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The connection of renewable energy conversion systems in distribution networks must

comply with codes for assuring power quality as well as the grid assistance demands. The

new operating requirements cannot always be achieved from the control strategies that

have been employed for years in conventional distribution systems. In this context, this

paper addresses the problem of controlling a wind turbine from passivity control concepts.

In particular a control strategy based on a new approach to the passivity theory, known as

Power Shaping, is proposed. This approach allows to consider pervasive dissipation. The

proposed strategy is evaluated in the context of extreme operating conditions showing

capability to ride through grid failures. In this way, the simulation results encourage the

application of concepts of Power Shaping in more complex systems of distributed

generation.

Copyright ª 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
1. Introduction

The renewable energy conversions systems constitute an ad-

vantageous alternative to increase the local supply of elec-

tricity in existing distribution grids, which generally are weak.

The Control of active power of these systems is essential to

the proper distribution of electric energy. Active power control

is used to balance demand and supply, so contributing to

frequency stability, whereas reactive power control is

commonly used in voltage regulation. Wind energy penetra-

tion into the electric markets was almost negligible during

past decades. Therefore, wind turbines have been
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predominantly operated to maximize the wind energy cap-

ture. However, as wind energy penetration raises, the new

technical regulations for grid connection of wind energy

conversion systems (WECS) tend to give priority to wind

power quality over power quantity. Moreover, wind power

turbines are increasingly required to share some of the duties

carried out today by the conventional power plants, such as

active and reactive power regulation even ride through grid

failures. In this sense specifications for high power turbines

have been recently introduced [19,20,23].

The conventional control techniques are not always solve

the requirements of the real codes, for this reason in last years

new control strategies based on advanced control ideas have
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been explored [20]. Among the more promising control the-

ories to deal with the new challenges of renewable dispersed

generation are those based on passivity ideas.

Passive systems constitute an important class of dynamic

systems, for which the stored energy cannot exceed the en-

ergy supplied to it from the outside, with the different being

the dissipated energy. The first controller based on concepts of

passivity was introduced over two decades ago. Since then the

theory of passivity has constantly evolved leading to robust

control strategies which have been applied to electric ma-

chines, energy systems, magnetic levitation system, power

converters, etc [6,5,14e16].

ThePowerShapingasall techniquesderived frompassivity,

is characterized by not requiring the linearization of themodel

neither to establish a Lyapunov function that guarantees the

stability of the controlled system nor to obtain the domain of

attractionof it. In contrast topassive control basedondamping

assigning, the Power Shaping Control does not presents ob-

stacles of pervasive dissipation at equilibrium [1,3,4].

In this context, and considering one of the structures of

more versatile systems of conversion of wind energy (turbine

of horizontal axis, gear box, three-phase rotor wound induc-

tionmachine (DFIG) and a back to back converter), we propose

an active power control strategy to take advantage of the en-

ergetic utilization [11,6] which is based on concepts of passive

systems, particularly on Power Shaping ideas. The proposed

control is evaluated in a test platform system that has been

used for testing different control strategies [13,17,22,21].

The structure of this paper is the following. Section 2 intro-

duce the basics to synthesize a controller using the technique

PowerShapingControl. Section 3presents thedynamicalmodel

of the DFIG employed in the control law development. The

control law is obtained in Section 4 and afterward evaluated in

Section 5. Finally the conclusions are summarized.

2. Fundamentals for Power Shaping Control

Given a dynamical system:

�
_x ¼ fðxÞ þ gðxÞu
y ¼ hðxÞ ; (1)

where fðxÞ : Rn/Rn, gðxÞ : Rn/Rn � Rm, n is the number of

states and m is the number of inputs of the system. The

following propositions are used to obtain a stabilizing control

by power shaping [1,3]. Assume:

1. There exist a matrix Q : Rn/Rn�n, full range, non singular

that solves the differential equation:

