat TM images of Azul stream basin.

Classified
data

Reference data [pixels] Total UA [%]

Summer crops
(SC)

Winter crops
(WC)

Short grasses
(SG)

Pajonal
(PJ)

SC 201 0 0 0 201 100
WC 0 167 0 0 167 100
SG 4 2 833 45 884 94.2
PJ 1 0 6 127 134 94.8
Total 206 169 839 172 1386
PA [%] 97.6 98.8 99.3 73.8

UA: User's accuracy; PA: Producer's accuracy.

Fig. 2. Scalograms of class le
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Saura, 2004; Saura and Castro, 2007; Shen et al., 2004; Turner et al.,
1989; Wu, 2004; Wu et al., 2002).
3.3. Downscaling functions of landscape metrics

Four different types of functions were used to fit landscape metrics
behavior for each land cover class. Some metrics, though, could only
be fitted to some of these functions at short ranges of spatial resolutions
and usually they provided inaccurate subpixel estimates. Similarly to
Wu (2004) and Wu et al. (2002), the power function fitted better for
most landscape metrics and land cover classes; however, in several
vel landscape metrics.



Table 2
Summary of the goodness of fit of landscape metrics to four different scaling functions. Best fitting functions are indicated in bold and best estimating functions are underlined.

Landscape metric Class Linear Potential Logarithmic Exponential

n n′ R2 n n′ R2 n n′ R2 n n′ R2

NP PJ 2 2 0.851 15 15 0.967 3 3 0.892 15 15 0.827
CR 6 6 0.904 15 15 0.883 7 7 0.945 15 15 0.944
SG 1 1 0.915 15 15 0.945 1 1 0.944 15 10 0.792
WB 2 2 0.850 11 11 0.895 3 3 0.880 11 11 0.886

AWMSI PJ 15 5 0.571 15 15 0.820 15 14 0.800 15 5 0.601
CR 15 14 0.746 15 13 0.838 15 13 0.847 15 13 0.797
SG 6 6 0.791 15 15 0.923 7 7 0.859 15 15 0.837
WB 11 2 0.474 11 2 0.397 11 2 0.396 11 2 0.474

TE PJ 11 5 0.585 15 15 0.913 12 9 0.802 15 8 0.705
CR 7 7 0.868 15 15 0.840 9 9 0.912 15 15 0.918
SG 6 6 0.805 15 15 0.932 7 7 0.886 15 15 0.868
WB 3 3 0.852 11 11 0.888 6 6 0.893 11 11 0.868

LSI PJ 7 6 0.785 15 15 0.961 8 8 0.899 15 15 0.819
CR 8 8 0.851 15 15 0.885 11 11 0.928 15 15 0.922
SG 6 6 0.775 15 15 0.863 7 7 0.849 15 15 0.804
WB 6 6 0.874 11 11 0.900 7 7 0.911 11 11 0.884

LPI PJ 15 13 0.791 15 9 0.752 15 2 0.612 15 14 0.844
CR 15 4 0.393 15 2 0.304 15 2 0.316 15 2 0.381
SG 15 11 0.738 15 15 0.909 15 15 0.913 15 9 0.719
WB 11 5 0.585 11 7 0.642 11 7 0.647 11 5 0.573

MPS PJ 15 15 0.918 15 15 0.970 15 7 0.724 15 15 0.895
CR 15 15 0.935 15 15 0.953 15 12 0.804 15 15 0.915
SG 15 14 0.834 15 15 0.944 15 8 0.705 15 10 0.792
WB 11 11 0.895 11 11 0.909 11 5 0.708 11 11 0.906

PSSD PJ 15 15 0.901 15 15 0.952 15 9 0.739 15 15 0.910
CR 11 11 0.899 11 11 0.948 11 11 0.927 11 10 0.845
SG 7 7 0.924 7 7 0.951 7 7 0.860 7 7 0.910
WB 11 10 0.870 11 11 0.902 11 7 0.761 11 10 0.857

