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a b s t r a c t

Understanding the changes in multiphase flow parameters caused by mineral dissolution-precipitation is
required for multiple applications ranging from geological storage of CO2, enhanced geothermal energy
production or ground water pollution. We present a physically-based theoretical model for describing
the temporal evolution of porosity, saturated and relative permeabilities, retention curve and diffusion
coefficient during rock dissolution by reactive fluids. The derivation of the model is based on the assump-
tion that the pore structure of the rock can be represented by an ensemble of capillary tubes with fractal
tortuosity and cumulative pore size distribution. Therefore, the model depends only on the minimum and
maximum pore radii, the size of the representative elementary volume and the fractal dimensions of pore
size and tortuosity, but do not need any other fitting parameters. Using this fractal description and known
physical properties, we obtain analytical expressions for the hydrodynamic properties required by con-
tinuum (i.e., Darcy scale) multiphase flow models. Further, assuming periodic fluctuations in the radius
of the pores, it is also possible to represent constrictivity and hysteresis. Finally, assuming a constant rate
dissolution reaction it is possible to derive closed-form analytical expressions for the time evolution of
porosity, retention curve, saturated and relative permeabilities and diffusion coefficient.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Mineral dissolution or precipitation may play an important role
in many vadose zone and multiphase flow processes. These include
the geological storage of carbon dioxide, enhanced oil or gas recov-
ery, flow and transport in unsaturated soil, geothermal systems,
etc. (e.g., [1], and citations therein). Modelling these phenomena
is most frequently achieved at the continuum (Darcy) scale, which
requires specifying macroscale parameters, such as porosity, satu-
rated and relative permeabilities, retention curve and molecular
diffusion coefficient. Mineral precipitation or dissolution caused
by the flow of a reactive fluid produces volume and surface varia-
tions at the pore level that are translated into variations of the
multiphase flow and transport properties at the macroscale (e.g.,
[2]). The characterization of these parameters and constitutive
relationships is therefore essential for adequate understanding
and modelling of the transport of reactive substances.
Most published studies on dissolution processes in porous med-
ia concentrate on the changes of porosity and saturated liquid per-
meability (e.g., [3]), while relationships with or between the other
multiphase flow parameters have been investigated less inten-
sively. The most widely used approach relates saturated perme-
ability to porosity via a power law K / /n. It can be derived from
the equations of Kozeny [4] and Carman [5], which leads to an
exponent n equal to 3. Later works, e.g., [6–9], showed that this
exponent can actually vary considerably depending on the type
of porous medium and the flow and transport conditions. In some
cases, exponents greater than 10 [6] or even 100 [9] have been
found experimentally, particularly when preferential flow paths
or ‘‘wormholes’’ were developing in previously homogeneous and
isotropic media. These relationships have been applied extensively
(see [10] for a review), but they have been derived for saturated
conditions and are not linked to the other multiphase flow
parameters.

Two families of models can be identified that have the potential
to simulate the impact of dissolution on multiphase flow parame-
ters: Pore scale models and bundles of tubes.

Pore scale models are based on simulating flow, transport and
chemical reactions at the microscale (e.g., [11–14]). In a recent
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review, Meakin and Tartakovsky [14] stated that well-developed
methods are available to represent saturated subsurface flow sys-
tems at the pore-scale. In practice, this is difficult, even for single
phase, because it requires a detailed description of the porous
structure, but it is feasible. However, the simulation of multiphase
systems is much more challenging due to potentially large density
or viscosity ratios of contacting fluids, and the complex behaviour
of fluid-fluid-solid contact lines and their impact on dynamic con-
tact angles. Pore-scale models can represent dissolution or precip-
itation and their impact on fluid flow (e.g., [15–18]). Moreover,
hybrid models and other upscaling approaches have been devel-
oped for combining micro- and macroscale descriptions in order
to study larger (Darcy or field) scale problems (e.g., [19–22]). How-
ever, by requiring an image of the pore space and the link between
pore network and continuum scale equations, these models appear
to be too complex for a widespread application in the near future.

The porous medium can also be represented by bundles of tubes
to derive macroscale continuum properties. Contrary to pore net-
work models, bundles of tubes imply perfect pore connectivity.
As such, they cannot yield multicontinuum descriptions of the
medium, which can be achieved with pore network models (e.g.,
[23–25]). The motivation of bundles of tubes lies on their simplic-
ity. In fact, many empirical models have been developed and
widely used for predicting relative permeability and retention
curve assuming different pore size distributions (e.g., [26–29]).
More recently, fractal distribution has often been adopted to de-
scribe the distribution of pore or particle sizes. They are based on
the assumption that the soil solid phase, the soil void space or both
display self-similarity (e.g., [30–33]). Tyler and Wheatcraft [33] de-
scribed the soil pore size distribution using the Sierpinski Carpet
[34] to develop a power-law form for the retention curve, equiva-
lent to the functions of Brooks and Corey [26] and Campbell [35].
The Sierpinski Carpet has been also used to derive constitutive
models for unsaturated flow in fractured rocks [36,37].