VðQðxÞfðxÞÞ ¼ ½VðQðxÞfðxÞÞ�T; (2)

and furthermore verifies that:
QðxÞ þ QðxÞT � 0: (3)
2. There is a scalar function Pa : Rn/R, positive definite in the

neighborhood of an equilibrium point x*, which verifies the

following partial differential equation:

gtðxÞQ�1ðxÞVPaðxÞ ¼ 0; (4)

t
 Fig. 1 e Wind turbine configuration.
where g ðxÞ is the left annihilator of g(x). That is to say:
gtðxÞgðxÞ ¼ 0: (5)

3. The point of equilibrium x* is asymptotically stable, with

Lyapunov function Pd(x) such that:

VPdðx�Þ ¼ 0; (6)

2 �
V Pdðx Þ > 0: (7)

Where the total power function of the system is given by:

PdðxÞ ¼ PðxÞ þ PaðxÞ; (8)

and

PðxÞ ¼
Z

½QðxÞfðxÞ�Tdx: (9)

Under these conditions the control law is:

u ¼ �
gTQTQg

��1
gTQTVPa: (10)

3. Dynamical model of wind turbine

The system considered in this section is shown in Fig. 1 where

can appreciate a wound rotor asynchronous generator con-

nected to the grid. This generator is impulsed by a three-

bladed horizontal-shaft wind turbine. The wind turbine are

coupled by a gear box.

The operation of a machine of induction is analyzed using

the theory of rotating fields and the well known d-qmodel [8].

The voltages in the generator stator and rotor are:

usg
�! ¼ Rs isg

�!þ dlsg
dt

; (11)

urg
�! ¼ Rr irg

�!þ dlrg
dt

; (12)

where Rs and Rr are the stator and rotor winding resistances,

respectively, lsg and lrg are the stator and rotor fluxes in a
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Fig. 2 e System analyzed.
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generic reference frame, isg and irg are the stator and rotor

currents.

The expressions for the derivative of the rotor current

components in the generic framework (x, y) can be obtained

from equations (11) and (12):

dirx
dt

¼ �Rr

Lr
irx þ 1

Lr
urx; (13)

diry
dt

¼ �Rr

Lr
iry þ 1

Lr
ury: (14)

Then the electromagnetic torque:

Te ¼ 3
2
np

�
lsxisy � lsyisx

�
; (15)

where np is the number of pair of poles of the asynchronous

generator, lsx and lsy are the fluxes linkage on the (x,y)

framework. The expressions for active and reactive power are

given by:

P ¼ 3
2

�
uxix þ uyiy

� ¼ 3
2

�
Uiy

�
; (16)

Q ¼ 3
2

�
uyix � uxiy

� ¼ 3
2
ðUixÞ; (17)

where can see that, considering vector control on a particular

framework such that ux ¼ 0 and uy ¼ U, the active and reactive

powers can be controlled independently [10,18].

On the other hand, the angular acceleration is given by:

du
dt

¼ np
J
ðTe � Bru� TmÞ; (18)

where Br is the combined coefficient of load friction, u the

angular speed of the rotor, Tm themechanic torque and J is the

inertia of the system.

The torque and the mechanic power of a wind turbine are

defined by Ref. [11]:

Tm ¼ prr2

2
v3CpðlÞ=Ut; (19)

Pt ¼ prr2

2
v3CpðlÞ; (20)

where r is the density of the air, r the radius of the wind tur-

bine, v is wind speed, Cp(l) the coefficient of power, l ¼ Utr
v the

ratio of the blade tip speed, Ut is the rotational speed of the

wind turbine.

From equations (13), (14) and (18), expression (1) is:

_x ¼

0
BBBB@

�Rr
Lr
x3

�Rr
Lr
x4

2
�
� Brx5

J � 3Ux4Lm
JuLs

	

1
CCCCAþ

0
BB@

0

1
Lr

0

1
CCAu; (21)

where x3, x4 and x5 are the rotor current components in the

deq axes and the speed rotor respectively. In equation (21),

the feed-forward actions have been considered to eliminate

the coupling between _irx and _iry. These actions cancel the

voltages urx and ury in the equations (14) and (13).
4. Control law

As mentioned above, to employ the Power Shaping technique

is necessary to propose a matrix Q(x) that verifies the

equations (2) and (3).

The matrix Q(x) proposed in this work can be found in

Appendix A. To control the active power of the DFIG, g(x) can

be taken as shown in the expression (21).