AWMFD PJ 15 7 0.672 15 15 0.887 15 15 0.884 15 7 0.677
CR 15 14 0.800 15 14 0.852 15 14 0.757 15 14 0.794
SG 15 15 0.834 15 15 0.916 15 15 0.918 15 15 0.846
WB 11 2 0.442 11 0 0.295 11 0 0.295 11 2 0.390

PSCV PJ 15 6 0.666 15 15 0.940 15 15 0.892 15 11 0.782
CR 11 11 0.835 11 10 0.800 11 10 0.837 11 10 0.852
SG 4 4 0.867 7 7 0.937 6 6 0.929 7 7 0.925
WB 10 9 0.867 11 8 0.795 11 9 0.841 11 10 0.897

MSI PJ 15 5 0.489 15 9 0.634 15 9 0.636 15 5 0.490
CR 15 11 0.756 15 15 0.935 15 15 0.928 15 12 0.786
SG 15 7 0.603 15 10 0.722 15 3 0.609 15 8 0.662
WB 11 2 0.267 11 2 0.230 11 2 0.231 11 2 0.266

MPFD PJ 15 6 0.609 15 12 0.812 15 12 0.812 15 6 0.610
CR 15 10 0.760 15 15 0.944 15 15 0.943 15 10 0.766
SG 15 2 0.463 15 0 0.422 15 0 0.417 15 2 0.468
WB 11 2 0.390 11 2 0.518 11 2 0.519 11 2 0.390

ENND_MN PJ 15 15 0.973 15 15 0.970 15 15 0.908 15 15 0.847
CR 11 11 0.961 11 11 0.966 11 9 0.834 11 11 0.939
SG 8 8 0.993 8 8 0.994 8 8 0.946 8 8 0.948
WB 11 9 0.847 11 11 0.915 11 8 0.723 11 10 0.880

ENND_SD PJ 15 15 0.909 15 15 0.953 15 15 0.917 15 13 0.791
CR 11 10 0.831 11 10 0.787 11 6 0.686 11 11 0.870
SG 6 1 0.342 6 1 0.427 6 1 0.394 6 1 0.368
WB 11 9 0.781 11 9 0.824 11 7 0.656 11 9 0.797

n: number of equations that fitted the function; n′: number of equations that fitted the function with R2 ≥ 0.70; R2: average R2 values from all fitted functions.
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cases, more than one type of function yielded similar average R2 values
(Table 2).

For NP, TE and LSI, the power function fitted better for three classes,
while the exponential and logarithmic functions also fitted similarly
well for two classes, though this latter for shorter pixel ranges
(Table 2). This similarity in the behavior of LSI and TE scalograms may
be related to their mathematical relationship, since LSI is proportional
to TE (McGarigal et al., 2002).

LPI fitted better and similarly to both the power and the logarithmic
functions for two classes: Short Grasses andWater Bodies (although R2

values forWater Bodies were lower than 0.7 on average, for seven pixel
ranges this value was exceeded). Also, the exponential function charac-
terized better the behavior of one class (Table 2).

For AreaWeighted Shape metrics (AWMSI and AWMFD) the power
and logarithmic functions fitted better for three and two classes respec-
tively. Likewise, the power function fitted better for MSI and MPFD for
three and two classes respectively, while bothmetrics also showed sim-
ilar goodness of fit to the logarithmic function for two classes (Table 2).

For MPS and PSSD the power function fitted better for all classes,
with MPS also showing similar goodness of fit to the linear and expo-
nential functions for some classes. PSSD was the only metric for which
the power function exhibited the best average R2 values for all classes
with no other function fitting similarly. Conversely, for PSCV the expo-
nential function fitted better for three classes, being the only metric
showing a higher number of classes fitting better to a different function
than the power (Table 2).