Fractal models of soil mass, pore volume and surface, fragmen-
tation, soil-water retention and unsaturated hydraulic conductivity
were reviewed and compared by Gimenez et al. [38] and Ghanbar-
ian-Alavijeh et al. [39], but none of these approaches are capable of
representing dissolution processes, hysteresis or diffusion.

Actual changes in hydrologic properties of aquifer media caused
by chemical reactions are reviewed by Saripalli et al. [2]. They cite
many different approaches to represent these changes in saturated
media, i.e. geochemical equilibrium and kinetic models, chemical
divide pathway models, flow and transport models, precipitation/
dissolution wave theory, network models, porosity and permeabil-
ity reduction models. However, they did not find any fractal ap-
proaches to model these changes, nor methods for unsaturated
media or multiphase flow problems. More recently, several ap-
proaches have been proposed to model changes in porosity and
permeability due to chemical reactions. Bartels et al. [40] com-
bined the fractal porosity-permeability relationship of Pape et al.
[6] with a numerical reactive transport code to calculate perme-
ability changes in hydrogeothermal problems under fully saturated
conditions from the change of bulk porosity. Freedman et al. [41]
developed a film depositional model of permeability for mineral
reactions in unsaturated media. They assumed that, even at partial
saturation, reactions and volumetric changes occur throughout the
entire pore-size distribution, and that the shape of the pore-size
distribution would remain the same. Wissmeier and Barry [42]
developed a selective radius shift model to describe the effect of
mineral reactions on the hydraulic properties of unsaturated soils.
In their model, reactions occur and pore radii change only in the
smaller, water filled pores.

Hysteresis in the capillary pressure curve, i.e. the differences in
water content at the same matric potential during drying and wet-
ting, occurs due to contact angle effects, entrapped air, swelling
and shrinking, and inkbottle effects, i.e. pores with narrow necks
and wider bodies (e.g., [43]). Soil water hysteresis has been de-
scribed using several approaches [44]: modelling by empirical
and semi-empirical synthetic formulae, percolation theory, ther-
modynamic theory, fractal approach and domain theory. Details
on many of the non-fractal approaches can be found in recent re-
views [45–47]. Ojeda et al. [48] developed an early fractal model
to describe hysteresis by defining a piecewise water-retention
curve. Perfect [49] proposed a closed-form expression to describe
the primary drainage curve of prefractal porous media. Russell
and Buzzi [47] described the pores as a piecewise succession of
bodies and throats and defined fractal distributions of body or
throat sizes, which allowed them to describe the hysteretic loop
observed during a drying–wetting–drying cycle.

Diffusion coefficients in porous media have been predicted from
porosity (e.g., [50,51]) analogous to Archie’s law [52]. Similar expo-
nential relationships have also been derived experimentally [53] or
using fractal approaches [54]. Analytical solutions for diffusion
problems with precipitation-dissolution reactions were derived
by Hayek et al. [55]. A method to predict diffusion coefficients from
interfacial areas in unsaturated media represented by tortuous
pore bundles was developed by Saripalli et al. [56].

From the above, it is clear that considerable advances have been
achieved in the modelling of each of the processes involved in mul-
tiphase flow and reactive transport. However, no model is available
that links all the involved parameters, which is a pre-requisite for
modelling how these parameters change in response to changes in
the pore structure caused by chemical reactions.

The objective of this work is to derive a physically-based model
that describes saturated and relative permeabilities, porosity,
retention curve and molecular diffusivity of a porous medium
and how they change in response to dissolution processes. To this
end, all these properties are obtained in terms of a fractal pore-size
and tortuosity distribution, maximum and minimum radii of pores,
and the size of the representative elementary volume (REV). We
then present a simple theoretical model to predict the temporal
evolution of these properties in response to dissolution of the solid
matrix. In this model the rock is described as an impermeable
matrix with cylindrical circular pores whose sizes follow a fractal
distribution law. By assuming periodic fluctuations in the radius
of the pores, it is possible to represent hysteresis in the retention
curve and in the relative permeability function. The porous
medium is then assumed to be dissolved by a fluid that reacts
uniformly with the surface of the pores and that this process is
far from local chemical equilibrium. We apply a function that de-
scribes the variation of the pore radii caused by dissolution or pre-
cipitation to derive continuous closed-form analytical expressions
for the temporal evolution of the parameters and constitutive rela-
tionships that can be easily implemented into continuum-scale
reactive transport codes.
2. Constitutive model

The rock matrix is conceptualized as an equivalent bundle of
tortuous capillary tubes with a fractal law distribution of pore sizes
[33,57,58]. The REV is assumed to be a straight circular cylinder of
radius R and length L.