Then, the left annihilator:

gtðxÞ ¼ ð 0 0 1 Þ; (22)

which checks the expression (5) is proposed.

Thus, the expression (4) for the system becomes:

gtðxÞQ�1ðxÞVPaðxÞ ¼ ð g1 g2 g3 ÞVPa ¼ 0: (23)

For clarity the details of the calculation of Pa(x) has been

summarized in Appendix B.

Finally the control law for the DFIG generator considered

results:

u ¼ b1



� 6b2

2

vPa

vx4
þ 3b2

vPa

vx5

�
; (24)

where:

b1 ¼ ðJRruLsÞ4
36ðULmÞ4L2r þ 9ðJRrUuLmLsÞ2

; (25)

b2 ¼ ULm
JRruLs

; (26)

being Lm the magnetizing inductance, Lr the rotor self-

inductance and Ls the stator self-inductance.
5. Simulation results

In this section, the Power Shaping controller is evaluated in

grid connection. In Fig. 2 is shown a wind turbine of 1.5 MW

connected to a system of electric distribution of 25 kV. The

system exports power to a network of 120 kV through a line of

30 km. This systems has been used as a testing platform for

different control strategies [22,21].

The blade pitch control actuates when the available wind

power is greater than the nominal value. When the available

wind energy is less than the nominal, the pitch angle of the

blade is fixed to maximize the mechanical power delivered to

the shaft [17].

The wind turbine reference speed for wind speeds below

the rated is given by Ref. [13]:
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Fig. 3 e System behavior. a) Step of wind. b) Active power.

c) Speed shaft.
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uref ¼ �0:67P2
e þ 1:42Pe þ 0:51; (27)

being, Pe wind power extracted. The reactive power is

controlled by regulating the voltage at the connection point of

the wind generator.

Three cases are analyzed for the purpose of demonstrating

the feasibility of the control.

Even though real wind does not occur as a series of steps,

this kind of change is used because it is a standard testing

signal that permits a clear interpretation of the system

behavior. In this way, Fig. 3a shows a step change in the wind

velocity which implies changing the turbine aerodynamic

torque producing an acceleration torque (Tt�Tg) which, in

turns, increases the turbine speed (Fig. 3c). As a consequence

of the turbine speed increment, the proposed control forces

the extracted power to follow the reference one defined in

expression (27) increasing the delivered power (Fig. 3b). Then,

the proposed control assures that the transitory behavior of
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Fig. 4 e Voltage step. a) Voltage step in the infinite bus

(solid line) and the voltage variation in the connection

point (dash line). b) Active power. c) Speed shaft.
the wind turbine evolves towards the maximum efficiency

operating point at 10 m/s.

Fig. 4 shows the system behavior in presence of a voltage

sag of 10% during 2 s. Meanwhile, in Fig. 4a the voltage sag

indicated corresponds to the infinite bus in Fig. 2(full line), the

dashed line presented the voltage at the DFIG machine. The

voltage at the connection point is recovered via the reactive

(proportional) power control. This control, which is not stud-

ied in this work, by virtue of vector control operates decoupled

from the active power control. Part (c) of Fig. 4 shows that,

despite the magnitude of the perturbation in the infinite bus,

the proposed control (active power) allows that the turbine

speed remains almost unchanged. Indeed, at the same time

that voltage suddenly decreases so does the electromagnetic

torque and the extracted power, due to wind velocity remains

unchanged an accelerating torque appears (Tt�Tg). As a

consequence, the proposed control forces the machine to

deliver into the grid an active power which counteracts the

increment in the kinetic energy due to (Tt�Tg). This explains

the peak of active power injected into the grid just after the

fault Fig. 4c.

Fig. 5 shows the performance of the system against an

extreme fault in the infinite bus, a voltage dip of 60% and

0.6 s. The nowadays connection codes require that wind

turbines have the ability to ride through grid failures, other-

wise the failure can be strengthened harming the rest of the

electrical system. Fig. 5a shows voltages in the main bus

(solid line) and at the terminals of the generator (dashed line),

respectively. As in the previous case, in part (b) of Fig. 5 a

strong injection of active power to the grid prevents a turbine

speed increase. This fact can be verified in part (c) of the

figure where, despite the severity of the fault, there are no

significant changes in the speed of the turbine that could

force disconnection. At time 12 s, once the fault is removed,

the controller brings to the steady state the electrical power

delivered by the DFIG.