For ENND_MN thepower function fitted better for all classes, though
the linear and exponential functions also fitted similarly well for three
and two classes respectively. For ENND_SD, the power and exponential
functions fitted better for two classes (Table 2).

In summary, for twelve metrics the power function fitted better for
most classes with two metrics also fitting similarly well to the
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logarithmic function. The exponential function fitted better for the re-
maining metric (PSCV). The second and most frequent best fitting
function was the exponential function with five metrics, then the loga-
rithmic, lineal and power with three, two and onemetrics, respectively.

3.4. Best accuracy improvement curve selection

Determination of the best AI curvewas evident in some cases (Fig. 3a
and b) when only one curve had notably higher AI values than the
others. In some cases, though, two curves exhibited similar behavior
and so the onewith the highest values was chosen, such as the logarith-
mic function for MSI-PJ and LPI-Short Grasses (Fig. 3c and d). Addition-
ally, best AI curves for some metrics were chosen because of having
higher positive and consecutive values against other curves which fluc-
tuated between positive and negative values, such as the lineal over the
exponential AI curve for NP-Crops (Fig. 3e). Similarly, stable curves
were chosen against variable ones such as the power AI curve over the
linear curve for PSSD-SG (Fig. 3f). Fluctuating curves are considered un-
desirable since when we use the scaling function to estimate landscape
metrics at the subpixel level (whichmeans thatwe have to set the range
of pixel sizes fromwhich to calculate the function parameters), stable AI
values over a certain range of pixel ranges will assure that estimates fall
within these AI values. Conversely, if AI curves fluctuate we will not
know if we are on a maximum or a minimum peak of accuracy
improvement.

Finally, for some classes andmetrics very fewAI valueswere positive
for any function type (Fig. 3g and h), meaning that subpixel estimates
are worse than using Yfin as an estimator. However, themost acceptable
AI curve was chosen for this article in order to show the range of AI
values achieved by them.

A total of 52 AI curves were selected, corresponding to the 13 land-
scape metrics and 4 land cover classes. In 35 of these cases best fitting
functions provided the best AI curves (Table 2). From these, 19 showed
positive andmoderate to high and continuous AI values and 16 exhibit-
ed very low or highly variable AI values. Conversely, in 10 cases the best
AI curves were not achieved with the best fitting functions and in 7
cases theminimumgoodness of fit accepted here (R2≥ 0.7)was obtain-
ed only at no more than two pixel ranges (Table 2), suggesting that
these curves should not be considered for further analysis.

3.5. Accuracy improvement of subpixel estimates

The improvement in accuracy achieved by the downscaling func-
tions was considerably variable. This variation occurred between land-
scape metrics and also among land cover classes within a metric. No
landscape metric showed very good AI curves (i.e. high AI values for
several consecutive pixel ranges) for all LULC classes, although
ENND_MN and MPS AI curves were very good for Pajonal and Short
Grasses and the formermetric had also a relatively good curve (i.e.mod-
erate AI values butmore fluctuant) forWater Bodies (Fig. 4a and h). Ad-
ditionally, LSI and PSSD showed very good AI curves for Pajonal and
Crops and relatively good for Short Grasses (Fig. 4b and c). On the
other hand, LPI was the only metric for which no improvement in accu-
racy could be achieved for any land cover class (Fig. 4d).

NP subpixel estimates were moderately accurate for Pajonal at pixel
ranges up to 30p. Low to moderate AI values were achieved at short
pixel ranges for Crops, whereas the best AI values for Short Grasses
were found at larger pixel ranges. Water Bodies estimates provided
very low AI values (Fig. 4e).