The pore structure of the REV is represented by an ensemble of
tubes with periodically varying aperture, as illustrated in Fig. 1.
The pore radius is described by the following sinusoidal function
(similar to Czachor [59] and references therein):

rðxÞ ¼ r þ r0 sinð2px=kÞ ¼ rð1þ 2a sinð2px=kÞÞ ð1Þ

where r is the average radius, r0 the amplitude of the fluctuation, k
the wavelength, and a the fluctuation ratio defined by a ¼ r0=2r with
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Fig. 1. Pore geometry.
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0 6 a < 0:5. Notice that x is measured along the pore length, which
would only equal the dimension along the REV for straight tubes.

The cumulative size-distribution of pores whose average radii
are greater than or equal to r is assumed to obey the following frac-
tal scaling law [33,57,58]:

NðrÞ ¼ rmax

r

� �Dp

ð2Þ

where Dp is the fractal dimension of pore size (0 < Dp < 2) and rmax

is the maximum average radius of pores. Then, differentiating (2)
with respect to r we obtain the number of pores whose average ra-
dii are in the infinitesimal range r to r þ dr:

dN ¼ �DprDp
maxr�Dp�1dr ð3Þ

The fractal tortuous length of tubes is described by the fractal
scaling law of Wheatcraft and Tyler [60], who write it in terms of
a scaling factor (length of measurement along the tortuous path).
We set equal the scaling factor equal to the average pore radius,
so that the tube length becomes

lðrÞ ¼ r1�Dt LDt ¼ LðL=rÞDt�1 ð4Þ

where Dt is the tortuosity fractal dimension, with 1 < Dt < 2. Note
that the limiting cases Dt ¼ 1 and Dt ¼ 2 represent a straight tube
and a highly tortuous tube that fills a plane, respectively. The right
most expression implies that the tortuosity of each tube
[s ¼ ðL=rÞDt�1] increases with decreasing average pore radius, r.

2.1. Porosity

The volume of a single tube can be obtained by integrating the
cross-sectional area over the tortuous length lðrÞ

Vp ¼
Z lðrÞ

0
p½rðxÞ�2dx ð5Þ

According to (1) and (4), and assuming k� lðrÞ, the volume Vp

defined by (5) can be expressed as

VpðrÞ ¼ pr3�Dt LDt ½1þ 2a2� ð6Þ

According to the definition of porosity we have

/ ¼
R rmax

rmin
VpðrÞdN

pR2L
ð7Þ

Finally, replacing (3) and (6) into (7) yields

/ ¼ LDt�1ð1þ 2a2ÞDprDp
max

R2ð3� Dp � DtÞ
r3�Dp�Dt

max � r3�Dp�Dt

min

h i
ð8Þ

In the above equation we set the constraint 3� Dp � Dt > 0 in
order to allow small values of rmin.

2.2. Hydraulic conductivity

Fluid flux along each tube is typically obtained by solving
Stokes equation in cylindrical coordinates. For a periodically
varying aperture, it is assumed to be equal to that of a straight tube
with constant radius r and equivalent permeability keðrÞ given by
Reis and Acock [61]:

keðrÞ ¼
1

lðrÞ

Z lðrÞ

0

8
r2ðxÞdx

" #�1

ð9Þ

Substituting (1) in (9) and assuming k� lðrÞ (i.e. there are a
large number of pore bodies and necks in a single pore) yields

keðrÞ ¼
r2

8
ð1� 4a2Þ3=2 ð10Þ

Then, the flux in a tube with periodically varying aperture can
be expressed as:

qðrÞ ¼ qg
l

keðrÞ
Dh
lðrÞ ð11Þ

where q is the water density, g gravity, l water viscosity and Dh the
head drop across the REV. Substituting (4) and (10) into (11) we
obtain

qðrÞ ¼ ð1� 4a2Þ3=2qg
8l

r1þDt
Dh

LDt
ð12Þ

The total volumetric flow rate can be obtained by integrating
(12) over the entire range of pore sizes:

Q ¼
Z rmax

rmin

qðrÞpr2dN

¼ ð1� 4a2Þ3=2qgp DprDp
max

8lð3þ Dt � DpÞ
Dh

LDt
r3þDt�Dp

max � r3þDt�Dp

min

h i
ð13Þ

On the basis of Darcy’s law, total volumetric flow rate through
the REV can be expressed as

Q ¼ pR2Ks
Dh
L

ð14Þ

where Ks is the saturated hydraulic conductivity. Then, combining
(13) and (14) we have

Ks ¼
ð1� 4a2Þ3=2qg DprDp

max

LDt�1R28lð3þ Dt � DpÞ
r3þDt�Dp

max � r3þDt�Dp

min

h i
ð15Þ

Similar equations have been derived by other authors. Possibly,
the closest is the one by Karacan [62], if ð3þ Dt � DpÞ in Eq. (15) is
substituted by ð2:531þ Dt � DpÞ. The different exponent results
from assuming that Eq. (8) needs to be modified for the shape of
the pore.