The simulation results show that despite the severe con-

ditions the system presents a good performance. These first
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results are promising and quite optimistic with the use of the

method in more complex systems.
6. Conclusions

This article analyzes the use of Power Shaping concepts, a

new approach of passive control theory, to synthesize a

controller for the active power of a wind turbine with wound

rotor asynchronous generator connected to a weak network.

Simulations results allow to verify the feasibility of the pro-

posed control design in presence of different network failures

and variations in the wind resource. These first results are

promising and encourage to extend the field of application of

the Power Shaping design to the reactive power control in

order to assist the network against failures in more complex

renewable distributed generation systems, whose character-

istics make difficult or impossible the application of other

conventional control technique.
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Appendix A. Calculation of Q (x)

To reduce the number of equations involved in expression (2),

the following values for the elements of Q(x) are adopted:

q12 ¼ 0;q13 ¼ 0;q21 ¼ 0; q31 ¼ 0; (A.1)

q23 ¼ J
Br



q32Rr

Lr
þ 3q33ULm

JuLs

�
: (A.2)

To ensure that Q(x) þ Q(x)T is a negative semi-definite

matrix, the principal minors are checked [9].

Taken q11 ¼ �1, the second principal minor is:

A2 ¼ 4q11q22 � 0; (A.3)

The third ones becomes:

A3 ¼ 8q22q33 þ
18

�
q33ULmLr

�2
ðJRruLsÞ2

� 0: (A.4)

To ensures the expression (A.4):

q22 ¼ �18ðULmLrÞ2
kðJRruLsÞ2

; (A.5)

is taken, where the constant k should be allocated to meet the

inequality 3, in this way k ¼ 3 is chosen. For simplicity the

value of q33 is assigned at�1.More details for the choice ofQ(x)

can be found in Ref. [2].
Appendix B. Calculation of Pa (x)

Values g1, g2 and g3 for the developed system are:
g1 ¼ 0; g2 ¼ 3ULmLr
Jq22RruLs

; g3 ¼ 1
q33

: (B.1)

The solution of the partial differential equation is given by:

PaðxÞ ¼ J



� g3

g2
x4 þ x5

�
; (B.2)

whereJ : R2/Rmust be chosen such that Pd(x)¼ P(x)þ Pa has

a minimum in x*. To solve the corresponding partial differ-

ential equation the procedure described in Ref. [12] can be

used.

The result of first term of the expression (8) becomes:

PðxÞ ¼ Tmx5

J
þ Brx2

5

2J
þ Rrx2

3

2Lr
� q22Rrx2

4

2Lr
: (B.3)

Given the conditions for Pd(x), posed in the equations (6)

and (7), we can build a function that has the form of the

equation (B.2). In this way is proposed:

PaðxÞ ¼ �Rrx�2
3

2Lr
þ kaðz� z�Þ2 þ kbðz� z�Þ; (B.4)

where ka and kb are scalars, and z and z* are given by:

z ¼


� g3

g2
x4 þ x5

�
; (B.5)

z� ¼


� g3

g2
x�
4 þ x�

5

�
: (B.6)

From equations (6) and (21) the value of ka, kb and g2 can be

obtained, resulting in:

ka ¼ 1; (B.7)

kb ¼ q33
T�
e

J
; (B.8)

g2 ¼ T�
e

x�
4

Lr
RrJ

: (B.9)

The hessian V2Pd is given by:

V2Pd ¼
0
@Rr=Lr 0 0

0 t1 t3
0 t3 t2

1
A+

0; (B.10)

t1 ¼ 2



g3

g2

�2

ka þ 6ðULmÞ2Lr
RrðJuLsÞ2

; (B.11)

t2 ¼ Br

J
þ 2ka; t3 ¼ �2ka

g3

g2
: (B.12)

The expression (B.10) is positive definite. Thus we can

conclude that it verifies the existence of a minimum in x*.
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