AWMSI and AWMFD showed similar results, with more accurate
subpixel estimates for Pajonal and Crops at short pixel ranges, showing
high and lowAI values respectively. Conversely, Short Grasses estimates
were more accurate at large pixel ranges, reaching amaximum AI value
around 50% (Fig. 4f). Also, MSI and MPFD showed similar results, with
the accuracy of estimates for Pajonal being moderate to high at short
to mid pixel ranges, whereas the accuracy of Crops subpixel estimates
was low to very low (Fig. 4i). Similarly, subpixel estimates for TE and
ENND_SD were only accurate, moderate to high respectively, for
Pajonal, while the other classes had low to very low AI values (around
−60% for ENND_SD) and, in some cases, very fluctuating (Fig. 4g).

PSCV subpixel estimates reached highAI values for Pajonal at shorter
pixel ranges, while for the other classes they increased at larger pixel
ranges but reaching low to very low positive values (Fig. 4j).

4. Discussion

4.1. LULC map post-processing and data aggregation

In this paper, coarse resolution maps were generated by aggregating
the original 30 m pixels using the majority rule. Benson and MacKenzie
(1995) and Saura (2004) observed that themajority rule producedmore
fragmented patterns than those directly mapped from coarse resolution
images. These differences were attributed to two limitations of the ma-
jority rule for scaling-up landscape patterns (Saura, 2004): i) it assigns
the same weight to all the pixels within the aggregating window,
while sensors receive a stronger signal fromobjects located near the cen-
ter of the IFOV (Instantaneous field of view), and ii) the signal attributed
by the sensor to any given pixel is affected by the signal of neighboring
pixels. Other strategies also exist to obtain data at different spatial reso-
lutions. Frohn andHao (2006) compared the effect of spatial aggregation
on landscapemetrics by themajority rule and by texture filtering before
classification, finding similar results with both methods. Kelly et al.
(2011) analyzed the effect of changing both grain size and MMU on
landscapemetrics, concluding that changing grain sizewasmore consis-
tent than changingMMU. This influence of MMU should not have affect-
ed our results forWater Bodies and Crops. First, because it is not evident
at small MMU, as is the case of Water Bodies (3 × 3 MMU) and second,
because theMMU applied to Crops pursued the elimination ofmisclassi-
fication errors.

Another important consideration related to data aggregation is the
challenge of matching the scales of observation to the ecological scales
affecting organisms or processes of interest (Karl and Maurer, 2010b).
Karl and Maurer (2010a) found that defining observational scales by
segmentation correlated better to field data than by aggregation of
pixels using regular square grid cells. This was attributed to a better
preservation of boundaries with segmentation, because as pixels be-
come larger, observations made near boundaries may fall into mixed
pixels that obscure the correlation between the field measurements
and remotely sensed data. Nevertheless, in the case of Landsat data, rel-
ative correlation strength between the segmentation approach andfield
data was similar to the pixel aggregation approach.

Additionally, other processing routines and choices will influence
landscape metrics behavior. Changing the spatial extent of the stud-
ied area and thematic resolution will greatly affect landscape indices
(Baldwin et al., 2004; Wu, 2004; Wu et al., 2002). The classification
approach chosen to classify remotely sensed imagery will determine
some characteristics of the LULC map that will influence landscape
pattern analysis. Pixel-based classifications are based on the spectral
information of each pixel and preserve patches as small as the pixel
size of the imagery. This provides a speckled appearance to LULC
maps, called the ‘salt and pepper’ effect. On the other hand, object-
based classifications minimize this issue by considering both spec-
tral and spatial similarity to segment imagery into objects before
classification (Blashke, 2010). Pixel-based classifications often
need post-classification processing, such as smoothing techniques.
In our study we applied a majority filter to deal with the ‘salt and
pepper’ effect. Although this filtering yields a type of scaling that af-
fects landscape metrics calculation (Saura, 2004), studies have prov-
en that majority filters improve classification accuracy (Guerschman
et al., 2003) and a higher accuracy was prioritized because results
depended much on the LULC map. The effect of this smoothing filter
on landscape pattern involves the removal of edge complexity and
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the disappearance of small patches (Lechner et al., 2007). As a result,
the number of patches in the landscape decreases, the mean patch
size increases and the shapes of patches become simpler. No effect
was observed on the isolation and proximity of patches (Lechner
et al., 2007). The magnitude of these effects depends on the size of
the neighboring window. As themajority filter was applied to gener-
ate the base LULC map before spatial analysis, its influence was
present in all the successive maps produced by pixel aggregation.