Eq. (15) also yields the widely used dependence of permeability
on a power of porosity [63] if rmin is neglected, which leads to
permeability proportional to /ð3þDtÞ=ð3�Dt Þ. This issue will be
analyzed further when discussing the effect of dissolution. For
now, it is interesting to notice that in this case the exponent does
not depend on Dp and that the Kozeny equation is obtained for
Dt ¼ 1:5.

2.3. Diffusion coefficient

The concentration gradient along a single capillary tube with
variable aperture can be obtained from Fick’s law as:

dc
dx
¼ JðrÞ

Daqpr2ðxÞ ð16Þ

where Daq is the aqueous diffusion coefficient, JðrÞ is the diffusive
solute mass flow rate and dc=dx is the solute concentration gradi-
ent. Integrating both sides along the pore length and rearranging
terms yields:
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JðrÞ ¼ �Daq
1

lðrÞ

Z lðrÞ

0

1
pr2ðxÞdx

" #�1
Dc
lðrÞ ð17Þ

where Dc is the solute concentration difference between the edges
of the tube.

Substituting (1) in (17) and assuming k� lðrÞ yields

JðrÞ ¼ �Daqpr2ð1� 4a2Þ3=2 Dc
lðrÞ ð18Þ

note that for a = 0 we obtain the diffusive mass flow rate of a
straight tube or radius r.

The total diffusive mass flow rate (Jt) through the rock sample is
the sum of the flow rates of all individual tubes. According to (3)
and (18) we have

Jt ¼
Z rmax

rmin

JðrÞdN

¼ �Daqpð1� 4a2Þ3=2DprDp
max

ð1þ Dt � DpÞ
Dc

LDt
r1þDt�Dp

max � r1þDt�Dp

min

h i
ð19Þ

On the other hand, the total mass flow rate can be described by
Fick’s law

Jt ¼ �DeffpR2 Dc
L

ð20Þ

where Deff is the effective diffusion coefficient.
Combining (19) and (20) we obtain the following expression for

the effective diffusion coefficient:

Deff ¼ Daq
ð1� 4a2Þ3=2DprDp

max

ð1þ Dt � DpÞR2LDt�1 r1þDt�Dp
max � r1þDt�Dp

min

h i
ð21Þ

Note that for rmin ! 0 the classical definition of Deff [64] is ob-
tained from (21):

Deff ¼ Daq
/
s2 f ð22Þ

where / is the porosity given by (8), and s and f are, respectively,
tortuosity and constrictivity factors given by

s ¼ lðrmaxÞ
L
¼ r1�Dt

max LDt�1 ð23Þ

f ¼ ð1� 4a2Þ3=2

1þ 2a2

3� Dp � Dt

1þ Dt � Dp
ð24Þ

Notice that this definition of constrictivity requires not only
3� Dp � Dt > 0, but also 1þ Dt � Dp > 0.

2.4. Retention curve

As it is well-known, retention curves obtained from drainage
and imbibition tests are different because of hysteresis phenom-
ena, which are essential for some multiphase flow problems (e.g.,
[65]). The effect of hysteresis in saturation curves can be easily
modeled with the sinusoidal pore geometry illustrated in Fig. 1
and described by Eq. (1). For this pore geometry, Czachor [59]
derived an exact expression for the pressure head

hðxmÞ ¼
2r
qgr

cosðbÞ � 2pr0
k sinðbÞcosð2pxm=kÞ

ð1þ 2a sinð2pxm=kÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2pr0

k cosð2pxm=kÞ
� �2

q ð25Þ

where r is the surface tension of the water, b the contact angle and
xm the position of wetting perimeter (meniscus). Under the assump-
tion that the amplitude of the fluctuation r0 is much smaller than the
wavelength k, the above equation can be simplified to
hðxmÞ ¼
2rcosðbÞ

qgrð1þ 2a sinð2pxm=kÞÞ
ð26Þ

Note that Eq. (26) is similar to the Young-Laplace equation for a
straight capillary tube, except for the fact that the pressure head
value changes with the position of the meniscus as
rh ¼ rð1þ 2a sinð2pxm=kÞÞ.