4.2. Scaling behavior of landscape metrics and extrapolation ability

According to the classification of the scaling behavior of landscape
metrics proposed by Wu (2004), our indices TE, LSI, and ENND_MN
should be categorized as Type IA (i.e. consistent and robust scaling
behavior) and NP, MPS, PSSD, PSCV, AWMFD, and AWMSI as Type IB
(i.e. consistent scaling behavior). “Consistent”means similar scaling re-
lations between different landscapes (here comparing with results of
Wu (2004)) and “robust” refers to similarity between scaling relations
of different patch types. On the other hand, LPI, MSI, MPFD and
ENND_SD should be classified as Type II (i.e. unpredictable varying scal-
ing behavior). Considering the accuracy improvements obtained in this
study, our results seem to be partially in accordance with Wu's results
(2004), which suggested that Type I metrics could be accurately extrap-
olated through spatial scales. In general, Type IA and Type IB metrics
provided both moderate to high AI values for two or three LULC classes,
with the exception of PSCV, which had low values for most classes. Con-
versely, Type II metrics showed low to very low AI values, except for
MPFD and ENND_SD, which exhibited moderate and high values for
Pajonal, respectively. Despite this apparent predictability of most of
the metrics analyzed in our study, we do not recommend taking this
as a ‘rule of thumb’ for such metrics, since the accuracy of subpixel esti-
mates is very variable among class types for many metrics, as already
shown in Section 3.5, and seems to be more of a characteristic of the
class type than a characteristic of the metric.

Additionally, it is important to recall thatWu's (2004) categorization
derives fromvisual interpretation of scalograms,whichmayhave disad-
vantages since it can be an artifact of the observational scale (Wheatley,
2010) and, in addition, the shape of the scaling function is also depen-
dant on the range of pixel sizes considered in the analysis and the incre-
ment size between successive steps of the changing scale parameter
(Šímová and Gdulová, 2012). For instance, Saura and Castro (2007) ob-
tained their best subpixel estimates for a metric classified as Type IB by
Wu (2004). However, such categorization may not be the most appro-
priate in terms of their data since they assumed that this metric scaling
behavior was equal to Wu's (2004), and we have shown that such be-
havior is variable among landscapes, as stated by Turner et al. (1989).

4.3. Accuracy of subpixel estimates

Accuracy of subpixel estimates was very variable among class types
within a landscape metric, with no metric showing accurate estimates
for all LULC classes. Indeed, downscaling accuracy seemed to be more
of a characteristic of the LULC classes than a characteristic of themetrics
themselves. For instance, subpixel estimates for Pajonal were moderate
to highly accurate for 12 of the 13 metrics analyzed in this study (even
forMSI andMPFD, considered as unpredictable byWu (2004))whereas
accuracy ofWater Bodies subpixel estimates was low to very low for 10
metrics. Similarly, Short Grasses and Crops also showed low to very low
AI values for 7 metrics, the former with only 4 metrics showingmoder-
ate to high AI values and the latter exhibiting fluctuating AI curves for
many metrics. This apparent class-dependent predictability might be
related to a variable scaling behavior of landscape metrics through spa-
tial resolutions (García-Gigorro and Saura, 2005; Saura and Castro,
2007), additionally influenced by different patterns and configurations
of each LULC class, which are driven by various mechanisms operating
differentially through scales.
In general, subpixel estimates reached the best AI values when
short pixel ranges (4 to 10 points of spatial resolution) were used
to calculate the scaling function parameters and then they decreased
as the spatial range became wider. Additionally, land cover classes
derived from pixel-based classifications (i.e. Pajonal and Short
Grasses) had, in most cases, better subpixel estimates than object-
based land covers (i.e. Crops and Water Bodies) derived by interpre-
tation of remote sensed images or by determining a MMU. For in-
stance, AI values for Pajonal were more stable than the highly
variable values obtained for Crops, and Water Bodies estimates pro-
vided positive AI values for only a fewmetrics and in most cases they
were all achieved at shorter pixel ranges. Conversely, best AI values
for Short Grasses were obtained at wider pixel ranges and frequently
with increasing positive values. This differential behavior of Short
Grasses estimates may be related to the high proportion and config-
uration of this land cover class (i.e. the landscape matrix), which af-
fect the behavior of landscape metrics through scales (Frohn and
Hao, 2006). Similarly, Saura and Castro (2007) also reported better
performances of scaling functions for pixel-based against object-
based derived land cover classes when scaling at spatial resolutions
smaller than the MMU. Previous research by García-Gigorro and
Saura (2005) and Saura and Castro (2007) also found higher AI
values at shorter pixel size ranges, suggesting that this was a conse-
quence of the variable scaling behavior of landscape metrics through
spatial resolutions. However, these superior results at shorter pixel
size ranges (or larger pixel sizes for Short Grasses) were not related
to a better goodness of fit of the scaling functions.

The goodness of fit of our scaling functions (average R2 values:
Table 2) was similar to Bar Massada et al. (2008) and lower than Saura
(2004), who reported R2 values between 0.96 and 0.99 for some metrics
(although these values may be overestimated since data was previously
log transformed, meaning that largest residuals are underestimated).
Nevertheless, as already mentioned in Section 3.4 and as also observed
by García-Gigorro and Saura (2005) and Saura and Castro (2007), R2 is
not a good indicator of the function's ability to estimate landscapemetrics
at the subpixel level. Saura and Castro (2007) suggested that R2 values
should be much higher than 0.95 to obtain reliable estimates with
power functions. However, our results show that such goodness of fit is
not indispensable to accurately downscale landscapemetrics, sincemod-
erate to high AI values were achieved even with scaling functions show-
ing R2 values around 0.8 (e.g. AWMSI-PJ and MPFD-PJ, Table 2, Fig. 4).

When comparing our best AI values with those results obtained by
Saura and Castro (2007) we found that the improvements in accuracy
were similar for metrics such as NP and MPS, the former ranging from
40 to 70% and the latter around 90% (for two land cover classes). On
the other hand, our TE AI values were slightly lower, between 45 and
55% against 60 to 70% reported by Saura and Castro (2007). Conversely,
we obtained better AI values for LSI and PSSD, frequently around 10 to
20% higher. For area-weighted shape metrics, Saura and Castro (2007)
reported better AI values when land cover maps were derived from
pixel-based classifications. Similarly, in our study, AWMSI-PJ and
AWMFD-PJ (pixel-based) accuracy improvements were nearly twice
the values obtained for Crops (object-based), although this latter had
no differences with the landscape matrix Short Grasses (pixel-based).
For these metrics, Pajonal and Crops AI values were between 10 and
15% better than results reported by Saura and Castro (2007). Our better
performance for some metrics could be explained by the fact that we
identified scaling functions by analyzing different types of functions
(i.e. power, logarithmic, etc.) for our study area, instead of assuming
the same scaling behavior (i.e. function type) as Wu (2004). For in-
stance, Wu (2004) reported a linear scaling behavior for PSSD, whereas
in our study area, although all land cover classes fitted well to this type
of function, R2 values were slightly better for the power function and in
most cases this latter function provided the best AI curves. Similarly, Bar
Massada et al. (2008) also reported different scaling relationships in
their research. The goodness of fit to more than one type of function
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can easily lead to choose a function that may not provide the best esti-
mates of landscape metrics at the subpixel level, as mentioned in
Section 3.4. It is important to recall that some differences between our
results and Saura and Castro's (2007) may be due to the fact that they
reported average AI values for all land cover classes in each landscape,
meaning that their results were better or worse for specific classes.