To obtain the main drying saturation curve we suppose that the
soil sample is initially fully water-saturated and is dewatered by a
tension h. A tube becomes desaturated if suction h is smaller than
that of Eq. (26). Otherwise, water will hang from the pore necks.
The radius of each pore of the sample fluctuates between
rð1� 2aÞ and rð1þ 2aÞ. Therefore it is reasonable to assume that
pores with minimum radius rð1� 2aÞP rh ¼ 2rcosðbÞ=qgh are
drained by the tension h. Then, according to (3) and (6) the drying
saturation is given by:

SdðhÞ¼
R rh=ð1�2aÞ

rmin
VpdNR rmax

rmin
VpdN

¼ r3�Dp�Dt

h �ðrminð1�2aÞÞ3�Dp�Dt

rmaxð1�2aÞð Þ3�Dp�Dt �ðrminð1�2aÞÞ3�Dp�Dt

ð27Þ

Substituting (26) into (27) yields

SdðhÞ ¼

1 h < hd;min

hDpþDt�3�h
DpþDt�3
d;max

h
DpþDt�3
d;min

�h
DpþDt�3
d;max

hd;min 6 h 6 hd;max

0 hd;min < h

8>>><
>>>:

ð28Þ

where

hd;min ¼
2r cosðbÞ

qgrmaxð1� 2aÞ hd;max ¼
2r cosðbÞ

qgrminð1� 2aÞ ð29Þ

Similarly, the main wetting saturation curve can be derived
assuming that the soil sample is initially dry and it is flooded with
a tension h. In this case, only the tubes with maximum radii
rð1þ 2aÞ 6 rh will be fully saturated by water and the wetting sat-
uration curve is given by:

SwðhÞ ¼

1 h < hw;min

hDpþDt�3�h
DpþDt�3
w;max

h
DpþDt�3
w;min

�h
DpþDt�3
w;max

hw;min 6 h 6 hw;max

0 hw;min < h

8>>><
>>>:

ð30Þ

where

hw;min ¼
2r cosðbÞ

qgrmaxð1þ 2aÞ hw;max ¼
2r cosðbÞ

qgrminð1þ 2aÞ ð31Þ

Scanning drying curves (i.e. if the regime shifts from wetting to
drying) starting at tension h1,d are approximated by maintaining
relative saturation constant until the tension increases to the value
h2,d where Sd(h2,d) = Sw(h1,d).

Similarly, scanning wetting curves (i.e. if the regime shifts from
drying to wetting) starting at tension h1,w are approximated by
maintaining relative saturation constant until the tension de-
creases to the value h2,w where Sw(h2,w) = Sd(h1,w).

Note that Eqs. (28) and (30) have the same form as Perfect’s
model (Eq. (8) in [30]). The exponent is different because our mod-
el includes the fractal dimensions of pore size and tortuosity,
whereas Perfect’s considers a volumetric ‘‘prefractal’’ characterized
by a single dimension D. The two equations are identical if
D ¼ Dt þ Dp. Similar prefractal equations have been proposed by
Rieu and Sposito [31] and Perrier et al. [32].

2.5. Unsaturated hydraulic conductivity

The main drying unsaturated hydraulic conductivity curve can be
derived in a similar way as Eq. (28). During drainage only tubes
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with minimum radius rð1� 2aÞ 6 rh are fully saturated. Then, if we
neglect film flow on tube surfaces the main contribution to the to-
tal flow can be obtained as follows:

Q ¼
Z rh=ð1�2aÞ

rmin

qðrÞpr2dN ð32Þ

On the other hand, according to Buckingham–Darcy’s law total
volumetric flow rate through the REV can be expressed as

Q ¼ pR2KðhÞDh
L

ð33Þ

Finally, combining (32) and (33), and using (3), (12), (15), and
(26) we obtain

KdðhÞ ¼

Ks h < hd;min

Ks
hDp�Dt�3�h

Dp�Dt�3
d;max

h
Dp�Dt�3
d;min

�h
Dp�Dt�3
d;max

hd;min 6 h 6 hd;max

0 hd;max < h

8>>><
>>>:

ð34Þ

Similarly, the main wetting unsaturated hydraulic conductivity
curve pores is obtained by integrating (33) between rmin and
rh=ð1þ 2aÞ

KwðhÞ ¼

Ks h < hw;min

Ks
hDp�Dt�3�h

Dp�Dt�3
w;max

h
Dp�Dt�3
w;min

�h
Dp�Dt�3
w;max

hw;min 6 h 6 hw;max

0 hw;max < h

8>>><
>>>:

ð35Þ

Note that the exponent of h in Eqs. (34) and (35) is different
from that in Eqs. (28) and (30).

Saturation curves (28) and (30), and hydraulic conductivity
curves (34) and (35) have some similarities with the expressions
of the well-known Brooks–Corey constitutive model, which are
[26]

SðhÞ ¼
1 h < 1=abc

ðabc hÞ�c h P 1=abc

�
ð36Þ

KðhÞ ¼
Ks h < 1=abc

Ksðabc hÞ�ð3cþ2Þ h P 1=abc

(
ð37Þ

where abc is the reciprocal of air entry pressure and c is a model
parameter related to pore size distribution. Saturation relation
(36) is an empirical expression while hydraulic conductivity (37)
is obtained using the saturation relation in the Burdine model
[66]. For Dt = 2 � Dp/2 (relation which is valid for the whole range
of Dp values) and rmin ! 0, saturation curves (28) and (30) and
hydraulic conductivity curves (34) and (35) are identical to the ones
proposed by Brooks and Corey [26]. Under the above assumptions,
the relations between parameters of both models are abc = 1/hd,min

and abc = 1/hw,min for the main drying and wetting curves, respec-
tively, and c = 1 � Dp/2. According to the last relation, the range of
value for the empirical parameter c is (0,1) which is in agreement
with the experimental data obtained by Rawls et al. [67] for the
11 USDA soil texture classes.