The very low to negative AI values obtained for LPI subpixel esti-
mates also found by Saura and Castro (2007) should be related to the
low sensitivity of this metric to changes in spatial resolution (García-
Gigorro and Saura, 2005; Saura, 2002), although considerable variability
was reported when class abundance was around 60 to 70% (Saura,
2004), which might be the case of Short Grasses (≈76%). This lower
Fig. 4. Best class accuracy improvemen
sensitivity of LPI to pixel size also explains the lower R2 values of the
scaling functions, similar to Saura (2004). Such insensitivity means
that extrapolating LPI values might not be necessary and comparisons
might be allowed across scales.

Thebetter performance of the scaling functionsfitted at shorter pixel
ranges can be attributed to i) the difficulty of characterizing landscape
pattern with coarse pixels, as mentioned in Section 4.1, ii) a differential
scaling behavior of landscapemetrics through spatial resolutions (Saura
and Castro, 2007), and iii) the existence of domains of scale at those
ranges. Within domains, pattern does not change or changes are pre-
dictable (Wiens, 1989), whereas extrapolation between domains is dif-
ficult due to the presence of a transition zone. In our data, few cases
t curve for each landscape metric.
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indicated the existence of scale domains separated by a transition zone.
For instance, an abrupt change in AI valueswas observed through scales
for TE-PJ between pixel ranges 2–30 and 2–40 and for PSSD- and
ENND_MN-SG between pixel ranges 2–20 and 2–30 (Fig. 4). Instead,
changes in the scale spectrum seemed to be continuous in many other
cases, such as NP-PJ, AWMSI-PJ and -SG, PSSD-PJ, AWMFD-SG, etc.
These progressive changes were also reported by Wheatley (2010) for
many metrics, when analyzing the existence of domains of scale in for-
est ecosystems, suggesting not all phenomena allow discretization. Pre-
vious research analyzing the existence of domains of scale suggested the
use of field measurements to support the identification of scale thresh-
olds and to avoid potential erroneous identification of domains caused
by artifacts in the scaling approach (Karl andMaurer, 2010a). Addition-
ally,Wheatley (2010) highlights the importance of considering not only
average values but also the associated variation to identify scale
domains.

5. Conclusions

In this paper,we used class-level landscapemetrics derived fromdif-
ferent spatial resolution maps to fit scaling functions in order to be able
to estimate these metrics at higher resolutions. Previous research has
analyzed predictability of landscape metrics calculated at the landscape
level but little was known about how variable their scaling behavior
could be (i.e. type of scaling function) and also how variable predictabil-
ity could be among classes within a metric. Our study has shown that
the behavior of landscape metrics through a changing grain size, when
compared with other studies, varies among different landscapes and
that this variation also occurs among the class types within a landscape
metric. Also, even though various types of functions can characterize the
behavior of landscape metrics through scales with similar goodness of
fit (R2), such parameter is not a good indicator of the functions' ability
to downscale landscape metrics, and accuracy of subpixel estimates de-
rived from similarly well fitting curvesmight be very different. As to the
variability of accuracy of subpixel estimates among class types within a
landscape metric, we have found that the amount of variation is such
that no generalization about the predictability of a landscapemetric cal-
culated at the class level is possible. Indeed, predictability seems to be
more of a characteristic of the class type than a characteristic of the
landscape metrics.

As a conclusion of our findings, the downscaling of landscape met-
rics at higher resolutions should include fitting of different type of func-
tions, instead of using scaling behaviors reported in other studies, and
testing their performance for estimating landscapemetrics at the higher
resolutions, without regard to their goodness of fit, in order to deter-
mine the one providing the most accurate estimates.
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