Scanning drying unsaturated hydraulic conductivity curves
starting at tension h1;d are approximated by maintaining
KðhÞ ¼ Kðh1;dÞ until h has increased to h2;d determined in the sec-
tion above; scanning wetting unsaturated hydraulic conductivity
curves starting at tension h1,w are approximated by maintaining
KðhÞ ¼ Kðh1;wÞ until h has decreased to h2;w.

2.6. Dissolution of the rock matrix

Dissolution rate can be transport or kinetically controlled,
depending on whether the local reaction is fast or slow, respec-
tively. As mentioned in the introduction, the objective of our model
is to predict the changes of continuum macroscale properties in re-
sponse to dissolution. In practice, this requires dissolution to be
sufficiently slow at the discretization scale (cell or element), so
that the cylindrical nature of the tubes is not affected by dissolu-
tion (this may require a fine discretization in regions where the flu-
ids are very aggressive). The actual overall dissolution rate will be
computed by the continuum model. Therefore, our goal here is not
so much computing the dissolution rate as evaluating how it af-
fects the pore structure. To this end, the local dissolution rate a
is assumed to be function of the pore radius and the volume
change of each pore is assumed to be proportional to the reactive
area in contact with the reactive fluid:

dVpðrÞ
dt

¼ aðrÞSpðrÞ ð38Þ

where Sp is the surface of the tube. In general, dissolution will only
occur at saturated pores. But for further developments, we assume
that, similar to the film depositional model of Freedman et al. [41],
dissolution affects pore radii of all tubes (i.e. the entire pore-size
distribution). Therefore, according to (38) and (1), we obtain the fol-
lowing variation for the average radius

dr
dt
¼ 2aðrÞ
ð3� DtÞð1þ 2a2Þ ð39Þ

The key question is how to distribute the overall dissolution
rate, computed by the continuum scale model, among the pore ra-
dii, that is, how to define aðrÞ. The two extreme models would be:
(i) to make the dissolution constant, which would reflect an extre-
mely slow dissolution rate, independent of the actual dissolution
along the flow path, or (ii) proportional to r2, which would reflect
a dissolution rate proportional to the flow rate. The latter may be
appropriate for very aggressive dissolutions, leading to wormholes
near the injection point, which would render our model inade-
quate, both because of pores coalescence and because non-uniform
dissolution along the flow path. The former tends to unit fractal
dimension, which does not seem appropriate, either, because, as
pointed out by several authors (e.g., [68,69]), large pores grow fas-
ter than the small ones during dissolution processes. Therefore, we
assumed dissolution rate proportional to pore radius, which falls
between the two extrema, and it is convenient (fractal dimension
remains unaffected) and consistent with a mild transport control
on dissolution kinetics. Therefore, aðrÞ ¼ ~ar, where ~a will generally
be obtained at every cell to reproduce the overall dissolution com-
puted by the continuum model, but is assumed constant here for
evaluating the time evolution of controlling parameters. Integrat-
ing (39) from t0 (initial time for dissolution) to t, we obtain

rðtÞ ¼ rðt0Þebðt�t0Þ ð40Þ

b ¼ 2~a
ð3� DtÞð1þ 2a2Þ ð41Þ

Substituting (41) in (8), (15), and (21):

/ðtÞ ¼ /ðt0Þeð3�DtÞbðt�t0Þ ð42Þ

KsðtÞ ¼ Ksðt0Þeð3þDtÞbðt�t0Þ ð43Þ

Deff ðtÞ ¼ Deff ðt0Þeð1þDtÞbðt�t0Þ ð44Þ

The saturation curves (28) and (30) and the unsaturated
hydraulic conductivity curves (34) and (35) also depend on time
through parameters defined in (29) and (31):

hd;minðtÞ ¼ hd;minðt0Þe�bðt�t0Þ; hd;maxðtÞ ¼ hd;maxðt0Þe�bðt�t0Þ ð45Þ

hw;minðtÞ ¼ hw;minðt0Þe�bðt�t0Þ; hw;maxðtÞ ¼ hw;maxðt0Þe�bðt�t0Þ ð46Þ
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Note that combining (42) and (43) we obtain a commonly used
correlation for estimating permeability evolution [63]:

KsðtÞ ¼ Ksðt0Þ
/ðtÞ
/ðt0Þ

� �n

ð47Þ

with n ¼ ð3þ DtÞ=ð3� DtÞ. According to Aharonov et al. [70] the
exponent n is a constant usually 2 or greater; the well-known cubic
law is consistent with n = 3, and Doyen [63] suggested that the best
fit of data in their study is obtained using n = 3.8. Note that in the
proposed model the exponent n only depends on the tortuosity
fractal dimension Dt , so the range of this parameter is 2 < n < 5.
The value of Doyen [63] would lead to Dt ¼ 1:75.
 time (h) 

Fig. 2. Model fit to the time evolution of porosity data obtained by Jove et al. [71].
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Fig. 3. Model fit to the time evolution of permeability data obtained by Jove et al.
[71].
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Fig. 4. Model fit to the time evolution of permeability presented by Békri et al. [68].
3. Application

Actual application of the model requires specifying the pore size
and tortuosity fractal dimensions, the minimum and maximum
pore radii, as well as the fluctuation parameter, a, and the REV.
Most of these parameters can be obtained from pore image analy-
sis and, hopefully, others (e.g., tortuosity dimension) can be bor-
rowed from experiments in similar media, once experience has
been gained. To this end, it would be desirable to get experimental
data sets from laboratory experiments that yield the evolution of
porosity, saturated and relative permeabilities, retention curve,
and diffusion coefficient during dissolution. We performed a re-
view of published data, but we did not find any. Therefore, for illus-
tration purposes, we present here the fit to porosity and saturated
permeability evolutions presented by Jove Colon et al. [71], Békri
et al. [68] and Rötting et al. [72].

Jove Colon et al. [71] studied the evolution of saturated perme-
ability and porosity during dissolution of nonfractured, clay-free
Fontainebleau sandstone at 80 �C and far from equilibrium condi-
tions using a 0.1 M NaOH. To test our model at least partially, we
applied it to the data of core 1 in the publication [71].

In order to fit the proposed model to the observational data we
use an exhaustive search method, which is a simple and very ro-
bust technique to find the best set of model parameters. To apply
this method, we first define the ranges of admissible values for
each model parameter and uniformly discretize the space of
parameters. The exhaustive search method computes the error be-
tween data and predicted values for all possible combinations of
model parameters values and selects the ones that minimize the
error. Figs. 2 and 3 show the fit of expressions (42) and (43). The
values of fitted parameters are: a ¼ 0:025, Dp ¼ 1:05, Dt ¼ 1:80,
~a ¼ 1:412510�4, rmin ¼ 3:98 10�6 cm, and rmax ¼ 0:01 cm. The lat-
ter is qualitatively consistent with the photomicrograph of the core
shown by Jove Colon et al. [71]. It is worth pointing that the above
set of parameters produces the best fit to observational data
assuming a wide range of admissible values for all model parame-
ters. Clearly, fitting the model requires further information either
on parameter distributions or on the evolution of other variables
of the problem.

The proposed model is also tested with simulated data obtained
by Békri et al. [68]. In their study the dissolution phenomena is
described at microscopic scale by a coupled convection and con-
vection-diffusion problem in the quasi-steady limit, where the
geometrical changes are very slow. Using this approach they
numerically compute the evolution of the permeability in a
close-packed cubic array of spheres. Figs. 4 and 5 show the fit of
expressions (43) and (47) to simulated values of the normalized
permeability with dimensionless time and normalized porosity
for small values of the product of the Péclet and Damköhler num-
bers (uniform dissolution). The best agreement between simulated
values and our model is obtained for a ¼ 0:165, ~a ¼ 1:036,
Dt ¼ 1:83, which are the only parameters that can be estimated be-
cause data are normalized by the initial values.

It is interesting to point out that the values of the tortuosity
dimension obtained in both cases (around 1.8) are similar to the
value derived from the data of Doyen [63]. They yield an exponent
of approximately n = 4 in the relationship Ks(t) vs. /(t) of Eq. (47).

Finally, we applied the model to laboratory data recently
obtained by the authors and co-workers [72] on dolomitized oolitic
grainstones from the Campos basin in Majorca. Before and after
attacks with HCl at pH 4, we determined the porosity (by triple
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weighing) and the main drying saturation curve (by centrifuge).
We also attempted to measure diffusion coefficients, but the initial
permeability of the core was too high (about 2 cm/min or
4 � 10�11 m2) to produce pure diffusion without any advective or
convective interference. Three characterization and two dissolu-
tion steps were performed, with a total percolated acid volume
of 17,100 pore volumes, at a flow rate of 10 mL/min. The cylindrical
core had a diameter of 25 mm and a thickness of 12 mm, which
gives an upper bound for the radius R and defines the length L of
the REV. A maximum grain size of about 0.2 mm and maximum
pore diameters of about 0.4 mm were determined from thin sec-
tions, the latter provides an upper limit for the maximum average
pore radius rmax. A residual water content of about 5% at the high-
est centrifuge speed (equivalent tension 213 kPa) indicated that
the minimum pore radius rmin was 0.0005 mm or smaller. Further
details about these experiments can be found elsewhere [72].

This data set allowed us to also test the drying saturation
relationship (28) and (29) and its time evolution (45), besides the
evolution of porosity and permeability (Eqs. (42) and (43)). We
used a water viscosity l = 0.001 Pa � s, a water density q = 1000
kg/m3, a surface tension r = 0.072 N/m and a contact angle b = 0�.
The remaining parameters adjusted by the exhaustive search
method are: R = 7.610�2 cm, a = 0.001, Dp = 1.123, Dt = 1.266,
rmin = 9.2 � 10-8 cm, rmax = 1.98 � 10-2 cm and ~a = 1.5 � 10�7.

The fit of the model to porosity and permeability evolution, and
to three measured drying saturation curves at t = 0 s, 33,095 s and
238,307 s are shown in Figs. 6–8, respectively.

An excellent fit is obtained for the porosity evolution (Fig. 6),
good fits for permeability evolution (Fig. 7) and drying saturation
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Fig. 6. Model fit to time evolution of porosity data measured by Rötting et al. [72].
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relations (Fig. 8). The final drying saturation relation (t = 238,307 s)
is reproduced less satisfactorily, particularly for low tensions (large
pore sizes). Probably, dissolution decreased the tortuosity, chang-
ing its fractal dimension Dt and the fluctuation ratio a, because dis-
solution may have enlarged the pore necks more than the pore
bodies. Such changes cannot be reproduced by the model proposed
here, because the fractal dimensions of tortuosity Dt and porosity
Dp are supposed to remain constant during dissolution. Experi-
ments would need to be performed in a chemical system with
much slower dissolution velocities than dolomite and HCl, in order
to achieve a more uniform dissolution of the porous medium.

With the values of Dt = 1.266 obtained with this dataset, the
exponent in the relationship Ks(t) vs. /(t) of Eq. (47) yields
n = 2.46, significantly lower than in the previous two cases.
4. Discussion and conclusions

A physically-based theoretical model for describing the tempo-
ral evolution of porosity, saturated and relative permeabilities,
retention curve, and diffusion coefficient during rock dissolution
by reactive fluids has been developed in this study. The derivation
of the model is based on the assumption that the porosity of the
rock can be represented by a bundle of tortuous capillary tubes
with a sinusoidal variation of tube radius along the tube length
and a fractal cumulative size distribution for the mean radius.
Using fractal descriptions of the pore size distribution and tortuos-
ity, analytical expressions were obtained that depend only on the
minimum and maximum pore radii, the size of the representative
elemental volume and the fractal dimensions of pore size and tor-
tuosity. By assuming periodic fluctuations in the radius of the
pores, hysteresis in the retention curve and in the relative perme-
ability function was represented. Assuming a constant dissolution
reaction, closed-form analytical expressions for porosity, retention
curve, saturated and relative permeabilities and diffusion were ob-
tained that depend explicitly on time.

We show for most of the derived equations that under simplify-
ing conditions the expressions are equivalent to widely used
empirical relations, such as Kozeny-Carman [4,5], Brooks and
Corey [26], Campbell [35], fractal models derived by others (e.g.
[30–32]), or commonly used equations of the effective diffusion
coefficient or the evolution of permeability as an exponential func-
tion of porosity [63,70].

The proposed model represents an improvement over available
bundles of tubes models in that it blends existing concepts (fractal
tortuosity and pore sizes, and constrictivity), to obtain an inte-
grated description of multiphase flow properties and how they
evolve in response to rock dissolution. However, the proposed
model suffers the limitations of bundles of tubes approaches. Spe-
cifically, they assume perfect pore connectivity and stationary pore
structure. As a result, they cannot account for non-stationary fea-
tures such as lacunarity. This limitation can be partly overcome
by specifying multiple interacting continua. Such specification is
not needed by pore network models, but results from pore geom-
etry and pore scale processes. Therefore it is clear that these must
be considered to be more realistic than bundles of tubes, provided
that good pore images are available [12].

The proposed equations can be enriched along several direc-
tions. First, for simplicity and convenience, we assumed dissolution
to occur in all pores. In general, it will only occur in saturated
pores. Accounting for this will require keeping track to the evolu-
tion of pore size distribution, which may no longer be fractal. Also,
dissolution and precipitation may not be uniform along the tubes,
but concentrate preferentially on the pore necks or bodies. In fact,
the uniform distribution of pore sizes along the tubes may have to
be relaxed to better reproduce hysteresis phenomena.
The temporal evolution predicted by the proposed model for
porosity and permeability compares well with data published by
Jove Colon et al. [71] and by Békri et al. [68]. We are currently per-
forming laboratory experiments to test the model against temporal
evolution of not only porosity and permeability, but also molecular
diffusion and retention curve. A first test of our model with data
from one of these experiments [72] also gave a good fit for porosity
and permeability evolution, and saturation relations.
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